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Abstract: This paper aims to present a robust attitude control strategy with guaranteed
transient performance. Firstly, a Lyapunov-based control law is designed to achieve high-
performance attitude control in the absence of disturbance and parameter variation. The
proposed control law uses small feedback gains to suppress the control torque at large attitude
error, and increases those gains with the convergence of attitude error to accelerate the system
response. The overshooting phenomenon is also avoided by imposing a restriction on the
parameter selection. Then, the integral sliding mode control technique is employed to improve
the robustness, where the Lyapunov-based control law is used as the equivalent control part.
Theoretical analysis and simulation results verify the effectiveness of the proposed strategy.

1. INTRODUCTION

Controlling the rotational motion of rigid spacecraft is a
challenging issue. The difficulty lies in the highly nonlinear
and coupled governing equations, as well as the undesired
torque caused by disturbance and parametric uncertainty
(Schaub and Junkins [2009]). Therefore, for achieving
desired control performance, nonlinear control techniques
with strong robustness should be utilized.

Since the first systematic study in (Meyer [1971]), Lyapunov-
based control technique has been extensively investigated
in the attitude control literature (Wie et al. [1989],Wen
and Kreutz-Delgado [1991],Suk et al. [2001],Schlanbusch
et al. [2010]). By finding some energy-like Lyapunov func-
tions, the associated attitude controllers are constructed
by two parts, the attitude variable feedback terms and the
nonlinearity compensation terms (Wie et al. [1989],Wen
and Kreutz-Delgado [1991]). The closed-loop dynamics
can be approximated using a simple damped harmonic
oscillator model, which makes the controller very conve-
nient to validate, tune and implement. Nonetheless, only
a boundedness conclusion can be obtained in the presence
of disturbance and parametric uncertainty (Schlanbusch
et al. [2010]). As a result, the control accuracy is unaccept-
able for space missions such as rendezvous and docking,
where a highly accurate pointing or slewing is required.
Moreover, there is a tradeoff between accelerating system
response and suppressing the peak control torque, which
will degrade the control performance if unsuitable param-
eters are selected.

In order to address those shortcomings, various strategies
have been adopted. On the one hand, the robustness issue
has been considered in many research works. In (Lizarralde
andWen [1996]) and (Tsiotras [1998]), the inertia matrix is
not required in the attitude controller design by exploiting
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the passivity properties of the attitude control system.
Hence, the control precision will not be affected by the
uncertain inertia matrix and the robustness is therefore en-
hanced. However, such a conclusion only holds for the case
of attitude reorientation. With respect to attitude track-
ing, an exact knowledge of inertia matrix is still required.
In (Akella [2001]), a simple adaptive law was designed
to estimate the slow varying inertia matrix. However, the
disturbance torque is not taken into account. Integrating
with disturbance observer is another effective approach
of improving the robustness of Lyapunov-based attitude
controller (Yamashita et al. [2004],Sun and Li [2013],Sun
and Li [2011]). Nonetheless, the control accuracy depends
directly on the disturbance observer and a rigorous sta-
bility analysis under the composite controller is generally
absent due to the challenging separation principle issue.

On the other hand, in order to ensure high performance,
the backstepping method has been applied to attitude con-
trol (Krstić and Tsiotras [1999],Kim and Kim [2003],I.Ali
et al. [2010]). Compared with conventional Lyapunov-
based control, in backstepping, required specifications can
be considered during the design procedure, instead of a
careful parameter tuning after the controller design. In
(Krstić and Tsiotras [1999]), an inverse optimal attitude
control law, which is optimal with respect to a meaningful
cost function, was proposed. By virtue of the backstepping
design, the task of solving Hamilton-Jacobi equation has
been avoided. Aiming to address the tradeoff problem
between excessive control torque and the sluggish motion,
a nonlinear virtual control law (also termed as tracking
function) was employed in (Kim and Kim [2003]). Similar
strategy was developed in (I.Ali et al. [2010]) to han-
dle the input saturation problem. As is well known, in
the backstepping based attitude controller design, desired
system response is characterized by the virtual control
and is realized by the tracking of virtual control output
by the actual control input. Nonetheless, such a tracking
can only be achieved asymptotically or in finite time. In
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other words, the expected performance cannot be globally
realized throughout the control action.

In this paper, the attitude control problem of rigid space-
craft is firstly addressed in the absence of disturbance
and parameter variation. The related object is improving
the transient performance, e.g., accelerating the attitude
tracking evolution while avoiding excessive control torque.
Unlike the backstepping strategy using a nonlinear virtual
control law in (Kim and Kim [2003]), a simple Lyapunov-
based attitude control law with state-dependent feedback
gains is presented. By restricting the damping ratio at
the equilibrium point, the overshooting phenomenon can
be avoided. Furthermore, with respect to the robustness
issue, the integral sliding mode (ISM) control technique is
utilized to redesign the Lyapunov-based control law. As
a result, a robust attitude controller with improved tran-
sient performance is developed. The effectiveness of the
proposed strategy will be verified by theoretical analysis
and numerical simulation.

2. MATHEMATICAL MODEL AND PROBLEM
STATEMENT

Consider a thruster-controlled rigid spacecraft, whose gov-
erning equations are described by

Ĵ ω̇b + ω×
b Ĵωb = Tc + Td + Tp (1)

σ̇b = M(σb)ωb (2)

where Ĵ = diag(J1, J2, J3) is the nominal part of the
inertia matrix J ∈ R3×3, and ωb ∈ R3 denotes the
inertial angular velocity. The superscript (·)× is the skew-
symmetric matrix operator on any 3 × 1 vector α =

[α1, α2, α3]
T
such that

α× =

[
0 −α3 α2

α3 0 −α1

−α2 α1 0

]
Tc ∈ R3 is the control torque provided by the re-
action control thrusters. Td ∈ R3 stands for the dis-
turbance torque, including the environmental and non-
environmental torques. Tp ∈ R3 is the torque induced

by the parametric uncertainty. Let ∆J = (J − Ĵ ) ∈
R3×3 denote the inertia matrix uncertainty, then Tp =
−∆J ω̇b − ω×

b ∆Jωb. σb ∈ R3 denotes the Modified Ro-
driguez Parameters (MRP) representation for the inertial
attitude of the spacecraft. M(·) : R3 → R3×3 is the
Jacobian matrix operator such that

M(σb) =
(1− ∥σb∥2)I3 + 2σ×

b + 2σbσ
T
b

4
(3)

where I3 is the 3 × 3 identity matrix and ∥ · ∥ is the
vector 2-norm. Moreover, M−1(σb) = MT(σb)/m(σb)
with m(σb) = (1 + ∥σb∥2)2/16.
Let σd,ωd ∈ R3 denote the desired attitude variables,
which also satisfy the attitude kinematics in (2), i.e.,
σ̇d = M(σd)ωd. It is assumed that σd and ωd together
with ω̇d are all bounded. Subsequently, the attitude error
variables are defined as

σe = σb ⊕ σ∗
d (4)

ωe = ωb −R(σe)ωd (5)

where σe,ωe ∈ R3 represent the MRP error and the
angular velocity error. ⊕ is the MRP addition operator,
characterizing the successive rotations. For two MRPs,
e.g., σ1 and σ2, it is calculated as follows:

σ1 ⊕ σ2 =
(1− ∥σ2∥2)σ1 + (1− ∥σ1∥2)σ2 − 2σ×

1 σ2

1 + ∥σ1∥2∥σ2∥2 − 2σT
1 σ2

The superscript (·)∗ denotes the complex conjugate of
MRP and σ∗

d = −σd. R(·) : R3 → R3×3 is the rotation
matrix operator. For σe, one has

R(σe) = I3 +
8σ×

e σ×
e − 4(1− ∥σe∥2)σ×

e

(1 + ∥σe∥2)2

By substituting (4) and (5) into (1) and (2), the governing
equations in terms of ωe and σe can be described as

Ĵ ω̇e =Ĵ
(
ω×

e Rωd −Rω̇d

)
− ω×

e Ĵ (ωe +Rωd)

− (Rωd)
× Ĵ (ωe +Rωd) + Tc + Td + Tp

(6)

σ̇e = Mωe (7)
where the related arguments in M(σe) and R(σe) are
ignored for clarity.

From a practical point of view, the disturbance torque and
the inertia matrix uncertainty are both bounded. Follow-
ing the same line of (Huang et al. [2008]), it is reasonable
to assume that ∥Td + Tp∥∞ ≤ c0 + c1∥σe∥∞ + c2∥ωe∥∞,
where ci (i = 1, 2, 3) are known positive constants and
∥ · ∥∞ is the vector infinity norm. Thus, the control object
can be summarized as follows. Find an attitude controller
such that 1) σe and ωe can be globally stabilized in
the presence of bounded disturbance and inertia matrix
uncertainty; 2) transient performance of the closed-loop
system is guaranteed.

3. MAIN RESULTS

In this paper, the above-mentioned control object is re-
alized by two steps. Firstly, high-performance attitude
control in the absence of disturbance and inertia matrix
uncertainty is guaranteed by an enhanced Lyapunov-based
control law. Then, the proposed control law is redesigned
by the ISM control technique to ensure the robustness.
Before moving on, current Lyapunov-based control scheme
is briefly reviewed.

3.1 Current Lyapunov-based control

The basic idea of Lyapunov-based control is to design
a feedback control law that renders the derivative of a
specified Lyapunov function negative definite or negative
semi-definite. To this end, consider the following energy-
like Lyapunov function

V =
1

2
ωT

e ωe + 2kp ln(1 + σT
e σe) (8)

where kp > 0 is a constant scalar.

With respect to the nominal attitude control system, i.e.,
assuming Td = Tp = 0, taking the derivative of (8) gives

V̇ = ωT
e Ĵ

−1
Ĵ ω̇e + 4kp

σT
e σ̇e

1 + σT
e σe

= ωT
e Ĵ

−1
[
Ĵ

(
ω×

e Rωd −Rω̇d

)
− ω×

e Ĵ (ωe +Rωd)
]

+ ωT
e Ĵ

−1
[
Tc − (Rωd)

× Ĵ (ωe +Rωd)
]
+ kpσ

T
e ωe
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As reported in (Wie et al. [1989]) and (Wen and Kreutz-
Delgado [1991]), the corresponding feedback control law
can be designed as

Tc =ω×
e Ĵ (ωe +Rωd)− Ĵ

(
ω×

e Rωd −Rω̇d

)
+ (Rωd)

× Ĵ (ωe +Rωd)− kpĴσe − kdĴωe

(9)

where kd > 0 and kp > 0 are constant feedback gains.

By substituting the attitude control law (9) into the
derivative of the Lyapunov function, one has

V̇ = −kdω
T
e ωe

which implies that the Lyapunov function (8) possesses a
negative semi-definite time derivative under the attitude
control law (9).

Then, based on Matrosov theorem, one can conclude that
the closed-loop system is globally uniformly asymptotical-
ly stable. If the disturbance and parametric uncertainty
are taken into account, a practical asymptotic stability,
the global uniform ultimate boundedness, can be obtained
as shown in (Schlanbusch et al. [2010]). The practical sta-
bility is suitable for the case where the requirement of high-
precision attitude control is not strict. When involving
orbit transfer or other pointing missions, such a bounded
control precision is not acceptable. In (Schlanbusch et al.
[2010]), it has been shown that improving the control pre-
cision of (9) needs to increase the feedback gains. However,
excessive control torque will be induced for large attitude
error.

On the other hand, the parameter turning problem of the
attitude controller (9) has also been considered in (Wie
et al. [1989]). Based on small angle approximation and
the characteristics of eigenaxis rotation, a connection is
established between the feedback gains and the damping
ratio/natural frequency. Generally speaking, the damping
ratio determines the system behavior, e.g., overdamped,
underdamped, or critically damped. Once the damping
ratio is selected, the natural frequency should be carefully
tuned to find balance between decreasing settling time and
suppressing peak control torque. Such a tradeoff problem
can also be found in the backstepping design. As discussed
in (Kim and Kim [2003]), if the feedback gains are poorly
tuned, the sluggish motion or excessive control input would
present.

3.2 Enhanced Lyapunov-based control

In this subsection, an enhanced Lyapunov-based control
law is presented, which can address the tradeoff problem
in the feedback gain selection and consequently improve
the transient response. Similar to the previous study, the
attitude controller is designed for the nominal attitude
control system and the robustness issue will be handled
in the next subsection.

From (9), one can see that the tradeoff problem is actually
induced by the fixed-value feedback gains. For example, if
larger kp and kd are selected, the required peak control
torque becomes larger but the settling time becomes
shorter, and vice versa. Thus, to address such a problem,
it is a natural choice to utilize self-tuning feedback gains
instead of the fixed ones. Consider the following attitude
control law:

Tc = ω×
e Ĵ (ωe +Rωd)− Ĵ

(
ω×

e Rωd −Rω̇d

)
+ (Rωd)

× Ĵ (ωe +Rωd)− k∗pĴσe − k∗dĴωe

(10)

where
k∗p =kσe

−k1∥σe∥2

(1 + ∥σe∥2)

k∗d =kωe
k2∥σe∥2 (11)

with k1 ≥ 1, k2 < −0.5k1, kσ > 0, and kω =
√
kσ > 0.

To begin with, the associated stability analysis is shown
in the following theorem.

Theorem 1. For the nominal attitude control system de-
scribed in (6) and (7) with Td = Tp = 0, by applying the
attitude control law (10), the closed-loop system is globally
uniformly asymptotically stable.

Proof 1. By substituting the attitude control law (10)
into the nominal attitude control system, the closed-loop
system is characterized by

Ĵ ω̇e = −k∗pĴσe − k∗dĴωe

σ̇e = Mωe

Let σ̇e = ω̇e = 0. Then, one can conclude that the unique
equilibrium point is (σe,ωe) = (0,0), where the fact that
the Jacobian matrix M is invertible is used.

Consider the following Lyapunov function

V =
1

2
ωT

e ωe +
2kσ
k1

(
1− e−k1σ

T
e σe

)
(12)

Taking the time derivative of the above Lyapunov function
along the trajectory of the closed-loop system yields

V̇ =ωT
e Ĵ

−1
Ĵ ω̇e −

2kσ
k1

e−k1σ
T
e σe

(
−2k1σ

T
e σ̇e

)
=− k∗dω

T
e ωe ≤ 0

As the time derivative is negative semi-definite, one can
conclude that σe and ωe are uniformly bounded. Then,
W = σT

e ωe is also bounded, whose time derivative along
the closed-loop trajectory is given by

Ẇ = ωT
e M

Tωe − k∗pσ
T
e σe − k∗dσ

T
e ωe

Let Ω = {(σe,ωe) : V̇ = 0} = {(σe,ωe) : ωe = 0}. When
(σe,ωe) ∈ Ω, the time derivative of W becomes

Ẇ = −k∗pσ
T
e σe

which means that Ẇ is non-zero definite on Ω.

Then, based on Matrosov theorem, one can conclude that
the closed-loop system is globally uniformly asymptotical-
ly stable.

In the following, the transient performance of the attitude
control law (10) is evaluated. Inspired by the work in (Wie
et al. [1989]), the feedback gains, k∗p and k∗d, will be firstly
related to the response characteristics of damping ratio
and natural frequency. To this end, consider the closed-
loop attitude dynamics, which is described by

Ĵ ω̇e + k∗dĴωe + k∗pĴσe = 0 (13)

Before moving on, following lemma is introduced.

Lemma 1. If the initial attitude variables are collinear, i.e.,
σe(t0)×ωe(t0) = 0, an eigenaxis rotation will be performed
by the attitude control law (10), i.e., σe(t)×ωe(t) = 0 for
t ∈ [t0,+∞], where t0 ≥ 0 is the initial time.
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The proof is similar to that in (Wie et al. [1989]) and is
omitted here.

When the attitude maneuver is performed as an eigenaxis
rotation, following relationships can be obtained

ωe(t) = θ̇(t)e, ω̇e(t) = θ̈(t)e, σe(t) = tan(θ(t)/4)e

with θ(t) being the Euler principal angle and e ∈ R3

denoting the unit eigenaxis vector (Schaub and Junkins
[2009]).

Then, (13) can be rewritten as

θ̈(t) + k∗d θ̇(t) + k∗p tan
θ(t)

4
= 0 (14)

Using the small angle approximation, one has

θ̈(t) + k∗d θ̇(t) +
k∗p
4
θ(t) = 0 (15)

which implies that the closed-loop dynamics can be ap-
proximated by a simple damped harmonic oscillator.

Let ξ and ωn respectively denote the damping ratio and
the natural frequency of the closed-loop system, i.e., let
k∗p = 4ω2

n and k∗d = 2ξωn. Then, one has ξ = (k∗d)
2/k∗p and

ωn =
√
k∗p/2. For clarity, let x = ∥σe∥2 in the following

discussion. Taking the derivative of ξ with respect to x
gives

dξ

dx
= e(2k2+k1)x

(2k2 + k1)(1 + x)− 1

(1 + x)2
(16)

Because k2 < −0.5k1 and x ≥ 0, one has dξ/dx < 0,
which means ξ is monotonically decreasing on x ∈ [0,+∞).
Further, let ξ and ξ̄ stand for the damping ratio at the
initial time and the equilibrium point. According to (11),
one has

ξ|t=t0 =
(k∗d)

2

k∗p
=

k2ωe
2k2∥σe(t0)∥2

kσe−k1∥σe(t0)∥2(1 + ∥σe(t0)∥2)

=
e(2k2+k1)∥σe(t0)∥2

1 + ∥σe(t0)∥2
≤ 1

ξ̄|t→+∞ =
(k∗d)

2

k∗p
=

k2ω
kσ

= 1

(17)

Recalling the monotonicity of ξ, one can conclude that
the behavior of closed-loop dynamics varies from the
initial underdamped system (for σe(t0) ̸= 0) to the final
critically damped system. It is common knowledge that
the underdamped system is characterized by fast system
response with severe oscillations, and the critically damped
system presents no overshooting but has a slower response.
Hence, the immediate advantage of such a damping ratio
varying scheme lies in that fast system response can be
achieved without overshooting.

On the other hand, based on the monotonicity judgment
of k∗p, one can easily find that the natural frequency
ωn is also monotonically decreasing on x ∈ [0,+∞).
Therefore, a small ωn can be initially utilized to suppress
the control torque amplitude at large attitude error. With
the convergence of the MRP error, the natural frequency,
as well as the damping ratio mentioned above, will get
larger. As the settling time is inversely proportional to
the product of damping ratio and natural frequency, it is
obvious that the attitude control law (10) can speed up the
system response without inducing excessive control torque.

3.3 ISM redesign

Based on the preceding analysis, one can conclude that the
attitude control performance can be significantly improved
by the proposed attitude control law. However, the atti-
tude controller is designed for the nominal attitude control
system, where the undesired torques caused by disturbance
and parameter variation are not taken into account. In
order to preserve the desired dynamic response and guar-
antee the robustness in the presence of disturbance and
inertia matrix uncertainty, the attitude control law (10) is
redesigned via ISM control technique.

To begin with, define the integral sliding function as

sI = ωe + z (18)

where ż = k∗pσe + k∗dωe with z(t0) = −ωe(t0)

To make the related sliding surface (i.e., sI = 0) attractive,
the ISM attitude control law is designed as

Tc = Teq + Tsw

=ω×
e Ĵ (ωe +Rωd)− Ĵ

(
ω×

e Rωd −Rω̇d

)
+ (Rωd)

× Ĵ (ωe +Rωd)− k∗pĴσe

− k∗dĴωe − η
sI
∥sI∥

(19)

where Teq ∈ R3 denotes the equivalent control derived
from ṡI = 0, which is identical to the Lyapunov-based con-

trol law (10). Tsw = −η
sI

∥sI∥
∈ R3 is the switching control

dealing with disturbance and inertia matrix uncertainty.
η = c1 + c2∥σe∥∞ + c3∥ωe∥∞ + δ is the switching gain
with δ > 0.

Subsequently, following conclusion can be drawn.

Lemma 2. For the attitude control system described in (6)
and (7), the closed-loop system trajectory will move along
the sliding surface throughout the entire control action. In
other words, sI = 0 for t ∈ [t0,+∞).

Proof 2. Chose the Lyapunov function as

V =
1

2
sTI Ĵ sI (20)

Taking the time derivative along the closed-loop trajectory
yields

V̇ =sTI Ĵ ṡI

=sTI (Td + Tp)− ηsTI
sI
∥sI∥

≤∥sI∥2 (c1 + c2∥σe∥∞ + c3∥ωe∥∞)− η∥sI∥
≤ − δ∥sI∥

As sI(t0) = 0, it follows that V (t0) = 0. Then, the non-
positive time derivative of V implies V (t) ≤ 0. Based on
the fact that V ≥ 0, one can conclude that V (t) = 0 for
t ∈ [t0,+∞), which means sI = 0 for t ∈ [t0,+∞).

Combining the above lemma with the sliding function
definition in (18) yields

ωe = −
∫ t

t0

(k∗pσe + k∗dωe)dτ (21)

Noticing that such a relationship is established in the
presence of disturbance and inertia matrix uncertainty,
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thus it can be employed for the stability analysis, which is
expressed as follows.

Theorem 2. The ISM attitude control law (19) can global-
ly uniformly asymptotically stabilize the attitude control
system described in (6) and (7).

Proof 3. Recall the Lyapunov function in (12). As the
closed-loop system trajectory satisfies the relationship in
(21), the time derivative of V becomes

V̇ =ωT
e Ĵ

−1
Ĵ ω̇e −

2kσ
k1

e−k1σ
T
e σe

(
−2k1σ

T
e σ̇e

)
=− k∗dω

T
e ωe ≤ 0

The rest proof goes parallel with Theorem 1 and is thus
omitted here.

From Theorem 2, it is obvious that the robustness against
the disturbance and inertia matrix uncertainty is ensured.
Here, the associated transient performance is examined,
which is illustrated in the following corollary.

Corollary 1. For the attitude control system in (6) and
(7), by applying the ISM attitude control law (19), the
equivalent dynamics of closed-loop system is same as the
nominal one controlled by the attitude control law (10).

4. NUMERICAL SIMULATION

In this section, the numerical simulation of a large angle
attitude maneuver is employed to verify the effectiveness
of the proposed attitude controller (19) by comparing it
with the existing Lyapunov-based attitude controller (9).

Supposing the nominal inertia matrix of the spacecraft is
Ĵ = diag(3472, 2280, 2992) (kg.m) and the uncertainty
is 10% of the nominal value. The disturbance torque is

Td = [1 + sin(0.2t),−2 + 2 cos(0.3t), 1 + sin(0.4t)]
T ×10−1

(N.m). The initial attitude variables of the spacecraft are
σb(t0) = 0 and ωb(t0) = 0 (rad/s), i.e., the spacecraft
is inertially stabilized. The desired attitude variables are
the MRP representation and the angular velocity of a
local vertical local horizontal (LVLH) frame whose orbit
parameters are

Parameter Value
Semi-major axis 6899807 (m)
Eccentricity 0

Orbital inclination 30(deg)
Argument of perigee 60(deg)

Right ascension of ascending node 0(deg)
The initial true anomaly 90(deg)

For comparison, the control parameters are tuned such
that those two controllers possess a similar peak control
torque. Then, the settling time as well as the steady
accuracy will be compared. To this end, the parameters
of current Lyapunov-based attitude control law in (9) are
selected as kp = 0.0289 and kd = 0.17. For the proposed
attitude control law in (19), the related control parameters
are kσ = 0.0292, kω = 0.16, k1 = 5, k2 = −3, and the
switching gain coefficients are c1 = 0.5, c2 = 5, c3 = 30
and δ = 0.00001.

The simulation results are shown in Fig.1–Fig.3, where
the superscripts 1, 2, 3 denote the triaxial components of
related vectors.
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Fig. 1. MRP error response comparison
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Fig. 2. Angular velocity error response comparison

Fig.1 shows the MRP errors controlled by the attitude con-
trollers (9) and (19). It can be seen that the overshooting
phenomenon has been successfully avoided by those two
controllers. However, the transient performances as well as
the control precisions are quite different between them. On
the one hand, one can see that a faster convergence of the
MRP error is achieved by the proposed attitude controller,
where the settling time related to (19) is about 26 (sec)
while the one associated with (9) is about 54 (sec). On
the other hand, the control accuracy has been significantly
improved by the proposed attitude controller. Specifically,
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Fig. 3. Control torque evolution comparison

the magnitude of steady-state error controlled by (19) is
nearly 1/1000 of that controlled by (9). Similar conclusion
can be obtained for the angular velocity error comparison,
which is shown in Fig.2.

Fig.3 illustrates the control torque comparison, where one
can find that the peak values of those two controllers are
almost the same. Therefore, combining with the preceding
discussion about the transient performance, it can be
concluded that the response acceleration by (19) will
not result in excessive control torque. Nonetheless, it is
worth mentioning that the undesired chattering occurs in
the control torque generated by (19). As the chattering
reduction is not the topic in this paper, it will not be
discussed here and the interested reader should consult
(Utkin and Lee [2006]).

5. CONCLUSION

In this paper, a high-performance control strategy is pro-
posed for rigid spacecraft undergoing large angle attitude
maneuvers. Besides the strong robustness against distur-
bance and inertia matrix uncertainty, desired transient re-
sponse is also achieved by the proposed control strategy. A
Lyapunov-based attitude control law with state-dependent
feedback gains is firstly designed for the nominal attitude
control system. On the basis of an in-depth analysis of
the closed-loop dynamics, it has been shown that the
acceleration of the system response can be realized without
increasing the peak control torque. Then, the Lyapunov-
based attitude control law is redesigned by the integral
sliding mode control technique, where the desired transient
performance is preserved and the robustness is improved.
The advantages of the proposed control strategy is verified
by numerical simulation.

REFERENCES

M. Akella. Rigid body attitude tracking without angular
velocity feedback. Syst. Contr. Lett., 42(4):321–326,
2001.

Y. Huang, T. Kuo, and S. Chang. Adaptive sliding-mode
control for nonlinear systems with uncertain parameters.
IEEE Trans. Syst. Man Cybern. Part B Cybern., 38(2):
534–539, 2008.

I.Ali, G. Radice, and J. Kim. Backstepping control design
with actuator torque bound for spacecraft attitude ma-
neuver. J. Guid. Control Dynam., 33(1):254–259, 2010.

K. Kim and Y. Kim. Robust backstepping control for
slew maneuver using nonlinear tracking function. IEEE
Trans. Control Syst. Technol., 11(6):822–829, 2003.
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