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Abstract: A nonlinear controller design technique, for the enhancement of power quality
and power system stability in a vehicle-to-grid (V2G) system, is proposed in this paper. The
dynamical model of a V2G system is first developed and then the controller is designed based
on the partial feedback linearization of the developed model. The control scheme is developed
in such a way that converters in V2G systems are capable of injecting both active and reactive
power into the grid. The implementation of the proposed controller requires the stabilization
of internal dynamics of V2G systems as it transforms the system into a partly linear and an
autonomous system with internal dynamics. The stability of internal dynamics of V2G systems
is also discussed in this paper. Finally, the performance of the proposed control scheme is
evaluated on a simple test system in terms of power quality and system stability enhancement.
From the simulation result it is found that the designed nonlinear controller provides excellence
performance in improving power quality and stability of whole system.

Keywords: Power quality, power system stability, vehicle-to-grid (V2G) systems, partial
feedback linearization, internal dynamics.

1. INTRODUCTION

Plug-in hybrid electric vehicles (PHEVs), which can be
recharged from and discharged to the power grid by plug-
ging into electrical outlets, are becoming increasingly pop-
ular in order to address energy and environmental issues
as these vehicles reduce carbon emissions and provide
ancillary services to the power grid. PHEVs can either
be used as loads in charging phase of batteries from the
grid or as generators in discharging phase when they are
not in use for driving which is also known as vehicle-to-
grid (V2G) operation. These features of PHEVs pose sev-
eral opportunities and challenges in energy management
strategies of modern power systems (Galus et al., 2010).

The integration of huge number of PHEVs into the grid as
loads might cause several problems such as transformer or
line overloading and voltage stability (Papadopoulos et al.,
2012; Hilshey et al., 2013). By considering these prob-
lems, several investigations have been performed in (Das
et al., 2013; Yang et al., 2013) so that PHEVs could be
advantageous for power system operations. For example,
effective charging and discharging schedules of PHEVs

could support the integration of renewable energy sources
by storing energy during the off-peak and deliver it back
to the grid during the peak. Numerous research activities
have been performed effective charging and discharging
schemes and some most recent could be found in (He et al.,
2013; Gunter et al., 2013).

In a V2G system, batteries of PHEVs act as distributed
energy resources by locally meeting the demand during
peak hours and thus, a V2G system reduces the stress
on overloaded distribution systems. The amount of power
delivered from vehicles to the grid is estimated by the
aggregator in which a communication link is used to
communicate between vehicle owners and distribution
network service providers (DNSPs) (Han et al., 2010). A
sudden discharge of batteries used in V2G systems may
cause a voltage variation problem in distribution networks
at which they are connected and this in turns causes
voltage stability problems. Moreover, power electronic
inverters are used as interfacing units between the grid and
batteries of PHEVs for which an effective switching scheme
is essential to maintain the power quality and stability of
whole system. Therefore, the design of a high performance
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controller is a prominent issue which has the capability to
mitigate the voltage variation problem through reactive
power management and enhances the power quality of
distribution networks.

Although a great deal of attention has been paid for
the investigation of impacts of PHEVs on distribution
networks and optimal scheduling of charging and dis-
charging of PHEVs, a very little work has been done on
the controller design for V2G operations of PHEVs. A
fuzzy-based frequency controller is proposed in (Datta and
Senjyu, 2012) to alleviate frequency fluctuations and to
reduce power fluctuations in tie-lines with an application
to V2G systems. The approach presented in (Datta and
Senjyu, 2012) provides satisfactory results for controlling
active power but the reactive power control is uncovered
which is a key factor for maintaining voltage stability.
The control of power flow has been demonstrated using
a fuzzy logic controller in (Singhand et al., 2012) for
voltage compensations and peak shavings. However the
main limitations of fuzzy logic controllers are that a fuzzy
system cannot fully capture the dynamical model of V2G
systems and require more fine tuning and simulation before
making it operational (Khayyam et al., 2012). Therefore,
it is essential to consider model-based control approach to
enhance the power quality and stability of V2G systems.

The design of linear and nonlinear controllers based on
the detailed mathematical model of V2G systems could be
worthy in order to maintain the stable operation of such
systems with high power quality. Feedback linearization
method is a widely used model-based nonlinear controller
design technique which transforms a nonlinear system into
a fully linear or a partly linear equivalent system by
canceling the inherent nonlinearities within the system.
Linear control design techniques can be employed to design
a suitable controller for the linearized system (Isidori, 2nd
Edition, 1989; Slotine and Li, 1991). When feedback lin-
earization transforms a nonlinear system into fully linear
system, the approach is called exact feedback linearization
and if the system is transformed into a partially lin-
earized system, the approach is known as partial feedback
linearization (Isidori, 2nd Edition, 1989). Since feedback
linearization cancels nonlinearities by introducing non-
linear term in the control law, the feedback linearized
system is independent of operating points. The feedback
linearization technique allows effective switching schemes
for the interfacing inverters with distributed energy re-
sources (Mahmud et al., 2012b,c)

The aim of this paper is to design a partial feedback
linearizing controller for a V2G system and the control
objectives are set as both active and reactive power.
Since the partial feedback linearization is a model-based
approach, a comprehensive mathematical model of V2G
systems is formulated in this paper. The applicability and
implementability of the proposed control scheme is tested
through the feedback linearizability and stability of inter-
nal dynamics of V2G systems. The superiority of the pro-
posed control scheme is investigated through simulation
results under different operating scenarios and compared
to that of a proportional-integral (PI) controller..
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Fig. 2. Schematic diagram of a V2G System

2. MATHEMATICAL MODELING OF V2G SYSTEM

In this section, the mathematical model of a V2G system
is developed. However before designing the main V2G
system, a battery model is briefly reviewed as this is a
major part of a V2G system. The most commonly used
battery model is proposed in (Ceraolo, 2000) and the
electrical circuit model of this battery is shown in Fig.1. In
the model as described in (Ceraolo, 2000) and presented
by Fig.1, the charge stored in the battery is the integral of
only a part Im of the total current Idc entering the battery.
The detailed of battery elements such as resistors (R0,
R1, and R2), capacitor (C1), and internal voltage (Em)
can be seen in (Ceraolo, 2000). Since parasitic reactions
often present in the battery, nonreversible parasitic branch
models (with subscript p in Fig. 1) draw some current but
does not participate in the main, reversible, reaction. It
is noted that during discharge R2

∼= 0 and Ip ∼= 0 and
when discharge behavior is to be simulated, the whole
parasitic branch can be omitted (Ceraolo, 2000). Thus,
a V2G system with the revised battery model is shown in
Fig. 2.

From Fig. 2, it can be seen that in a V2G system Im = Idc.
Now by applying Kirchhoff’s current law (KCL) at the
node where the resistor R1 and capacitor C1 are connected
in parallel, we can write

Idc = I1 + C1

dVC1

dt
(1)

where VC1
is the voltage across C1 which is also the voltage

across R1 and thus, VC1
= I1R1. Using this relationship,

equation (1) can be simplified as

dI1

dt
=

1

τ1
(Idc − I1) (2)

where τ1 = R1C1. Now by applying Kirchhoff’s voltage
law (KVL) at the output-side of the inverter, i.e., at the
grid-side, we can write

di

dt
= −

R

L
+m

vdc

L
− e (3)
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where m represents the switching action of the converter
which is a function of modulation index and firing angle,
R is the resistance of the connecting line, i is the output
current of the inverter, L is the combination of filter and
connecting line inductance.

Equations (2) and (3) represent the time-variant model of
a V2G system. But for the purpose of analysis and control,
it is essential to transform the model into time-invariant
system. To do this, the V2G system can be transformed
into dq-frame which can be written as (Mahmud et al.,
2012a)

İ1 =
1

τ1
(MdId +MqIq − I1)

İd = −
R

L
Id + ωIq −

Ed

L
+

vdc

L
Md

İq = −ωId −
R

L
Iq −

Eq

L
+

vdc

L
Mq

(4)

with

Idc = mi = MdId +MqIq

where ω is the angular frequency; Md and Mq are the
switching functions in d and q frame respectively; Id and
Iq are the currents in d and q-frame respectively; and Ed

and Eq are the grid voltages in d and q-frame respectively.
In dq-frame, the active power (P ) and reactive power (Q)
delivered from the vehicle into the grid can be written as

P = EqIq + EdId

Q = EqId − EdIq
(5)

In dq rotating frame, it can be assumed that Ed = 0 (Kim,
2006; Mahmud et al., 2012c) and in this case, equation (5)
can be simplified as

P = EqIq

Q = EqId
(6)

Equation (4) represents the completed dynamical model
of a V2G system. The control objective is to design
a nonlinear switching scheme for the V2G system as
represented by equation (4) in order to deliver high quality
active and reactive power into the grid. From equation (6),
it can be seen that that quality of the active and reactive
power depends on currents, Id and Iq as there is nothing
to do with the grid voltage components (Ed & Eq) in dq-
frame. Therefore, the control objective can be achieved by
regulating the currents, Id and Iq which can be selected as
output functions of the V2G system.

3. FEEDBACK LINEARIZATION AND FEEDBACK
LINEARIZABILITY OF V2G SYSTEM

The mathematical model of a V2G system as represented
by equation (4) can be written in the following form
of a nonlinear multi-input multi-output (MIMO) system
equation:

ẋ = f(x) + g1(x)u1 + g2(x)u2

y1 = h1(x)

y2 = h2(x)

(7)

where

x =

[
I1
Id
Iq

]
, f(x) =




− 1
τ1
I1

−R
L
Id + ωIq −

Ed

L

−ωId −
R
L
Iq −

Eq

L


 ,

g(x) =




Id
τ1

Iq
τ1

vdc
L

0
0 vdc

L


 , u =

[
u1

u2

]
=

[
Md

Mq

]
, and y =

[
Id
Iq

]

Based on this nominal mathematical model, an overview
of feedback linearizing controller design and feedback lin-
earizability of V2G systems are discussed in the following
two subsections.

3.1 Overview of Feedback Linearization

The design of feedback linearizing controller depends on
the feedback linearizability of the system and this feedback
linearizability is defined by the relative degree of the
system (Isidori, 2nd Edition, 1989). The relative degree
of the system in turns depends on output functions of the
V2G system. The mathematical model of a V2G system
as shown by equation (4) can be linearized using feedback
linearization when some conditions as described latter
are satisfied. Consider the following nonlinear coordinate
transformation (z = φ(x)) for the aforementioned V2G
system.

z =
[
h1 Lfh1 · · · Lr1−1

f h1 h2 Lfh2 · · · Lr2−1
f h2

]T
(8)

where r1 < n and r2 < n are the relative degree
corresponding to output functions h1(x) and h2(x), re-

spectively, Lfhi(x) = ∂hi

∂x
f(x) is the Lie derivative of

hi(x), i = 1, 2 along f(x) (Isidori, 2nd Edition, 1989).
The change of coordinate (8) transforms the nonlinear
system (7) from x to z coordinates provided that the
following conditions are satisfied for:

LgL
k
fhi(x) = 0; k < ri − 1

LgL
ri−1
f hi(x) 6= 0

n =

N∑

i=1

ri

(9)

where LgLfhi(x) is the Lie derivative of Lfhi(x) along
g(x). The linearized system can be expressed as follows:

ż = Az +Bv (10)

where A is the system matrix, B is the input matrix, and v
is the new linear control input for the feedback linearized
system.

When (r1 + r2) < n, only partial feedback linearization
is possible, i.e., some states are transformed through
nonlinear coordinate transformation and some are not.
The new states of a partially feedback linearized system
can be written as

z = φ(x) = [z̃ ẑ]T (11)

where z̃ represents the state vector obtained from nonlin-
ear coordinate transformation of order r1 + r2 and ẑ the
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state vector of the nonlinear (remaining) part of order n−
(r1 + r2). The dynamic of ẑ is called the internal dynamic
of the system which needs to be stable in order to design
and implement a partial feedback linearizing controller for
the following partially linearized system.

˙̃z = Ãz̃ + B̃ṽ (12)

where Ã is the system matrix, B̃ is the input matrix, and ṽ
is the new linear control input for the partially linearized
system. The developed V2G system model could be ex-
actly or partially linearized and the feedback linearizability
of a V2G system is shown in the following subsection.

3.2 Feedback Linearizability of V2G Systems

The feedback linearizability of the V2G system represented
by equation (7) can be obtained by calculating the total
relative degree (r) of the system. The relative degree
corresponding to the first output function h1(x) = Id can
be calculated as

LgL
1−1
f h1(x) = Lgh1(x) =

vdc

L
6= 0 (13)

where r1 = 1. Similarly, the relative degree corresponding
to the other output function h2(x) = Iq can be calculated
as follows

LgL
1−1
f h2(x) = Lgh2(x) =

vdc

L
6= 0 (14)

which indicates that r2 = 1. Therefore, the total relative
degree r = r1 + r2 = 2 and this means that (r1 + r2) < n
as n = 3. From this, it can be said that the V2G system
is partially linearized and partial feedback linearization
approach needs to be used to design the controller for
this system. The design of a partial feedback linearizing
controller for V2G system is shown in the following section.

4. PARTIAL FEEDBACK LINEARIZING
CONTROLLER DESIGN FOR V2G SYSTEMS

The essential steps to design the partial feedback lineariz-
ing controller for V2G systems can be discussed as follows:

• Step 1: Nonlinear coordinate transformation and
partial linearization of V2G systems

A nonlinear coordinate transformation can be written as

z̃ = φ̃(x) (15)

where φ̃ is the function of x. For a V2G system, we choose

z̃1 = φ̃1(x) = h1(x) = Iq (16)

and

z̃2 = φ̃2(x) = h2(x) = v (17)

Using the above transformation, the partially linearized
system can be obtained as follows:

˙̃z1 =
∂h1(x)

∂x
ẋ = Lfh1(x) + Lg1h1(x)u1 + Lg2h1(x)u2

˙̃z2 =
∂h2(x)

∂x
ẋ = Lfh2(x) + Lg1h2(x)u1 + Lg2h2(x)u2

For the V2G system,

˙̃z1 = −
R

L
Id + ωIq −

Ed

L
+

vdc

L
Md

˙̃z2 = −ωId −
R

L
Iq −

Eq

L
+

vdc

L
Mq

(18)

The above system can be written in the following lin-
earized form:

˙̃z1 = ṽ1

˙̃z2 = ṽ2
(19)

where ṽ1 and ṽ2 are the linear control inputs which can
be designed using any linear control technique and can be
expressed as

ṽ1 = −
R

L
Id + ωIq −

Ed

L
+

vdc

L
Md

ṽ2 = −ωId −
R

L
Iq −

Eq

L
+

vdc

L
Mq

(20)

However before designing and implementing controller
through partial feedback linearization, it is essential to
check the stability of internal dynamics of the V2G system
which is discussed in the next step.

• Step 2: Stability of internal dynamics of V2G Sys-
tems

In the previous step, the third-order V2G system is trans-
formed into a second-order system representing the lin-
ear dynamics of the system. Desired performance of the
external dynamics can be obtained through design and
implementation of a linear controller. However, to ensure
stability, the control law needs to be chosen in such a way
that

lim
t→∞

hi(x) → 0

which implies that the state of a linear system decays to
zero as time approached to infinity, i.e., [z̃1 z̃2 · · · z̃r]

T →
0; t → ∞. For the V2G system considered in this work,
this means that at steady-state

z̃1 = 0

z̃2 = 0
(21)

Let the remaining nonlinear state be expressed by the

following nonlinear function ẑ = φ̂(x). To ensure stability,
this needs to be selected in such a way that it must satisfy
the following conditions (Lu et al., 2001):

Lg1 φ̂(x) = 0

Lg2 φ̂(x) = 0
(22)

For the developed V2G system model, equation (22) will
be satisfied if we chose

φ̂(x) = ẑ = −τ1I1 +
1

2

L

vdc
I2d +

1

2

L

vdc
I2q (23)

Thus, the remaining dynamics of the V2G system can be
expressed as follows:

˙̂z = Lf φ̂(x) = −τ1f1 +
L

vdc
Idf2 +

L

vdc
Iqf3 (24)
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Since Id = h1 = z̃1 and Iq = h2 = z̃2, equation (24) can
be written as

˙̂z = Lf φ̂(x) = −τ1f1 +
L

vdc
z̃1f2 +

L

vdc
z̃2f3 (25)

Using equation (21), equation (25) can be simplified as

˙̂z = I1 (26)

From equation (23), I1 can be calculated as

I1 =
1

τ1

[
1

2

L

vdc
I2d +

1

2

L

vdc
I2q − ẑ

]
(27)

and replacing Id and Iq with z̃1 and z̃2, respectively and
using their values from equation (21), equation (27) can
be written as

I1 = −
1

τ1
ẑ (28)

Therefore, substituting the value of I1 from equation (28)
into equation (26), we obtain

˙̂z = −
1

τ1
ẑ (29)

Equation (29) represents stable internal dynamics of the
V2G system and therefore partial feedback linearizing
controller can be designed for the V2G system. It is also
clear that the proposed partial feedback linearizing scheme
divides the dynamics of V2G systems into two parts: one
is the external dynamics as described in the previous step,
and the other is the internal dynamics which needs to
be stable to design the controller. The derivation of the
proposed control law is shown in the following step.

• Step 3: Derivation of control law

For the V2G system, the original control inputs in dq-
frame are Md and Mq and the linear control inputs are ṽ1
and ṽ2. From equation (20), the original control laws Md

and Mq can be obtained as follows

Md =
1

vdc
[Lṽ1 +RId − ωLIq + Ed]

Mq =
1

vdc
[Lṽ2 + ωLId +RIq + Eq]

(30)

Equation (30) is the final control law for the V2G system
to deliver active and reactive power into the grid. At this
point, the only issue to complete the controller design is
to determine the linear control inputs, ṽ1 and ṽ2. In this
paper, PI controllers are used and the structures of the
two PI controllers are chosen as follows

ṽ1 = k1p(Idref − Id) + k1i

∫ t

0

(Idref − Id)dt

ṽ2 = k2p(Iqref − Iq) + k2i

∫ t

0

(Iqref − Iq)dt

(31)

The gains need to be selected in such a way that the output
follows the reference current to minimize the error. In this
paper, the gains are set as follows:

k1p = 2Idref, k1i = I2dref

and

0 0.02 0.04 0.06 0.08 0.1 0.12
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time (s)

G
ri

d
 C

u
rr

en
t 

(A
)

Fig. 3. Grid current at unity power factor (Green line–
proposed controller and red line–PI controller)

k2p = 2Iqref, k2i = I2qref

The reference values Idref and Iqref can be calculated from
equation (6) as

Iqref =
Pref

Eq

Idref =
Qref

Ed

The performance of the designed controller is evaluated in
the following section.

5. CONTROLLER PERFORMANCE EVALUATION

The performance of the designed controller is evaluated on
a test V2G system as shown in Fig. 2 in which the vehicle is
supplying a residential area, i.e., single-phase grid supply
point. Since the main task of PHEVs are commutation, a
minimum state of charge (SOC) needs to be maintained
in order to deliver power into the grid. In this paper, the
minimum SOC is considered as 30 per cent. The following
equation is used to calculate the total available energy of
PHEVs during discharging (Singhand et al., 2012)

Sdischarging = Pb ×N × SOCmin

where Sdischarging is the total available energy for discharg-
ing to support the grid, Pb is the kWh of batteries, N is
the number of vehicles connected to the grid, and SOCmin

is the minimum SOC which is considered as 30 per cent. In
this work, 15 PHEVs are connected to the grid and each
of them with a battery rating of 4.4 kWh. Therefore the
total available energy is 26.4 kWh. The other parameters
of the battery and grid are provided in the Appendix A.
The batteries of PHEVs are delivering power to the grid
to supply a load of 5 KVA in a residential area and this
information is provided by the aggregator.

When the power factor of the load is considered as unity,
no reactive power will be delivered into the grid as the
grid voltage and current will be in phase with each other.
In this case, 5 kW power will be delivered into the grid
and the corresponding current into the grid will be 22.72
A which is shown in Fig. 3. The output current of the
inverter does not contain any harmonic with the designed
controller as this is a pure sinusoidal signal which is shown
by the green line in Fig. 3. But a conventional proportional
integral (PI) controller which is designed for the unity
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Fig. 4. Grid current at 0.8 power factor (Green line–
proposed controller and red line–PI controller)

power factor operation of the V2G system, contains some
harmonics (red line in Fig. 3).

Now if the V2G system needs to operate at a power factor
other than unity, the grid voltage and current will not be
in phase. In this case, some reactive power will be delivered
into the grid. If the power factor is considered as 0.8, the
active power which needs to be delivered into the grid will
be 4 kW and that of reactive power will be 3 kVAr. In
this case, the designed controller acts in a similar way as
considered to the previous case (green line in Fig. 4). But
the response of the conventional PI controller will be slower
(red line in Fig. 4) as the reference active and reactive
power have been changed.

6. CONCLUSIONS

A new dynamical model of a V2G system has been devel-
oped and a partial feedback linearizing controller has been
designed for improving the power quality and stability.
The justification, of using the proposed control approach,
has also been provided for through the feedback lineariz-
ability of the developed V2G system model along with
the inclusion of the stability of internal dynamics. Simu-
lation results clearly indicate that the proposed approach
improves the power quality significantly as compared to
the conventional PI controller and enhance the stability of
V2G systems as it is independent of operating conditions.
The proposed controller acts faster than a PI controller
during the changes in operating conditions which saves
a huge amount of power. Future works will consider the
design and implementation of such controller for a large-
scale operation.

REFERENCES

Ceraolo, M. (2000). New dynamical models of lead-acid
batteries. IEEE Trans. on Power Systems, 15(4), 1184–
1190.

Das, R., Thirugnanam, K., Kumar, P., Lavudiya, R., and
Singh, M. (2013). Mathematical modeling for economic
evaluation of electric vehicle to smart grid interaction.
IEEE Trans. on Smart Grid, In Press, 1–10.

Datta, M. and Senjyu, T. (2012). Fuzzy control of dis-
tributed pv inverters/energy storage systems/electric
vehicles for frequency regulation in a large power sys-
tem. IEEE Trans. on Smart Grid, 4(1), 479–488.

Galus, M.D., Zima, M., and Andersson, G. (2010). On
integration of plug-in hybrid electric vehicles into ex-

isting power system structures. Energy Policy, 38(11),
6736–6745.

Gunter, S.J., Afridi, K.K., and Perreault, D.J. (2013).
Optimal design of grid-connected PEV charging systems
with integrated distributed resources. IEEE Trans. on
Smart Grid, 4(2), 956–967.

Han, S., Han, S., and Sezaki, K. (2010). Development
of an optimal vehicle-to-grid aggregator for frequency
regulation. IEEE Trans. on Smart Grid, 1(1), 65–72.

He, Y., Venkatesh, B., and Guan, L. (2013). Optimal
scheduling for charging and discharging of electric ve-
hicles. IEEE Trans. on Smart Grid, 3(3), 1095–1105.

Hilshey, A.D., Hines, P.D.H., Rezaei, P., and Dowds,
J.R. (2013). Estimating the impact of electric vehicle
smart charging on distribution transformer aging. IEEE
Trans. on Smart Grid, 4(2), 905–913.

Isidori, A. (2nd Edition, 1989). Nonlinear Control Sys-
tems. Springer-Verlag, Berlin.

Khayyam, H., Ranjbarzadeh, H., and Marano, V. (2012).
Intelligent control of vehicle to grid power. Journal of
Power Sources, 201, 1–9.

Kim, I. (2006). Sliding mode controller for the single-phase
grid-connected photovoltaic system. Applied Energy,
83(10), 1101–1115.

Lu, Q., Sun, Y., and Mei, S. (2001). Nonlinear Control Sys-
tems and Power System Dynamics. Kluwer Academic
Publishers, Boston.

Mahmud, M.A., Hossain, M., and Pota, H.R. (2012a).
Nonlinear controller design for single-phase grid-
connected photovoltaic systems using partial feed-
back linearization. In Australasian Control Conference
(AUCC), 30–35. Sydney, Australia.

Mahmud, M.A., Pota, H.R., and Hossain, M. (2012b).
Dynamic stability of three-phase grid-connected pho-
tovoltaic system using zero dynamic design approach.
IEEE Journal of Photovoltaics, 2(4), 564–571.

Mahmud, M.A., Pota, H.R., and Hossain, M. (2012c).
Nonlinear DSTATCOM controller design for distribu-
tion network with distributed generation to enhance
voltage stability. International Journal of Electrical
Power and Energy Systems, 53, 974–979.

Papadopoulos, P., Skarvelis-Kazakos, S., Grau, I., Cipci-
gan, L.M., and Jenkins, N. (2012). Electric vehicles’
impact on British distribution networks. IET Electrical
Systems in Transportation, 2(3), 91–102.

Singhand, M., Kumar, P., and Kar, I. (2012). Implemen-
tation of vehicle to grid infrastructure using fuzzy logic
controller. IEEE Trans. on Smart Grid, 3(1), 565–577.

Slotine, J.J.E. and Li, W. (1991). Applied Nonlinear
Control. Prentice-Hall, New Jersey.

Yang, H., Chung, C.Y., and Zhao, J. (2013). Application
of plug-in electric vehicles to frequency regulation based
on distributed signal acquisition via limited communica-
tion. IEEE Trans. on Power Systems, 28(2), 1017–1026.

Appendix A. SYSTEM PARAMETERS

Battery Parameters:
R1=0.4 mΩ, τ1=7200 s, R0=2 mΩ

Grid Parameters:
Grid voltage (rms)=220 V, Frequency=50 Hz, R=0.1 Ω,
L=10 mH
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