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Abstract: This paper focuses on the cooperative adaptive fuzzy control of high-order nonlinear
multi-agent systems. The communication network is a undirected graph with a fixed topology.
Each agent is modeled by a high-order integrator incorporating with unknown nonlinear
dynamics and an unknown disturbance. Under the backstepping framework, a robust adaptive
fuzzy controller is designed for each agent such that all agents ultimately achieve consensus.
Moreover, these controllers are distributed in the sense that the controller design for each
agent only requires relative state information between itself and its neighbors. A four-order
simulation example demonstrates the effectiveness of the algorithm.
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1. INTRODUCTION

Cooperative control of multi-agent systems has received
increasing attention by the fact that many benefits can
be obtained when a single complicated agent is equiv-
alently replaced by multiple simpler agents. Numerous
results have been obtained to solve a variety of multi-agent
cooperative control problems (Vicsek 1995, Jadbabaie et
al. 2003, Olfati-Saber and R.M. Murray 2002, 2004, W.
Ren and R.W. Beard 2005, 2008). The control theory
of multi-agent systems can be applied in many practical
engineering applications such as cooperative control of un-
manned ground/air/underwater vehicles, distributed sen-
sor networks, aggregation and rendezvous control, attitude
alignment of spacecraft and so on.

Among the existing works mentioned above, most of them
studied only the first- and second-order dynamics. Recent-
ly, some researchers turned to focus on the distributed
cooperative control problems of the networked high-order
systems. Ren et al. (2006) showed a matrix approached
based framework for high-order multi-agent systems. Con-
sensus of high-order integrators multi-agent systems with
time-delays and switching topologies were studied by Jiang
et al. (2010) and Yang et al. (2011). Coordination of high-
order linear systems with disturbances was investigated
by Mo et al.(2011). Discrete-time high-order linear multi-
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agent systems was considered by Lin et al. (2011), and
there also many results for the general high-order linear
time-invariant (LTI) systems. As for the consensus of
multiple high-order nonlinear systems, Dong et al. (2011)
considered the tracking control problem. In term of coop-
erative adaptive control for high-order nonlinear uncertain
multi-agent systems, the challenge is to make sure that the
control for the nonlinearities and uncertainties are also
in the distributed manner. That is, they are allowed to
depend only on locally available information about the
agent and its neighbors. Due to the challenges in designing
cooperative control laws for distributed systems, it is not
straightforward to extend the results for first- and second-
order systems to that with higher-order dynamics. In these
issues, the unknown dynamics can be considered under
the neural network(NN) control framework (Zhang et. al
2012) or adaptive fuzzy control framework. Backstepping
control approaches with adaptive fuzzy control can provide
a systematic methodology of solving control problems for
a larger class of unknown nonlinear systems (Tong et al.
2009a, 2009b, and Huo et al. 2012), where fuzzy logic
systems(FLS) are used to approximate unknown nonlinear
functions, and the backstepping design technique is ap-
plied to construct adaptive controllers and the adaptation
parameter laws.

In this paper, a distributed recursive design approach is
proposed to archive consensus of multiple high-order non-
linear systems with uncertainties. The main works of this
paper include: 1) First, the agent dynamics are extended to
general higher-order nonlinear systems in the Brunovsky
form, which include first- and second-order systems as spe-
cial cases. 2) Second, we propose a systematical distributed
fuzzy logic systems and backstepping framework for multi-
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agent systems control. And a robust adaptive fuzzy control
law is proposed under the distributed backstepping frame-
work. The subsequent sections are organized as follows: In
section 2, the control problem is formally stated and the
background as well as necessary preliminaries concerning
the control problem are given. In section 3, the cooperative
control laws are proposed relying on backstepping method
and adaptive fuzzy control approaches. The unknown non-
linear functions are dealt by fuzzy logic systems, and the
external disturbances are addressed by applying robust
adaptive control method. In section 4, a four-order simula-
tion example is provided to demonstrate the performance
of the proposed control laws. The last section concludes
this paper.

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 Problem statement

Consider a group of m (m ≥ 2) agents with non-identical
dynamics distributed on a undirected communication net-
work G . The dynamics of the j-th agent is described in
the nonlinear Brunovsky form

ẋij = x(i+1),j (1)

ẋnj = uj + fj(xj) + ζj(t) (2)

for i = 1, . . . , n− 1, where xij ∈ R is the i-th state of the
j-th agent; xj = [x1j , . . . , xnj ]

T ∈ Rn is the state vector
of agent j; fj(xj) : Rn → R is locally Lipschitz with
fj(0) = 0, and it is assumed to be unknown; uj ∈ R is
the control protocol of the j-th system; ζj(t) ∈ R is an
external disturbance, which is unknown but bounded.

Assumption 1. The external disturbances ζj(t) are un-

known and bounded, that is, |ζj(t)| ≤ ζj with ζj being a
known constant.

Assumption 2. The communication graph G is fixed and
connected.

The aim of this paper is to design a control law for the j-th
system based on its own local states information when the
communication topology is fixed and connected, such that

|x1j − x1l| → 0, as t→∞ for j, l = 1, . . . ,m. (3a)

xij → 0, as t→∞ for i = 2, . . . , n. (3b)

2.2 Graph Theory

A team of m high-order nonlinear systems labeled as sys-
tem 1 to m are considered. The communication topology
among the m systems is assumed to be bi-directional, and
the interactions among the nodes are represented by a
undirected graph G = (V, E ,A), where V is a set of the
indices of the systems and E ⊆ V × V is a set of edges
that describe the communications between the agents. If
(p, j) ∈ E , then p is neighboring to j, meaning system j
can obtain information form system p. A is a weighted
adjacency matrix with nonnegative adjacency elements
apj . Moreover, it’s assumed that app = 0. If the state of
system p is available to system j, then system p is said
to be a neighbor of system j. The neighbor set of node vj
is denoted by Nj , where j /∈ Nj (Mesbahi and Egerstedt
2010).

2.3 Fuzzy Logic Systems on Graph

Since the nonlinear functions fj(xj) in (2) are un-
known, in this paper, based on the fuzzy logic systems
(FLS), the unknown function fj(xj) can be approximat-

ed by f̂j(xj), where f̂j(xj) = θTf φf (x), and φj(xj) =

[φ1j(xj), . . . , φnj(xj)]
T is a regressive vector. The knowl-

edge base for FLS can be divided into some fuzzy IF-
THEN rules and a fuzzy inference engine. By using produc-
t inference, center-average, and singleton fuzzifier (Wang
1994), the output of the j-th fuzzy logic system can be
expressed as

fj(xj) =

N∑
l=1

f lj
n∏
i=1

µF l
ij

(xij)

N∑
l=1

[
n∏
i=1

µF l
ij

(xij)]

(4)

where xj = (x1j , . . . , xnj)
T and fj are the FLS input and

output, respectively; f lj = maxy∈RµGl
j
(fj); F

l
ij and Glj

are the fuzzy sets associating with the fuzzy functions
µF l

ij
(xij) and µGl

j
(y); N is the rule number of IF-THEN.

Define the fuzzy basis functions for the j-th system as

φlj =

n∏
i=1

µF l
ij

(xij)

N∑
l=1

[
n∏
i=1

µF l
ij

(xij)]

(5)

Denoting θTj = [y1j , . . . , yNj ] = [θ1j , . . . , θNj ] and
φj(xj) = [φ1j(xj), . . . , φNj(xj)], then FLS (4) can be
rewritten as

fj(xj) = θTj φj(xj) (6)

Lemma 1. (Wang 1994): Let fj(xj) be a continuous
function defined on a compact set Ω. Then for any constant
εj > 0, there exists an FLS (6) such that

supxj∈Ω|fj(xj)− θTj φj(xj)| ≤ εj (7)

3. DISTRIBUTED CONTROL LAWS DESIGN

The extension of adaptive backstepping control to dis-
tributed multiple high-order dynamics is not straightfor-
ward. We need to definite a set of new variable for virtual
control design in distributed manner.

Definition 1. We define a set of new variable z∗j =
[z1j , z2j , . . . , znj ]

T with the aid of backstepping technique
as follows

z1j = x1j (8)

zij = xij − αij , 2 ≤ i ≤ n (9)

where j = 1, . . . ,m. αij is the virtual control which is
to be elaborately designed through recursive backstepping
method.

In the first step, α2j is used to denote the first virtual
controller of system j. Using (1) for (8), we can derive
that
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ż1j = z2j + α2j (10)

Consider the error variable z1j = x1j of the first-order
subsystem of (1)-(2), and choose the Lyapunov function
candidate V1 as follows

V1 =
1

2
zT1∗z1∗ (11)

where z1∗ = [z11, z12, . . . , z1m]T .

Taking the time derivative of V1 and following (9) and
(10), we can obtain

V̇1 =

m∑
j=1

z1j(z2j + α2j) (12)

We design the first distributed virtual controller α2j as

α2j = −
∑
l∈Nj

ajl(z1j − z1l) (13)

where Nj denotes the neighbor set of the j-th agent and
no global information states are included in α2j . With the
aid of Eqn. (13), (10) can be written as

ż1j = −
∑
l∈Nj

ajl(z1j − z1l) + z2j (14)

and V̇1 can be written as

V̇1 =−zT1∗Lz1∗ +

m∑
j=1

z1jz2j (15)

In the second step, by considering eqn.(9) and the second
order of the eqn.(1), it can be obtained that

ż2j = x3j − α̇2j

= z3j + α3j −
∂α2j

∂x1j
x2j −

∑
l∈Nj

∂α2j

∂x1l
x2l (16)

Remark 1. α3j is treated as a virtual controller for a high-
order subsystem which would be designed to guarantee
the consensus of the first-order and the second-order
subsystems for the multiple high-order systems. That is,
the virtual controller α3j is to be designed such that
lim
t→∞

(z1j−z1l) = 0 and lim
t→∞

(z2j−z2l) = 0 for 1 ≤ j, l ≤ m.

Hence, choose the second Lyapunov function candidate V2

as

V2 = V1 +
1

2
zT2∗z2∗ (17)

where z2∗ = [z21, z22, . . . , z2m]T . Taking the time deriva-
tive of V2 with respect to (15) and (16), we can get

V̇2 = V̇1 +

m∑
j=1

z2j ż2j

=−zT1∗Lz1∗ +

m∑
j=1

z1jz2j +

m∑
j=1

z2j

[
z3j + α3j

−∂α2j

∂x1j
x2j −

∑
l∈Nj

∂α2j

∂x1l
x2l

]
(18)

In order to ensure that the time derivative of Lyapunov
function V2 is negative definite, an appropriate distributed
virtual control α3j should be designed. α3j is designed as

α3j = −z1j − c2jz2j +
∂α2j

∂x1j
x2j +

∑
l∈Nj

∂α2j

∂x1l
x2l (19)

where c2j is the design parameter, satisfying c2j > 0.

Remark 2. Note that α3j only contains its own state
information and neighbors’ information without using any

global information generally. The two items −∂α2j

∂x1j
x2j

and −
∑
l∈Nj

∂α2j

∂x1l
x2l in eqn.(18) are directly canceled by

the design of α3j . Furthermore, the item −z1j in α3j is

designed to make sure that the item
m∑
j=1

z1jz2j in eqn.(18)

can be eliminated. And the item −c2jz2j in eqn.(19) is
designed to ensure the negative definite of the eqn.(18).

The item
m∑
j=1

z2jz3j in eqn.(20) will be handled in the third

step by choosing an apropriate virtual controller α4j .

Therefore, by substituting (19) into (18), V̇2 can be rewrit-
ten as follows

V̇2 = −zT1∗Lz1∗ − zT2∗diag(c2∗)z2∗ +

m∑
j=1

z2jz3j (20)

where c2∗ = [c21, c22, . . . , c2m]T .

In step i, where 1 ≤ i ≤ n−1. Follow the design procedure
which is similar to the first and second step, it can be
obtained that

żij = x(i+1)j − α̇ij

= z(i+1)j + α(i+1)j −
i−1∑
k=1

∂αij
∂xkj

x(k+1)j

−
i−1∑
k=1

∑
l∈Nj

∂αij
∂xkl

x(k+1)l (21)

In (21), the virtual controller α(i+1)j which can guarantee
the consensus of the multiple i-rank (1 < i < n − 1)
subsystems would be designed such that lim

t→∞
(zkj−zkl) = 0

for 1 ≤ j, l ≤ m and 1 ≤ k ≤ n − 1, with the aid of the
Lyapunov function

Vi = Vi−1 +
1

2
zTi∗zi∗ (22)

Note that Vi−1 can be designed in the i − 1 step by the
recursive method. Taking the time derivative of Vi with
considering Vi−1 in step i and (21), we can get
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V̇i = V̇i−1 +

m∑
j=1

zij żij

=−zT1∗Lz1∗ −
i−1∑
j=2

zTj∗diag(cj∗)z(i−1)∗

+

m∑
j=1

z(i−1)jzij +

m∑
j=1

zij

[
−
i−1∑
k=1

∂αij
∂xkj

x(k+1)j

+z(i+1)j + α(i+1)j −
i−1∑
k=1

∑
l∈Nj

∂αij
∂xkl

x(k+1)l

 (23)

Choose the virtual controller α(i+1)j as

α(i+1)j =−z(i−1)j − cijzij +

i−1∑
k=1

∂αij
∂xkj

x(k+1)j

+

i−1∑
k=1

∑
l∈Nj

∂αij
∂xkl

x(k+1)l (24)

where cij is the design parameter and satisfy cij > 0.

Substituting (24) into V̇i, it is obtained that

V̇i = −zT1∗Lz1∗ −
i∑

j=2

zTi∗diag(cj∗)zj∗ +

m∑
j=1

zijz(i+1)j(25)

where ci∗ = [ci1, ci2, . . . , cim]T .

In the last step, fuzzy logic systems is used to approximate
the unknown functions fj(xj) of the multi-agent systems
(2). Define the minimal approximation error εj = fj(xj)−
fj(xj |θ∗j ), where fj(xj |θ∗j ) = θ∗Tj φj(xj), and θ∗j is the
optimal fuzzy parameter vector. It is assumed that |εj | ≤
ε̄j , where ε̄j is a positive constant. Based on the FLS (4)-
(6), the unknown function fj(xj) can be approximated by

f̂j(xj) = θ̂Tj φj(xj), where θ̂j is the estimation of θj , and

φj(xj) = [φ1j(xj), . . . , φnj(xj)]
T is a regressive vector.

By applying the results in the 1 to n − 1 steps, it can be
obtained that

żnj = uj + fj(xj) + ζj − α̇nj

=−
n−1∑
k=1

∂αnj
∂xkj

x(k+1),j −
n−1∑
k=1

∑
l∈Nj

∂αnj
∂xkl

x(k+1),l

+fj(xj |θ∗j ) + εj + ζj + uj (26)

Hence, choose the n-th Lyapunov function candidate Vn
as

Vn = Vn−1 +
1

2
zTn∗zn∗ +

1

2

m∑
j=1

θ̃Tj Γ−1
j θ̃j (27)

where θ̃j = θ∗j − θ̂j is the fuzzy parameter error vector.

Taking the time derivative of Vn with respect to (25) and
(26), we obtain

V̇n = V̇n−1 +

m∑
j=1

znj żnj +

m∑
j=1

θ̃Tj Γ−1
j

˙̃
θj

=−zT1∗Lz1∗ −
n−1∑
j=2

zTj∗diag(cj∗)zj∗ +

m∑
j=1

z(n−1)jznj

+

m∑
j=1

znj

[
uj + fj(xj |θ∗j ) + εj −

n−1∑
k=1

∂αnj
∂xkj

x(k+1)j

−
n−1∑
k=1

∑
l∈Nj

∂αnj
∂xkl

x(k+1)l + ζj

 +

m∑
j=1

θ̃Tj Γ−1
j

˙̃
θj (28)

We choose the adaptation laws:

˙̂
θj = Γjznjφj (29)

where Γj is positive definite matrices, Note that znj only
contains the local information. And the distributed control
law is

uj =−z(n−1)j − cnjznj +

n−1∑
k=1

∂αnj
∂xkj

x(k+1)j

+

n−1∑
k=1

∑
l∈Nj

∂αnj
∂xkl

x(k+1)l − θ̂Tj φj(xj)

−εjsign(znj) (30)

where εj ≥ εj + ζj .

Using (29) and (30) for (28), we can derive

V̇n =−zT1∗Lz1∗ −
n∑
i=2

zTi∗diag(ci∗)zi∗

+

m∑
j=1

znj [fj(xj |θ∗j )− f̂j(xj)− εjsign(znj)

+εj + ζj ] +

m∑
j=1

θ̃Tj Γ−1
j

˙̃
θj

=−zT1∗Lz1∗ −
n∑
i=2

zTi∗diag(ci∗)zi∗

+

m∑
j=1

znj [θ
∗T
j φj(xj)− θ̂jφj(xj)− εjsign(znj)

+εj + ζj ] +

m∑
j=1

θ̃Tj Γ−1
j

˙̃
θj

≤−zT1∗Lz1∗ −
n∑
i=2

zTi∗diag(ci∗)zi∗ +

m∑
j=1

znj(εj + ζj)

−
m∑
j=1

znj θ̃
T
j φj(xj) +

m∑
j=1

θ̃Tj Γ−1
j

˙̃
θj −

m∑
j=1

εj |znj |

≤ −zT1∗Lz1∗ −
n∑
i=2

zTi∗diag(ci∗)zi∗ +

m∑
j=1

(εj + ζj)|znj |

−
m∑
j=1

εj |znj | ≤ 0 (31)
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Theorem 1. Consider the multiple nonlinear systems
described by (1)-(2), when the communication topology
of the systems is fixed and connected, choose the control
law given by (30) and the adaptation law (29) for system
j, where 1 ≤ j ≤ m, then it guarantees that the control
objective (3) holds, that is the consensus of high-order non-
linear uncertain systems can be reached asymptotically. In
the control laws, all the required information is local.

Proof. By the above design procedure, define the Lya-
punov function candidate as (27), then we get (31). By
Barbalat’s lemma, lim

t→∞
zT1∗Lz1∗ = 0 and lim

t→∞
zl∗ = 0 for

2 ≤ l ≤ m. Furthermore, since L is a Laplacian matrix, we
have the results according to the control objective.

Remark 2. The proposed control law contains the sign
function, thus leading to control chattering. This situation
can be remedied by smoothing out the control disconti-
nuity in a thin boundary layer neighboring the switching
surface. To do this, the sign function in the control law
(30) can be replaced by a saturation function.

4. SIMULATION

In this section, an example is given to show the effec-
tiveness of the proposed distributed adaptive fuzzy con-
trol laws. Consider a 4-node undirected graph described
in Fig.1. Note that the communication graph G satisfies
Assumption 2. And the corresponding adjacent weights
between agents are assumed to be 1, and all the others are
0.

Fig.1. Communication graph G of the multi-agent system

Consider the following four-order uncertain nonlinear
multi-agent systems:

ẋ1j = x2j

ẋ2j = x3j

ẋ3j = x4j

ẋ4j = uj + fj(x1j , x2j , x3j , x4j) + ζj
with

ẋ41 = u1 + 0.2sin(x11 + x41) + 0.3sin(t/5)

ẋ42 = u2 + (x12 + x22 − 1)2 + 0.3sin(t/5)

ẋ43 = u3 + 0.3cos(x13 + x23) + 0.3sin(t/5)

ẋ44 = u4 + 0.2sin(x14 + x24) + cos(t)

Let the initial state information and the disturbances of
the systems be:

x1j(0) = [1, 2, 1,−0.5]T , x2j(0) = [−0.5, 1, 3,−1]T ,
x3j(0) = [1.5,−1, 2, 3]T , x4j(0) = [2,−1, 2, 1]T ,
ζj(0) = [0.2, 0.2, 0.3, 0.4]T .

Define fuzzy membership as follows:

µF l
4
(x1j , x2j , x3j , x4j) = exp[−(x1j − 3 + l)2/2]×

exp[−(x2j − 3 + l)2/2]× exp[−(x3j − 3 + l)2/2]×
exp[−(x4j − 3 + l)2/2], l = 1, . . . , 5.

We obtain fuzzy basis functions as follows:

φ4p(x1j , x2j , x3j , x4j) =

exp[
−(x1j−3+p)2

2 ]× . . .× exp[
−(x4j−3+p)2

2 ]
5∑

n=1
exp[

−(x1j−3+n)2

2 ]× . . .× exp[
−(x4j−3+n)2

2 ]

,

where p = 1, . . . , 5.

The FLSs can be expressed in the following form:

f̂j(xj |θj) = θ̂Tj φj(xj)

where θ̂Tj = [θ̂1j , θ̂2j , θ̂3j , θ̂4j , θ̂5j ], and

φj(xj) = [φ1j(xj), φ2j(xj), φ3j(xj), φ4j(xj), φ5j(xj)].

with the initial state information:

θ̂1(0) = [0.01, 0.02, 0.01, 0.01, 0.01]T ,

θ̂2(0) = [0.1,−0.01, 0.02, 0.05, 0.02]T ,

θ̂3(0) = [0.3, 0.2,−0.3, 0.4, 0.3]T ,

θ̂4(0) = [−0.06, 0.03, 0.07, 0.1,−0.02]T .

The consensus control laws can be obtained by Theorem
1 in which the control parameters are chosen as Γ1 =
2.9,Γ2 = 2.8,Γ3 = 2.2,Γ4 = 2.1; c21 = 1, c31 = 1, c41 =
1, c22 = 1.2, c32 = 1.1, c42 = 1, c23 = 1.1, c33 = 1, c43 =
1, c24 = 1, c34 = 0.8, c44 = 1.
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Fig.2 shows the the control torque of each agent by the
distributed control law in (31). Fig.3-6. shows the time
histories of state trajectories for each agent. From Fig.3, it
can be seen that, under the control torque which are shown
in Fig.2, the consensus is achieved. Fig.7 shows the the
response of θ1j . These figures demonstrate the efficiency of
the proposed algorithm in guaranteeing consensus despite
the presence of complex unknown dynamics.

5. CONCLUSION

This paper considered the cooperative consensus control
problem of networked high-order nonlinear systems with
distinct unknown dynamics and bounded external distur-
bances. The nonlinearities are only assumed to be locally
Lipschitz. A robust adaptive fuzzy control algorithm was
proposed under the distributed backstepping framework.
The proposed algorithm is completely distributed in the
sense that, the controller for each agent only uses infor-
mation of itself and its neighbors.
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