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Abstract: This paper studies the delay robustness of a class of periodically edge-event
driven synchronous consensus protocols in time-invariant networks. These protocols have the
benefits of improved performance at reduced communication and computation costs. Under the
assumption that all information links share a common time-varying transmission delay, we give
non-conservative estimates of the maximum allowable time-delay and event-detecting period
for solving the average consensus problem in terms of the algebraic structure of interaction
topologies. Furthermore, rigorous stability analysis shows that the proposed technique is also
applicable to the asynchronous consensus with multiple time-delays.
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1. INTRODUCTION

As an important research topic in multi-agent coordina-
tion, sampled-data consensus has been intensively studied
by researchers in the past several years. It involves the
design and stability analysis of various kinds of distributed
algorithms/protocols, which coordinate the behaviour of
each agent through local interactive data-samplings to get
the information shared by all agents (Ren and Beard,
2005).

Typically, inter-agent data-samplings are scheduled in a
synchronous periodic manner (Xie et al., 2009a,b; Cao and
Ren, 2010; Gao and Wang, 2010; Qin and Gao, 2012).
This scheme makes it easier for the protocol design and
convergence analysis and it also serves as the basis for fur-
ther development, such as synchronous aperiodic sampled-
data consensus (Liu et al., 2012), asynchronous periodic
sampled-data consensus (Gao and Wang, 2011) and aperi-
odic sampled-data consensus (Lin et al., 2004; Cao et al.,
2008; Xiao and Wang, 2008). Preliminary results show that
the algebraic property of underlying interaction graphs
plays a key role in choosing the maximal data-sampling
periods and it also determines the system robustness
against communication delays (Xie et al., 2009a). The
employed analysis tools include the spectrum analysis of
graph Laplacian, nonnegative matrix theory (Cao and
Ren, 2010) and Linear Matrix Inequalities (LMIs) (Gao
and Wang, 2010). Nevertheless, these time driven sys-
tems usually have constant data-sampling rates no matter
whether necessary or not.
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To reduce the number of unnecessary state-samplings and
actuator updates, event based approach is an alternative
option of scheduling data-sampling actions. It has many
favorable advantages over the pure time driven control
including lower communication and controller-updating
costs (Astrém and Bernhardsson, 2002; Astrom, 2008;
Lemmon, 2010). Event based consensus protocols specify
that each agent activates the actions of data-samplings and
controller update only when its observable measurement
errors exceed certain thresholds. For each agent, if each of
its involved events triggers the inter-agent data-samplings
of itself with all its neighbors, we call this kind of events
“agent-events”, which were indeed widely adopted in the
literature (Dimarogonas et al., 2012; Seyboth et al., 2013;
Fan et al., 2013). Clearly, the agent-event based approach
aims reducing controller-updating costs; and communica-
tion costs are likely to be further reduced if triggering
conditions of data-samplings on different information links
are checked independently. This observation motivates the
study of so-called “edge-event based” protocols, which
were originally proposed in Xiao et al. (2012). In this
setup, the communication link between any pair of ad-
jacent agents is modeled by an edge of the interaction
graph; edge-events are introduced independently to in-
formation links; their triggering conditions are checked
collectively by the corresponding two linked agents; and
their occurrences activate the mutual state-samplings and
controller updates. These protocols could be easily applied
in a distributed asynchronous environment and guarantee
an improved performance at reduced communication and
computation costs (Xiao et al., 2012).

This paper performs the delay robustness analysis of a
class of periodically edge-event driven consensus proto-
cols in time-invariant networks, which combine edge-event
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based samplings with local time driven event-detections.
Note that the time driven feature of event-detections can
easily ensure a lower bound of inter-event times over
each information link, which is hard to be ensured in the
traditional event based framework (Dimarogonas et al.,
2012; Seyboth et al., 2013; Fan et al., 2013). We assume
that all information links share a common time-varying
transmission delay with an upper bound. By Lyapunov
methods, the trade-off between maximum allowable time-
delay and event-detecting period is characterized in terms
of the algebraic structure of interaction topologies and
non-conservative estimate of maximum allowable time-
delay is given for solving the average consensus problem.
Furthermore, the analysis technique is still valid in the
more general setting with multiple time-varying delays.

This paper is organized as follows: the problem is formu-
lated in Section 2; the main result is presented in Section
3; a simulation example is given in Section 4; finally, the
paper is concluded in Section 5; some necessary lemmas
for proving the main result are attached in the Appendix.

2. PROBLEM FORMULATION

In this paper, we study a multi-agent system with n
single-integrators. Label these agents with 1 through n.
The information links between agents are assumed to be
bidirectional and the interaction topology is modeled by
an undirected simple graph G = (V, £) without self-loops.
V = {v1,v2,...,v,} is the vertex set, modeling the n
integrators respectively. Any edge (v;, v;) in the edge set £
is an unordered pair of vertices, which implies the existence
of an information link connecting agents ¢ and j. The graph
G = (V,€) is called connected if for any two different
vertices ¢ and j, there exists a sequence of vertices such
that the sequence begins at v; and ends at v; and any two
consecutive vertices are adjacent (making up an edge) in G.
All the agents j, satisfying (v;,v;) € £, are usually defined
as the neighbors of agent 7 and indexed by N; (Olfati-Saber
et al., 2007; Ji et al., 2012).

Let x;(t) € R denote the state of agent i, i =1, 2,...,n
The dynamics of each agent is described by the following
equation:

zi(t) =u;(t), 1=1,2,...,n
where wu;(t) is a local state feedback, called protocol, to
be designed based on the information received by agent i
from its neighbors.

In Olfati-Saber et al. (2007), the following protocol with a
fixed time-delay was studied:

w(t) =3 (ch(t ) —a(t — 7)).
JEN;

It was shown that 7 < % is a necessary and sufficient
condition for the solvability of the average consensus prob-
lem, where \, is the largest eigenvalue of the Laplacian
of graph G. If the above protocol is considered in the
traditional framework of sampled-data consensus, we have
the following revised form:

ui(t) = Z (xj(tk)—fi(tk)),

JEN;
where g, t1,t2, .. ., is a sequence of time with tx11 = tx+h,

k =0,1,2,.... Here h is the data-sampling period. Xie,

€ th+7,tpp1+7), (1)

Liu, and Jia (2009a) showed that h < 5= is necessary and
sufficient for solving the consensus problem in the absence
of time-delay; and allowable delay 7 is also determined by
the eigenvalues of the underlying graph Laplacian.

To reduce the unnecessary data-samplings at tp, k =
0,1,..., we invoke the edge-event based technique:

(1) Assume that there exists a common transmission
time-delay 7(t), less than h, on all information links
at time t, k =0,1,2,....

(2) For any pair of adjacent agents i,7, they initialize
their mutual data-sampling at time to. Then x;(to) —
x;(to) is available to agents ¢ and j at time tg+ 7(to).
Denote

245(t) = x;(to) — wi(to), t € [to, t1)
and index the most recent data-sampling time by
Hij(t) = Iiji(t) =0,t¢€ [to,tl).

(3) At time tg, k = 1,2,..., agents ¢ and j check the

following inequalities, respectively:

@ .
|2i(te) = @it (10| < 5123 (tr-1)]

@ .
25 (t) = 25 (i )| < 5125 (1)]

where parameter o with 0 < a < 1 is a threshold,
shared by all agents. If either of the above two
inequalities does not hold, the mutual data-sampling
between agents ¢ and j is triggered and set

i) = (1) = 2,(8) — 00 |
{ Kij(t) = rji(t) = k ' Yt E [ty tr);
otherwise, set
Ti(t) = —25i(t) = Tij(tp—1)
{Hij@) = kj;i(t) = Kij(tk—1) o€ [ty trgn).

Within the above data-sampling scheme, h is called the
event-detecting period and the protocol is given as follows:

ui(t) = Z Tij(t — Tty 1))- (3)

JEN;

Remark. We should note that &;(t — 7(t,,;())) is avail-
able to both agents 7 and j and the event-detecting con-
dition (2) only depends on local information of agents i
and j. So no communication between agents ¢ and j is
needed in checking inequality (2) at tp. Moreover, it is
easy to check that if a = 0 and the time-delay is fixed,
then the above protocol becomes protocol (1). In Xiao,
Meng, and Chen (2012), it was shown that if we choose
event-detecting period h with 0 < h < 1;—7:’ and time-
delays are all 0, then the average consensus problem will
be solvable. In fact, the upper bound 1)\—771@ can be further

relaxed by (1 O‘)

3. MAIN RESULT

Let M; denote an incidence matrix of graph G with some
given edge orientations and let A, be the largest eigenvalue
of graph Laplacian MIMIT. Matrix MITMI is called Edge
Laplacian and denoted by LF = [15] in this paper. Note
that the definition of M;M;* is independent of the choice
of My, and matrices M7 M IT and LT share the same non-
zero eigenvalues (Mesbahi and Egerstedt, 2010). Denote
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Timax = Max 7(tx)

Tasyn = maX{T(tﬁin (t)) - T(tm'jz(t)) :
(Ui, Uj1)7 (UZ‘, ’Uj2) S 5, t> 0}
Tyar =MAX{T (te, (1) = T(te,,;(1)-1)
(UZ‘,’UJ‘) € S(Q),t > 0}
and let o= denote the least upper bound of singular values
of matrices in set

2= {LE 0 O :each entry of © is nonnegative

and not larger than 1},

where o denotes the entrywise product (Hadamard prod-
uct) of matrices. Clearly, o= > A, and it also depends on
the algebraic structure of graph G.

Theorem 1. Suppose that the interaction graph G is

connected and time-delay 7(t;), & = 0,1,..., is smaller
than event-detecting period h. If

(h+Toar) A — (V2 Tmax +V2Tasyn)o= > 0, (4)
then protocol (3) solves the average consensus problem;
that is, the states of agents all converge to their average
value as time goes on; particularly, if
1-—«a

= 2, + 2\/50'5’ (5)
then for any time-varying delay smaller than h, protocol
(3) solves the average consensus problem.

l1—a—

Remark. By the assumption that 7(¢x), & = 0,1,..., is
smaller than h, we have that Tmax, Tasyn, and Tye, are all
smaller than h and thus inequality (5) implies inequality
(4), which means that inequality (4) is always solvable.

3.1 Technical Proof

Let m be the total number of edges in G and denote them
by e1,e2,...,en. For each edge e, with e, = (v;,v;), if
it is orientated from v; to v; in the definition of My,
denote y,(t) = z;(t) — x;(t) and yp(t) = &;(¢). With
abuse of notations, we use notation ,(t) instead of x;;(t)
and use notation 7; instead of 7(t,, (;,)) in what follows.
Denote vectors y(t) = [y1(t),y2(t), ..., ym(t)]T and §(t) =
[91(t), 92(1), ..., Gm(t)]*. Then we have
y(t) = My (1)
B(t) = =Mp[g1(t = 7(te, 1))s G2t = Tty 1))
i a@m(t - ( Km (1) ))]
T(tey(1))s G2t = 7(teyw)),

.- 7Qm(t - T(tnm(t)))}T

§(t) = =M " M;[i (t —

(6)

n

Denote the state average o = = 3" | x;(t). Under protocol
(3) and the assumption of undirected interaction graph, it
can be shown that g is a constant. Denote 6;(t) = z;(t) —
0, % = 1,2,...,n, and consider the following Lyapunov
function:

By equation (6),

i) Zg £ — (b)) (D), (7)
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and the third equation in (6) is equivalent to

AN
j=1

T(tey)si=1,2,...,m.  (8)

We collect all possible times tg,tx + 78, i = 1,2,...,m,
k = 1,2,..., in the increasing order and label them by
50, 51,t2,.... For any edge e; and time s, let o}, denote

the index number such that ¢, +Té < sk <ty Ty

Now, suppose that ¢, = si, and t + ch = S5, < Sk, <
tk+1+74 41 - By the properties that §;(t—7(t, 1)) = Ji(tx)
for t € [sk,, Sk, ), Q; =kforp=~Fky,k1+1,...,k—1, and
9t — 7(te, 1)) = @j(tgg) for t € [sp, sp+1) and all j and
p, and by equation (8), we have that

/ Sk?ﬂi(t = T(twi)))yi(t)dt

Skl

_ / Gt (si )t

Skq

m ka—1 s
YN E / dilty) [ (6=t 0))deds
J=1p=k1 e k1
ki—1
:(skz_Skl)gi(tk)(yi(tk)_z SPJrl ZlmyJ )
p=ko
m kg*l s s
p+1 P
_ (h+ Tvar) Z Z h+7—var
Jj=1p=k1
Sp+1 — S .
(P2 s — s ) 5ty ) (8 )
ko—1
>(1—a) > (spa1 = $p)iltg)* = (sky — 58,9 (tr)
p=k1
m
X Zl ( (tk)9; (tk—1) +dz](tk)y](tk))
ka—1
— (h+ Tvar) Z (Sp+1— Sp)
p=k1

m
1 Sp+1—5p E o
X; h+7—var< 5 +Sk2*5p+1)lijyi(tg;)yj(t9;)»

where the last inequality follows from Lemma 3, d;(tx) =

Sp+1—Sp
2

min{r,i,ri},dij(tk) max{7}— Tk,O} and h+T

+8k, — sp+1) < 1 by that sg, — sg, < h+ Tyar-

Given k, we define

) 1 Spi1—S )
i p+l P . i

= +min{tga1,t, i 1+7 —5 1)
Pk h 4 Tvar ( 2 (B, o+l L’k""l} Pt

and suppose that sg = tx41. Then by equation (7), we
have

m tht1
Vit) = Vie) =Y [ it = rltmo)tde
i=1vh
k'—1 m

<V(t) = (1—a) > (spr1 — Z
p=0
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k'—1

+(h+7—var) Z serl ZZ kyz yj( )7
0 i=1 j=1
k—1 m " ) )
+ Z Z(h + Tpy1 — T;)Zgi(tp)
p=1i=1

XZZ (d (tp—1) +dij(t )](tp))

+§3h~@mm>

sz( (b)) + g (0)5 1)) (9)
In equation (9), by Lemma 2,
Z Zlmep kyi (tg;)gj (tgz))
i=1 j=1
:ﬁgl(tg;) gQ(t 2) ..,an(t )]
x diag ([0} 4,02 4 - - - pk])LE
< [91(tg1), G2(tg2), - G (tgp )]
i=1
Therefore,
k'—1 m
(1-a) Z(‘SP+1 - sp)Z@z‘(tgp) — (h+ Tvar)
p=0 i=1
k-1 m m
x Z (8p+1 = Sp Z kyz ):gj (tg;;)
p=0 i=1 ]:1
k'—1 m
>ZSP+1 (1—@— h+Tvar )Z 2

m k—1
+ (17 (ht e ) S0 S (At rig—0)di(ty)°
i=1 p=1
+ (1= a = (et muar)Aa ) 300 = mga(t)?
i=1
Next, we study the other quantity in equation (9):
k—1 m )
Z(h + 71 — Tp)0i(tp)
p=1i=1
X U (A ()5 (1) + dis (135 (1))
j=1
+ > (h=T7{)diltr)
i=1
X U (i (1035 (1) + ()35 (8) )
j=1

k-1 m
:ZZ\/h""T; 9i (1t Z ht 7y =
p=11i=1

( \/h+TP_p1yJ p—1)
\/h—i-Tp—T
\/h—l—Tp+1 prj )
h+7’
+Z\/h—Téﬂi(tk)Z\/h—TklE
i=1 j=1
\/h—l-Tk Tk 195 (te—1)
h+1!

" (W
4 ult) ﬂm(tk))

_|_

h— T,g
k—1 m
\4 2hTmaxgE i QN A
é Z <(\/§Tasyn05+2>(h+7-p+1_7—p)yi(tp)2

p=1li=1

V2P Tmax0s i \p
YO k)it )

= VhTmaxUE i A~
+ Z (Tmynaz #) (h — 78) i (ts)?

Y mOCE (h+ T — To_1)Bi(te—1)?

where the last inequality follows from Lemma 1 and the
following fact:

h+71i , — 1l
— I P (t,) <
h+¢,% —7';71

vV 2hTmax

h+ Ti T
dl < \/>Tas n
) < Vo
— Tk d” (tr) < v/ M Tmax
h+ Tk

Ih _Tk
dz tk: <Tas n
h* J ) Y

Therefore, we have

V(trs1) <V (1)

(1 - — h + Tvar n) ZTligi(tO)z
=1
\/ 2hTimax 0=

= (h+1i — 75)3i(to)?

2
m k—2
Z (1 - — h + T’uar) n ﬂTasynaE
1=1 p=1
Y/ 2hTma)(U ) h + T;+1 - T;)Qi(tp)Q
(1 —a— h + Tvar) n \/§Tasyn05
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- WS o) i1

- (1 - — (h + Tvar)/\n — Tasyn0=
hTmazUE i i A~
— aT2 ) S (- )i ()2
i=1
Inequality (4) guarantees that the parameters before
9:(tp), p=1,2,...,k, are all negative and thus

lim §(t4)" G (tx) = 0.
k—oo

By Lemma 3 and equation (6), we have limy,_, o y(tx) T y(tr) =

0 and lim;_, o ¢(t) = 0, respectively, which together yield
that
lim y(t) = 0;

t—o00
in other words,

lim ()T M;M;"x(t) = 0.

t—o0

Since graph G is connected, we have
lim z;(¢t) =0,i=1,2,...,n.
t—o0

4. SIMULATION

Fig. 1. Interaction Topology

In the simulation, we consider a network of 5 agents with
randomly generated initial states 3.9652, 0.6159, 7.8018,
3.3758, 6.0787, under the interaction topology given in
Fig. 1. Then A,, = 4.48 and by Gershgorin Circle Theorem,
o= is upper bounded by 5. By assuming that 7,,x = 0.8h,
Tasyn < 0.3h, and Tye, < 0.3h, we get that h = 0.021
is a sufficient condition for solving the average consensus
problem. In the simulation, h = 0.0208 and the time-delays
are randomly generated between Tmax — Tasyn and Tmax.
The state trajectories and the edge-event number in each
period of h are shown in Fig. 2.

5. CONCLUSIONS

In this paper, by Lyapunov methods, we studied the delay
robustness of a class of time-event hybrid-driven sampled-
data consensus protocols and examined the relationship
between the maximum event-detecting periods and trans-
mission time-delays. We showed that they are all deter-
mined by the algebraic structure of interaction topologies.
However, we didn’t solve the problem on how to compute
o=, which is used for estimating allowable time-delays. Our
future work will be aimed at extending the present results
in more general settings, such as fixed or time-varying
directed networks and asynchronous periodic or aperiodic
event-detections with multiple time-varying delays.

o
T

o
4

Agent States

0 0.5 1 1.5 2 25 3
Time

Event Number
N
(5

Fig. 2. State trajectories and edge-event numbers in each
period of h

APPENDIX

Lemma 1. For any column vectors £ and ¢ and real
matrix A with compatible dimensions,

1
fTAC < iamaX(A)(ng + CTOa
where oax(A) is the largest singular value of A.
Proof. This lemma is obvious by observing that
1 0 Al l¢
T A, _ L1eT T
[ |

Lemma 2. For any column vectors &, real positive-
semidefinite matrix A, and nonnegative diagonal matrix
O with compatible dimensions, if the diagonal entries of ©
are all not larger than 1, then

ETOAE < Apax(A)ETE,
Amax(A) is the largest eigenvalue of A.

Proof. By Lemma 1, {TOAS < Loyax(A)(ETO%¢ +
ET¢) < omax(A)ETE. Note that omax(A4) = Amax(A) by
the positive-semidefinite property of A. |
Lemma 3. For any pair of adjacent agents 7, j at time ty,
&;;(tr) and z;(ty) — z;(tx) share the same sign and

(1= a)|@;(te)] < foi(te) — 25 (te)] < (14 )| (t)]-
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Proof. We only prove the second part. If the mutual
data-sampling between agents ¢ and j is triggered, then
kij(tg) = k and thus &;;(tg) = x;(tx) — x;j(tx); otherwise,
Kij(tk) = Kij(tk—1). In the latter case, by equation (2), we
have

|2i (k) — x5 (te)| <I2i5 ()] + |2i(tk) — @i (tay; )]

+ ‘xj(tk) - xj(tﬁji(tk)”
ST+ )24 (tr)]

and

|zi(tr) — x5 (tr)

le}l](tk” - |‘r’b(tk) - x’b(tmg(tk))|
— |2 (tk) = 25t 00)|
>(1— )@ (te)]-
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