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Abstract: Torch position, traveling speed, and attitude play an important role in welding
quality control for both manual and robotic arc welding process. Besides, their detection may
facilitate welding process monitoring, welder training, as well as novel ways for many other
interesting and useful applications. Yet, few research has been done in the torch navigation
in manual arc welding process. In this paper, we describe and implement a Kalman-based
framework to estimate the position, traveling speed, and attitude of a torch in manual
welding process. The proposed framework makes use of an inertial navigation system (INS)
mechanization algorithm, a Zero Velocity Update (ZUPT) methodology, and a unscented
Kalman filter (UKF). The proposed measurement employs a low-price miniature wireless inertial
measuring unit (WIMU) consisting of a tri-axial accelerometer, one tri-axial gyroscope and
a magnetometer. The performance of the proposed scheme has been evaluated by welding
simulations with different types of fit-ups. Statistics shows that the position errors are about 1%
of the total traveled distance, which are considered acceptable for the intended manual welding

applications.

Keywords: Torch position measurement, unscented Kalman fitler, Inertial navigation, Zero

velocity update, Manual welding.

1. INTRODUCTION

Arc welding has been developed and refined for years as
one of the most widely used material joining/fabrication
technology. The position, traveling speed and attitude of
the torch are critical parameters which directly determin-
ers weld quality. Desirable welds can only be guaranteed if
the torch is also properly controlled. Inappropriate torch
manipulations cause various weld defects/discontinuities,
such as poor penetration, undercut, porosity, and differ-
ent types of cracks (Raj et al. (2002)-Moreno (2013)).
Thereby, detailed torch manipulations for almost every
welding process have been specified /recommened by both
standardization organizations such as American Welding
Society (AWS) (AWS (2003), AWS (2004)) and by differ-
ent welding-related companies (Lin (1997), ESA (2011),
MIL (2003)).

In robotic welding, the torch is moved by a welding
robot such that the torch navigation parameters (attitude,
traveling speed, and position) are taught and programmed.
However, the teaching process is tedious and not time
efficient for customized, small batch work pieces. A new
teaching strategy can be developed using the proposed
methodology: an experienced welder holds a torch with
a rigidly mounted IMU to move along the target work
piece as if it were in a real welding process. The navigation
parameters, detected by the proposed methodology, can be
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directly utilized in robot weld path teaching thehe process
of which can be thus significantly simplified.

In manual arc welding, a welder cannot master torch
adjusting maneuver without countless hours of practice,
which makes the welder training cycle intolerably long.
The torch navigation parameters can accelerate the weld-
ing training process: A database of welding experts’ per-
formance can be established using those parameters with
other critical welding parameters. Using the database, the
operations of a welding trainee can be compared with the
expert’s performance throughout the practice in real-time,
and the incorrect/unfavorable torch operations can be
identify immediately. Audio or visual indications thus can
be provided as the instant performance feedback through-
out the training practice (Vrt (2012), Teeravarunyou and
Poopatb (2009)).

An inertial measuring unit (IMU) normally contains sev-
eral accelerometers, gyroscopes, and magnetometers. The
size and performance of an IMU are typically linearly
dependent: the smaller the sensor the lower performance is
expected. Microelectromechanical system based on IMUs
are popular, yet they have a significant bias, and thus
accumulate large drifts after integration.

Within the scope of our limited search capability, no lit-
erature has been found for the measurement of torch’s
attitude, traveling speed or position. In this paper, we
describe and implement a Kalman-based framework to
estimate the torch’s navigation parameters (section III).
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The magnetometer and the Zero Angular Rate Update
(ZARU) algorithm are integrated into the Kalman-based
framework to reduce the sensor drift (section IV). Finally,
the extended algorithm is tested in several welding simu-
lations (section V).

2. EXPERIMENTAL SYSTEM

The IMU (Shimmer 9DOF motion sensor: 53mm x 32m-
m X 19mm) used in this study is shown in Fig. 1.
The calibration procedure for the sensors is performed
according to literature Ferraris et al. (1995). /(XY Z) and
*(XY Z) denote the 3-D Cartesian coordinate systems for
the torch and the WIMU, respectively. Axis !Z coincides
with the torch head direction, axis !X coincides with
axis® X . Frame /(XY Z) can be obtained by rotating frame
5(XYZ) around °X axis for an angle, denoted as 0s;.

Fig. 1. The illustration of torch. The WIMU which is
rigidly amounted on the torch handle.

3. THE KALMAN-BASED METHOD
3.1 Inertial Navigation System (INS)

The navigation parameters of the torch (in Fig. 1) can be
calculated using data from the WIMU, i.e., the position
and orientation estimation can be performed using double
integration of the accelerometer data and integration of
angular rate measurements from the gyroscope. Fig. 2
shows the INS process.

3.2 Quaternion based Kalman filter

One can find in Fig. 2 any errors in the initial alignment
or the integration blocks will propagate over time. Thus,
a self-correction mechanism is required in to order to
accurate estimation in the INS. Most of the literature for
INS modeling assumes that all perturbation attitude angle
errors are small. However, in many cases this assumption
does not hold. A Kalman filter mechanism was introduced
to the INS in 1992 (Pham (1992)). This approach used
non-linear variables to describe a heading angle, while the
attitude errors were uncontrolled. The extended Kalman
filter (EKF) is the most widely used approach for non-
linear filter algorithms (Luinge and Veltink (2005), Luinge
and Veltink (2004), Lee and Jung (2009), Schepers et al.
(2010)). However, the implementation difficulty of Jaco-
bians, used to expand the EKF models, is one major
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Fig. 2. INS process

shortcoming of the EKF. In this paper, the unscented
Kalman filter (UKF) is implemented for the INS algo-
rithm. An INS may compute the attitude using Euler
angles, the direction cosine matrix or the quaternions.
In this paper, the quaternion method is chosen since it
requires less computation, gives better accuracy and avoids
singularity (Chou (1992)). Figure 3 shows the main blocks
in the proposed Kalman-based framework for the torch
navigation.
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Fig. 3. The Kalman-based framework use for torch nav-
igation: An unscented Kalman filter that estimates
the navigation parameters related to the INS; a Zero-
Velocity-Update (ZUPT) block that feeds the UKF
with measurement to correct the velocity bias.

The accelerometer and gyroscope reading, in the sensor
body (s) frame of reference, (aj and wj, respectively) are
taken every sample interval T at discrete sampling time
k. The state vector of the proposed UKF is constructed in
equation (1)

T = [qlmaZ?wlia,Ukark] (1)

Besides, the estimated acceleration and angular rate( aj
and w;), the 15-element vector contains the attitude (g),
and the velocity and position (vg and 7). All the these
5 components have 3 elements each, corresponding to a
three-dimensional estimation.
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The torch attitude is presented by a unit quaternion g,
i.e., the attitude accounting for the angular rate w; within
one sampling time interval (Chou (1992)):

qr = exp(wi, x Ty /2) (2)

where exp(-) denotes the quaternion exponential:

[cos([[v]]), v/[|v[| < sin([[v]])] 3)

The quaternion at instant k41 can be expressed using the
quaternion at k instant:

exp(v) =

Q1 = qr @ exp(wy * Ts/2) (4)

where ® is the quaternion product defined as:

a®b=1[a1 a2 as a4 ®[b1 by bz b4

T
a1by — agbs — azbz — asby

a1by + asby + asby — asbs (5)
a163 — a2b4 + (lgbl + a4b2
a1by + azbz — azby + asby

Using a simplified model, the WIMU measurements are
expressed in (6) and (7).

wlf: = S’wwfrue,k + Twwfrue,k + bw + Vw (6)

a’i = Saa’frue,k + Taa;"ue,k: + ba + Vg (7)

where wfme’k and a¢rye are the true value, S, and S,
are the scale-factor matrices; T,, and T, are the non-
orthogonality factor matrices; b,, and b, are the bias; and
v and v, are normally considered as uncorrelated white
Gaussian noises, with a covariance matrix R.

The true acceleration measurement includes two compo-
nents: the sensor acceleration and the gravitation acceler-
ation, as expressed by Eq. 8.

_ s s
Atrue,k = Qsensor,k + 9k (8)

where g7 is the gravitational acceleration in the sensor
frame:

9k = ar ©[0,0,0,9] @ g 9)
q; is the transpose of g, and g is the local gravitation
acceleration.

Since the acceleration of gravity is removed from the sensor
readings, the velocity in the reference frame vy ,_y, prior
to the UKF correction at time:

_ s
Vklk—1 = Vk—1|k—1 + Asensor,k Ts (10)

This velocity is integrated to obtain the torch position in
the reference frame:

Thik—1 = Th—1]k—1 T Vkjk—1 " Ls (11)

To summary (4) to
proposed UKF is:

(11), the process model for the

[z, wi) (12)

where f(-) contains equations from (4) to (11), and wy is
the process noise with a covariance matrix denoted as Q.

Tk+1 =

The measurement model of the UKF can be written:

Zk+1 = h(xk,vk) (13)

where 211 = [w} 1, af, ], and vy = [V, Vo).

Because of the nonlinear nature of the process model,
(12), and the sensor model, the UKF approach is applied
(E.A.Wan and der Merwe (2000)). For the sake of readers’
convenience, the UKF algorithm are summarized below.

Given the estimated state vector Zj_; and its covariance
Py, at instant k—1, an auxiliary vector set {¢; } is defined
by (14).

(\/n—i-)\ (Py— 1—|—Q))
< 7”L+>\ Pk_1+Q)>

t=n-+1,...,2n
(14)

i—mn)

where <\/(n+ A) - (Peo1 + Q)) is the i*" row of the

matrix square root, and A\ = o?(n + k) — n in which «
and k are two scaling parameters.

UKF addresses the approximation of a nonlinear system
by using a minimal set of sample points, i.e., sigma points,
to capture the mean and covariance estimate. The sigma
points set {(xx—1)i} is defined by

(Xk—-1)i = Tk—1 (15)

as 1 =0, and

(Xk—=1)i = Tp—1 + Vs (16)

,2n, and ¢; = [wi\qa ¢i|avwi|w7¢i|va ¢i|7‘]'

After the sigma points {(xx—1):} are obtained, the process
model is used to project each point ahead in time. The
propagation results are shown in (17), and a priori state
estimate is thus obtained in (18).

wheni=1,...

(Xk)l = f((Xk—l)mOvO) for i = 0,...,27@ (17)
iy = Z wm (18)
where weights Wi(m) are defined by
(m) _ A/ (n+X) 1=0 1
Wi {)\/( dn+A) i=1,...om 19

The covariance of (x); is
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Py =" Wi — a1 10w — 35 (20)

i=0
where weights W\ are defined in (21), 3 is a scaling
parameter used to incorporate prior knowledge about the
distribution of state vector x.

W {/\/(n+A)+(1a2+ﬂ) i=0 (21)

t A (2(n+ X)) i=1,...,2n

The results for the projected set {(xx):} in the sensor
model are expressed by

(Yk)i = h((x#)i,0,0) (22)
The measurement estimate can thus be defined in ( 23).

fori=0,...,2n

2n
=D W e (23)
i=0
The a posteriori state estimate is computed using
Tp =12y, +Kk(2k—2k_) (24)

where 2z, is the measurement vector from WIMU, and K,
is the Kalman gain which is defined by

_p . p-1
Ky = Pszkpﬁkﬁk (25)
The cross correlation matrix Fj, ;, and measurement es-

timate covariance P, ;, are expressed in (26) and (27),
respectively.

Piyzy = Z Wz‘(C)[(Xk)i — & (yr)i — 2]
i=0

(26)

2n

Pz =Y WOly)i — 51 (va)i — 21+ R (27)
i=0

The estimated state covariance is updated at instant k by

P, =P, — KyPs 5, Kj (28)

4. METHODS TO REDUCE SENSOR DRIFT

The attitude estimation of the torch can be corrected
against the sensor bias in roll and pitch direction using the
UKF in section III. However, the heading (yaw) drifting is
uncontrolled. To this regard, the magnetometer reading is
incorporated into the measurement model:

bi+1 = bi + U =g @ [07 b} ® QZ + U (29)

where b is the vector of the magnetic field ("north”), v,,
is the measurement noise.

The Zero Velocity Update (ZUPT) and Zero Angular Rate
Update (ZARU) can be implemented and integrated into
the Kalman-based framework only when the torch stays
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still during the welding process for a certain amount time.
Three conditions to declare the torch as still are:

(1) The magnitude of the acceleration, |lai||, must be
between to thresholds (ami, = 9.5m/s% and ayee =
10.5m/s?):

Amin < ||LLZ|| < Amazx (30)
(2) The local acceleration variance, o4, ,must be below a
given threshold (04 = 0.5m/s?):

Car, < Omaz (31)
where )
2 k+n s “5\2
Tar = 5, 1 jzk_n(aj — aj) (32)

where 0;‘;- is a local mean acceleration value.
(3) The magnitude of the gyroscope, ||wg||, must be below

a given threshold (wy,q. = 5°/3):

[will < Wmaz (33)

If the three conditions all holds, then ZUPT and ZARU
are incorporated into the measurement model of the UKF
methodology:

ur, = [0,0,0] (34)

wy, = 10,0,0] (35)

5. EXPERIMENTS AND RESULTS

We have conducted several tests in order to evaluate and
compare the performances of Kalman-based INS algorith-
m, INS + magnetometer, and INS + magnetometer +
ZUPT + ZARU. The WIMU mounted on the torch is
shown in Fig. 1. Two kinds of experiment were conducted:
1) the torch was hold by a welder and smoothly moved
along the 3 axes in a Cartesian coordinate system, as
shown in Fig. 4, as it had been operated in a real welding
act. Traveled distance oz’ = oy’ = 0z’ = 300mm; 2) the
torch was smoothly moved along a 3-D trajectory as shown
in Fig. 5, which is sine curve,y = 150 x sin(27/300), in
a tilted plane (45°to the oxy plane). Traveled distance
oy’ = 300mm. The coordinate y’ = [0, 300, 300]mm. For a
valid application of ZUPT and ZARU, the torch randomly
stopped for a very short time interval (around 100 ms)
during the movement. The sampling time is 20 ms.

5.1 WIMU sensor

The size of the WIMU is about 53 mmx32 mmx19 mm,
as shown in Fig. 1. It is an IMU with wireless capability
which is composed of a tri-axial accelerometer (Freescale
MMA7260Q) , a tri-axial gyro sensor (InvenSense 500
series), a microprocessor (MSP430F1611), and a Bluetooth
unit. The accelerometer is endowed with one filter capaci-
tor in each axis. The gyro sensor contains three vibrating
elements. The magnetometer uses a thin-film magnetore-
sistive principle to measure the earth magnetic field. The
angular rate at each axis is obtained by measuring the
Coriolis acceleration of the corresponding vibrating ele-
ments. The microprocessor captures the sensor data using
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Fig. 4. Illustration of Experiment 1. The torch is smoothly
moved along the three axes in the coordinate system.
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Fig. 5. lllustration of Experiment 2. The torch is smoothly
moved along the 3-D sine curve.

a 12 bit analog-to-digital converter (ADC) at a pre-defined
frequency. The Bluetooth unit transmits the data from the
WIMU to a desktop.

5.2 UKF tuning

The Kalman-based framework had to be well-tuned in
order to obtain a stable operation, by selecting the value of
matrices Qk, Rx and Px_1. The results of the experiments
strongly depend on the selected values for those covariance
matrices, so the tuning process must be conducted such
that a consistent response of the experiments can be
acquired.

The process noise covariance matrix, @, is initialized for
k=1 as diagonal 15 x 15 matrix with the in-diagonal values:
[2 % 107553, 01x3, 013, 1 X 1013, 01x3].

The measurement noise covariance matrix Ry, is a n X
n square diagonal matrix, while n is the number of
measurement available. The settings are: 1 x 10* rad/s
for gyroscope, 1 x 102mm/s? for the acceleration, 0.1 rad
for magnetometer, 0.001 m/s for ZUPT, and 0.1 rad/s for
ZARU.

The state estimation covariance matrix, Py _1, is initialized
also as a diagonal matrix with the in-diagonal elements:
[01x3,1 % 10775, 1 x 103, 3,013, 013

5.8 FExperiment results

It was inevitable that the torch’s trajectory in the exper-
iments did not exactly coincide with the real trajectory
since the torch was hold by a human. The deviation of po-
sition in direction other than the targeted direction/curve
might indicate the human hand uncertainty in holding for
a position due to the inherent neuro latency. The sampling
and transmitting noise may also partially contribute to the
deviations. The distance of the torch’s movement has been
carefully calibrated such that its actually traveled distance
along the targeted direction/curve was accurate enough
(position error < 1 x 10™%mm).

The torch was moved along the 3 axes of the shown in Fig.
4. The estimation results of the torch trajectory along the
x-axis is shown in Fig. 6. It is clearly shown that with
the drift reduction integrated in the Kalman-based INS
algorithm, the position estimation accuracy is significantly
improved.

12 : ; : : . ‘
Real Trajectory u
1t INS |
s INS+Mag
1ol L= INS+Mag+ZUPT+ZARU ip;"“ |
e
j"-""'“"%;w
g of & |
=) 4
5 A
=}
S gl i
e ;«f
= s
S 7F w,(‘" i
éxgm‘

4 L 1 1 L 1 1 L
0 50 100 150 200 250 300 350 400
X Direction/ mm

Fig. 6. The results of torch trajectory position estimation
using different algorithms in Experiment 1.

Six trials were repeated for each direction of torch move-
ment. The average measurement errors over the total trav-
eled distance (TTD) are listed in table 1.

Table 1. Measurement errors in Experiment 1

Estimation methods Position error (% of TTD)

Kalman-based INS > 20
INS+magnetometer [5-15]
INS+magnetometer+ZUPT+ZARU [0.4-1.2]

Six trails were repeated for the second experiment as
shown in Fig. 5. The estimation result in one trail is shown
in Fig. 7.

The position measurement errors obtained from Experi-
ment 2 using different estimation methodologies are listed
in Table 2.

6. CONCLUSION

An innovative Kalman-based framework for torch’s atti-
tude and position measurement is developed in this paper.
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Fig. 7. The results of the torch trajectory position estima-
tion using different algorithms in Experiment 2.

Table 2. Positioning errors in Experiment 2

Estimation methods Position error (% of TTD)

Kalman-based INS > 25
INS+magnetometer [7-16]
INS+magnetometer+ZUPT+ZARU [0.5-1.7]

Since the study is restricted to use an WIMU sensor alone,
i.e., without using any external infrastructure such as G-
PS, LPS, or building-maps to correct the sensor drift. The
proposed methodology can thus be conveniently adapted
into an arc welding process or a welder training system.

The proposed methodology in this paper includes a
Kalman-based INS algorithm with the integration of mag-
netometer, ZUPT and ZARU. The results verified the
effectiveness of the proposed methodology. The position
measurement error is typically about 1% of the total trav-
eled distance.

Future work will be directed to utilize the proposed
method to develop an innovative welding robot teaching
and programming strategy.
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