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Abstract: This paper addresses the forward kinematic model of a class of hyper-redundant
continuum robot, namely Compact Bionic Handling Assistant (CBHA). Inspired from the
elephant trunk, it can reproduce some biological behaviors of trunks, tentacles, or snakes.
Such systems, like the CBHA are subjected to a set of nonlinearities (flexibility, elasticity,
redundancy,...) and uncertainties (parameters and modeling), making difficult to build an
accurate analytical model, which can be used to develop control strategies. Hence, learning
method becomes a suitable approach for such scenarios in order to capture un-modeled nonlinear
behaviors of this continuum arm. The proposed approach makes use of Multilayer Perceptron
(MLP) and Radial Basis Function (RBF) Neural Networks for the approximation of forward
kinematic model (FKM) of CBHA trunk. The experiments have been conducted on the CBHA
in order to validate the forward kinematic model where the arm trajectories are generated using
a physical coupling with a rigid manipulator. A comparison of both qualitative approaches with
a quantitative geometric approach, according to the model accuracy is given at the end of the
experiment.

1. INTRODUCTION

Unlike traditional rigid link robots, continuum robots
present some features (flexibility, redundancy,...) which
can be exploited for singularities elimination, obstacle
avoidance, various criteria performance enhancing, and
as well as for smooth motion. However, these features
can be a source of nonlinearities, making difficult the
development of a precise model-based control for such type
of robots. Potential applications include navigation and
operation in complex and congested environments such as
search and rescue operations and surgical interventions. If
suitable methods to model closed and open rigid robots
kinematic chain mechanisms exist (Denavit et al. [1955],
Khalil et al. [1986],...), the kinematic model of continuum
robots remains difficult to obtain with high accuracy,
because, they are often under-determined systems, due to
their redundancy or hyper-redundancy with high number
of parameters.

Considerable efforts have been focused on the design and
construction of continuum robots. The use of the latter for
practical applications requires modeling and development
of real-time algorithms to extract their full physical poten-
tial. Focusing on their forward kinematic modeling, in the
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literature, two modeling approaches have been addressed;
model-based approach and learning-based approach. A
large proportion of efforts in the area have been focused on
model-based approach (Gravagne et al. [2000], Jones et al.
[2002], Jones et al. [2006], Rolf et al. [2012],...). In the
learning-based approach, almost contributions focused on
the inverse kinematic modeling (Rolf et al. [2009], Reinhart
et al. [2011],...). The present paper focuses on forward
kinematic modeling of continuum robots.

Trivedi et al. [2008], Rucker et al. [2010] and He et al.
[2013] considered a more detailed model of material
physics and bending processes, based on the Euler
Bernoulli beam and Lagrange equations. They proposed
an analytic method respectively for kinematics and dy-
namics modeling of continuum robots. However, these
models do not provide closed-form solutions. They require
an iterative solution of differential equation systems, which
make them computationally expensive. Webster III et al.
[2010] and Mahl et al. [2012], investigated the use of hyper
redundant rigid-link models. A section kinematics is built
connecting several 3-DOF parallel mechanisms in series.
Afterwards, these section kinematics are combined to the
manipulator arm kinematics as an open chain model. How-
ever, it is difficult to relate the CBHA links such to a
rigid-link model which often gives imprecise results (Jones
et al. [2002]). In addition, the CBHA trunk is made almost
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Fig. 1. Overall autonomous control scheme of the CBHA

completely out of polyamide. Jones et al. [2002], Rolf et al.
[2012] and Chirikjian et al. [1994] focus on the continuum
deformation of the entire robot arm section. They define a
class of functions to describe all possible deformations of
the section. The most used class of deformation functions
is circular shapes (Jones et al. [2002], Jones et al. [2006],
Bailly et al. [2005]). Circular shapes correspond to a con-
stant curvature of the continuum robot and describe the
energy minimum without gravitational or other external
forces (Gravagne et al. [2000]). Jones et al. [2002] has
pointed out the central problem of circular approaches
through a numerical investigation. The difficulty occurs
when one or more of the sections of the trunk does not
bend, in which case the bending radius of the trunk section
becomes infinite. This gives rise to two problems (Jones
et al. [2002]): The numerical evaluation of the kinematics
at this point (the kinematics model involves terms includ-
ing the radius) and the evaluation near the limiting case
of a straight trunk (a finite-precision machine arithmetic
produces numerical instability). The authors only deal
with the straight positions, but they do not apply if a sec-
tion is not bent. Godage et al. [2011]prevented this prob-
lem by choosing a more general class of functions. Their
model successfully describes elongation, but encounters
estimation problem in a high-dimensional parameters. Rolf
et al. [2012] proposed a new parameterless method to deal
with geometric singularities in stretched positions, which
allow to capture pure elongations that are not naturally
expressed by the toroidal deformations underlying the
constant curvature assumption. However, examining the
physics of flexible structures demonstrates that continuum
trunks bend with constant curvature, forming an arc of a
circle, only in the absence of external forces such as gravity
(Gravagne et al. [2011]).

In order to capture the full complexity of continuous
deformations and un-modeled nonlinear behaviors of the
continuous robots, a learning-based approach is developed
in this paper for modeling the forward kinematic of the
CBHA. This choice is motivated by the fact that:

• the learning approaches are free from assumptions
(constant curvature, the toroidal deformations,...),
they use the sampled input-output data pairs to
estimate the FKM.
• continuum robots deformations are potentially in-

finite dimensional since the entire arm’s material
is deformable. This kind of deformation could only
be reconstructed using redundant sensors. Therefore,
they are under-determined systems with high number
of parameters.

For a reliable CBHA positioning, it is not efficient to con-
trol the pressure alone. Friction and hysteresis related to
CBHA structure can cause largely different postures when
applying the same pressure several times. Since pressure
does not provide reliable information about the robots po-
sition and movement in space, reaching solely concerns the
geometric information (length sensors). These geometric
information (length sensor values) can be controlled by
dynamically adjusting the pressure in each actuator (Rolf
[2012]). CBHA robot can be controlled by the following
control scheme Fig. 1. The control scheme comprises:

• An inverse kinematic model to evaluate the geometric
information (robot posture ) from workspace coordi-
nates;

• A pressure transformation system to provide the
pressure necessary to achieve the robot posture;

• A controller to compensate uncertainties and model-
ing errors;

• A FKM to evaluate the workspace coordinates from
geometric information.

The contribution of this work can be summarized in three
points:

(1) Development of the FKM of CHBA based on learning
approach;

(2) Identification of the CHBA workspace;
(3) comparison of the proposed approach with a model-

based approach using an appropriate test-bench for
calibration.

In Park et al. [1991] and Hornik et al. [1989], RBF and
MLP neural networks are respectively considered as the
universal approximators. They can approximate any non-
linear functional relationship with an arbitrary accuracy,
provided that enough hidden neurons are available. In this
work, RBF and MLP neural networks are used to model
the forward kinematic of the CBHA. The remainder of
this paper is presented are followed: Section 2 describes the
CBHA robot. Section 3 presents the MLP and RBF neural
networks. Section 4 describes the experimental platform
and provides experimental results and discussions. Section
5 gives the conclusions and future works.

2. PROBLEM FORMULATION

The CBHA depicted in Fig. 2 is attached to an omnidirec-
tional mobile robot called Robotino Fig. 3. It comprises
two main segments, each with three pneumatic-actuated
bellow, a ball-joint as wrist, controlled using two actuators,
and two compliant jaws constituting a gipper controlled by
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Fig. 2. CBHA manipulator

Fig. 3. Robotino XT platform

one actuator. Each actuator can be controlled separately.
The venting of the backbone tubes allows resetting its
shape; hence supplying it with compressed air leads to its
expansion. The bionic trunk consists of nine sensors; six
wire-potentiometers, installed on the surface of each flexi-
ble backbone tubes, in order to measure their elongations.
Two sensors are used for the rotating part and the last one
to detect the gripper status. Nowadays, the CBHA placed
on the Robotino mobile robot platform is controlled in
an open-loop configuration using a joystick interface. The
problem is to keep this control autonomous and in closed-
loop Fig. 1. The main difficulty is the establishment of an
accurate FKM allowing obtaining the relationship between
Cartesian coordinates of the tip of the arm and the tube-
lengths. Thus, this is our main interest in this work. We
study the FKM of the two jointed segments (red and green
segments of the Fig. 2), so that 6 actuated inputs are
used. We consider only Cartesian tip position, so that 3
measured outputs are used.

3. MLP AND RBF NEURAL NETWORKS

Typical examples of ANNs are MLP and RBF neural
networks. They are different from each other in both the
architecture as well as the training procedure. ANNs are
universal approximators, they can approximate any non-
linear functional relationship (mapping) with an arbitrary
accuracy, provided that enough hidden neuron is avail-
able (Hornik et al. [1989], Benoudjit et al. [2003]). This
supports the success of the ANNs in numerous fields of
application of regression problems. A MLP neural network
Fig. 4 is composed of an input layer, an output layer, and
one or more hidden layers. The signals flow consecutively
through the different layers from the input to the output
layer. For each layer, each elementary unit calculates a

Fig. 4. MLP Neural Network topology

Fig. 5. RBF Neural Network topology

scalar product between a vector of weights and the output
vector given by the previous layer. A transfer function
(sigmoid, hyperbolic tangent,...) is then applied to the
result to produce an input for the next layer.

RBF neural network Fig. 5 is composed of three layers
(input, a hidden, and an output layer). Input neurons
propagate input variables zj to the next layer. Each neuron
in the hidden layer is associated with a kernel function ϕj

(usually a Gaussian function) characterized by a center cj
and a width σj .

ϕj(‖z − cj‖) = exp

(
−1

2

(
‖z − cj‖
σj

)2
)
. (1)

The output function is given by:

f(z) =
∑P

j=1
λjϕj (‖z − cj‖) . (2)

Where P and λj are respectively the number and the
weight of the radial functions. For more details about
ANNs, we refer the reader to (Hornik et al. [1989], Be-
noudjit et al. [2003], Bishop [1995]).

4. EXPERIMENTAL RESULTS

To verify the performances of the proposed approach,
the validation of the FKM based on MLP and RBF
Neural Networks is achieved using a rigid six degrees-of-
freedom manipulator. In this section, we first provide a
description of the sample data acquisition followed by the
learning phase result. Finally, the experimental platform
and the obtained results are described, which illustrate the
effectiveness of the proposed approach for the case of the
CBHA system.
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Fig. 6. Trilateration process

Fig. 7. Bionic arm workspace

4.1 Data acquisition

To build the learning data base, the tip of arm position
is evaluated experimentally by means of a trilateration
system developed in (Escande et al. [2012]) Fig. 6. The
test bench consists of:

• 1 profiled metallic platform,
• 4 external proportional potentiometers
• 6 wire-potentiometers placed along of each tube.

From the 4 values of the external potentiometers and using
the simple trigonometry transformation, we evaluate the
tip position of CBHA arm. The learning base is built as
followed: The CBHA posture (wire-potentiometer values)
is varying proportionally with the pressure used to control
tube-lengths. The pressure in each tube is controlled
using internal PID-control. The range of each pressure is
[0; 1.5]bars. By using a step size of 0.5, each tube can be
controlled by one of these values (0; 0.5; 1; 1.5). With 6
controlled inputs, we have a learning base of 46 = 4096
samples. The workspace of CBHA arm is depicted in
Fig. 7.

4.2 Learning procedure

The forward kinematics neural network model is consisted
of 6 inputs of wire-potentiometer (U1, U2, ..., U6) and 3
outputs (Tip of arm position). The both neural networks
regressors (MLP and RBF) were trained on their corre-
sponding training sets. The learning data base is divided
randomly; 70 percent for training set, 15 percent for valida-
tion and test sets. The training set is used during learning

Fig. 8. MLP neural network: Test set results

Fig. 9. RBF neural network: Test set results

Table 1. Results achieved on the forward kine-
matic by the MLP and RBF neural networks

Neural networks topologies Number of neurons MSE

MLP (2 hidden layers) 36 3.0890.10−5

RBF (σ = 0.5) 72 5.2664.10−5

phase and the test set is only employed to evaluate the
performance of the networks. The validation set is used
during the learning phase to avoid the overfitting. In order
to empirically select the best model for each regressor, the
value of each parameter was varied in a given predefined
range according to a grid search over the validation set.
We tested the MLP with 2 up to 40 neurons in the hidden
layers. Concerning the RBF model, we varied the number
of neurons in the hidden layer from 2 to 90, and the width
of the Gaussian kernel from 0.01 to 2. The assessment
of the trained regressors in terms of MSE (mean square
error) on the test samples yielded the values reported in
Table. 1. Note that, the length-sensors are given in volt,
because they are provided by the wire-potentiometers.
By simple transformation, these voltages are transformed
into length. We use the wire-potentiometer voltages to
avoid the uncertainties related to the transformation from
voltage to length. The obtained results from a test set
of 614 samples for MLP and RBF neural networks are
depicted respectively in Fig. 8 and Fig. 9. They present
the percentage error between the desired and predicted
CBHA tip positions over the samples of the test set.

4.3 Model validation and results

To collect a time-domain Cartesian position of the tip
of the CBHA and its tube-lengths, we used an external
rigid robot (Kuka KR6 Arc) to generate the bionic arm
trajectories. This 6 DoF robot is also used as an external
sensor, allowing measurement of the tip of the bionic arm
position according to that of Kuka end-effector, which are
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Fig. 10. Experimental test environment

Fig. 11. Industrial trajectory estimation

superposed. The industrial arm grippes the extremity of
the bionic trunk to generate the desired trajectory Fig. 10.
For this purpose, programming Kuka Robot Language
(KRL) is used. The algorithm is implemented through
the Kuka Control Software (KSS) which is running on
VxWorks. Remote Sensor Interface(RSI) is considered to
exchange data between the robot and a remote server using
an Ethernet connection. From the Kuka robot side, the
Cartesian coordinates of the end effector in acquired for a
specific generated trajectory inside the workspace. On the
side of the bionic arm, during the trajectory generation,
a DSpace Input/Output board receives the length mea-
surements of the bionic arm and sends a trigger signal
to Kuka Robot for the synchronization of the starting
time. In this section, a comparative study between two
learning neural networks method with a geometric model-
based is addressed. The qualitative and quantitative ap-
proaches are used to validate the estimated FKM of the
CBHA, based on trajectories generated from the industrial
robot manipulator. The geometric model-based approach
is based on a constant curvature principle (Webster III
et al. [2010]). The development of two sections bionic arm
FKM is presented in details in (Escande et al. [2012]). The
method assumes that the curvature of the sections and the
tubes describes a perfect arc of a circle which is an imposed
assumption inducing some modeling uncertainties. The
robot trajectory, the estimated neural networks trajecto-
ries (MLP and RBF) and the estimated geometric model-
based trajectory are depicted in Fig. 11. The estimation
errors in X, Y and Z are respectively represented in Fig. 12,
Fig. 13, and Fig. 14. Table. 2 rank the performances of each
approach.

Fig. 12. Euclidean error in X axis

Fig. 13. Euclidean error in Y axis

Fig. 14. Euclidean error in Z axis

Table 2. Results achieved on the FKM by
Geometric model-based, MLP and RBF neural

networks

Modeling approach
Mean of Euclidean error(mm)

X Y Z

Geometric model-based 3.8614 6.8089 6.8115

RBF Neural Networks 1.3772 0.8860 0.4165

MLP Neural Networks 0.1283 0.5527 1.9877

On the whole, the results of different approaches are sat-
isfactory in terms of trajectory estimation and position
errors convergence. We have a mean error of 5.82mm,
0.89mm and 0.88mm respectively for geometric model-
based approach, RBF and MLP neural networks approach.
As we are pointed out previously, the problem of constant
curvature based-methods occurs when one or more of the
sections of the trunk does not bend, in such case the bend-
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ing radius of the trunk section becomes infinite. This leads
to two problems: The numerical evaluation of the kine-
matics at this point and the evaluation near the limiting
case of a straight trunk. This justifies imprecise estimation
for some trajectory portions using the geometric model-
based approach. We notice that the estimated trajectories
using neural network and the imposed industrial robot
trajectory are very close. However, we observe some differ-
ences which are mainly due to the trunk composite flexion
memory and uncertainty length measurements issued from
the wire-potentiometers. In this work, we demonstrate
that without the quantitative assumptions of the constant
curvature, the toroidal deformations..., the MLP and RBF
neural networks can approximate accurately the tip of
bionic arm position while dealing with geometry singular-
ities and stretched positions. Thereby, the proposed quali-
tative modeling approach, compared to those developed in
(Mahl et al. [2012], Rolf et al. [2012], Jones et al. [2006])
gives improvement in the forward model estimation, with
consideration of the undesired nonlinearities of the trunk.
Comparing the performances of two neural networks, we
notice that, MLP outperforms their RBF counterparts, in
term of MSE, because the MLP uses an additional layer
of neurons.

5. CONCLUSIONS

In this paper, a learning-based qualitative approach is used
for elaboration of the FKM of a CBHA manipulator. MLP
and RBF neural networks are trained to approximate the
FKM. The experiments have been performed using the
CBHA of the Robotino XT robot, in order to validate the
accuracy of the learning-based models, through the two
neural network topologies. A comparison with a geometric-
based quantitative approach shows the accuracy of the
qualitative methods in the presence of nonlinearities and
uncertainties. In future work, we should integrate the
kinematic of the mobile platform to the CBHA kinematic
model, to generalize the study for the overall RobotinoXT,
the mobile-bionic manipulator robot.
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