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Abstract: Existing Visible Light Communication (VLC) methods can recover each LED’s
on-off status only after its projection location is identified on each image. Identifying the
LED projection is challenging because: 1) Clutter and noise corrupt the measurements; 2)
The LED status will be “off” in some frames; 3) The predicted projection location sequence
depends on the estimated vehicle state trajectory, which is uncertain. This article presents a new
method determining the q most probable data and LED position sequences simultaneously, using
Bayesian multiple hypothesis tracking (MHT) techniques by maximizing posterior probabilities.
This article focuses on the VLC data and LED position sequence extraction, that includes vehicle
state estimation. The MHT based algorithm is demonstrated by the simulation results.
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1. INTRODUCTION

LED illumination sources have long operational life, low
power consumption, and are mechanically robust, leading
to their growing popularity. The multifunctional capa-
bilities of LED’s are attracting increasing attention. For
example, their fast switching rates (> 100MHz) enables
LED’s installed for illumination to also be used for commu-
nication and positioning, see Kavehrad (2007). Communi-
cation systems using LED’s and either cameras or linear
arrays have been introduced in Nagura et al. (2010); Liu
et al. (2011); Arai et al. (2008); Zheng et al. (2013a).

A VLC imaging array (camera or linear) collects all
the light incident on its active element, including both
the signal and background light, which after processing
provides a data stream including the LED ID. The LED
data is modulated using as on-off keying (OOK) scheme.
Recovering the LED data requires extracting the “on” and
“off” sequence of the LED from a record of consecutive
scans. A camera traversing a region with blinking LED
acquires a sequence of images, each potentially containing
a high intensity set of pixels for each on LED. Camera
motion causes each LED’s projected position to move
across the imaging array. Extraction of the data requires
this projected LED trajectory and flashing sequence to
be extracted. Fig. 1 depicts two such LED trajectories
and data sequences as might be extracted from an image
sequence.

The challenge in this process is to accurately predict the
LED location in each image, because the navigation state
is uncertain. For each LED and each image, based on
the navigation state and uncertainty estimates, a likely
detection region can be computed and searched. However,
due to the clutter and noise, multiple potential measure-
ments may appear in this search region. This can be the
case even when the LED is off. Multiple detections results
in a multiple hypothesis data association problem, see
Elfring et al. (2010). If a false measurement is associated
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Fig. 1. Two LED trajectories and data sequences illus-
trated on an image plane

to the LED, then incorrect data or ID may be recovered
so that the navigation state will not be updated. If this
happens for several time steps, poor state estimates may
result, causing the search area to grow, which exacerbates
the data association challenges. It could be even worse
when a correct ID is recovered, as it would associate a
false measurement to the identified LED. Trusting a false
measurement could cause incorrect state estimation.

When multiple detections exist within the search area,
the data association problem could be solved by choosing
the measurement that is closest to the predicted measure-
ment position in Mahalanobis sense, see Maesschalck et al.
(2000). This method does not work in this application,
among other issues, it fails in the presence of noise or clut-
ter when the LED is off. Another method that accounts for
the null hypothesis (the LED is off) can be implemented
using the probabilistic data association filter, as in Bar-
Shalom et al. (2009). Though this method works in theory,
there is a very low probability to obtain a correct data
sequence when it is long. A Viterbi based algorithm is
proposed in Zheng et al. (2014) for a linear array when
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the sensor is stationary or moving with a bandwidth that
is low relative to the imaging rate. Even though the LED
switching frequency can be modulated up to hundreds of
megahertz, sometimes we still prefer to utilize a low rate
sensor (i.e., 30Hz) such as a webcam or a cellphone camera
to receive the data using undersampling methods Robert
(2013). In such a case, the low rover bandwidth assumption
for the algorithm in Zheng et al. (2014) is not valid.

More sophistic methods can be developed using MHT
methods, see Reid (1979); Bar-Shalom et al. (2005);
Kurien (1990). MHT uses a deferred-decision approach in
which they maintain the complete set of possible data asso-
ciations within a sliding window, putting off hard decisions
as long as possible, see Frank et al. (2012). Decisions are
made by evaluating the probabilities of each sequence of
data association hypotheses. Since the number of possible
sequences increases exponentially, it is expensive to keep
all of them. It is also inefficient to compute the proba-
bilities of all possible sequences and then discarding most
of them. To solve these problems, an efficient Hypothesis
Oriented MHT (HOMHT) was firstly proposed in Cox and
Hingorani (1996). The basic idea of this method is to keep
only the q best sequences, discarding the other sequences
that have low probability.

In this paper, we reformulate the LED ID recovery prob-
lem as a HOMHT problem to improve the probability
of obtaining the correct ID in a computationally efficient
manner. The solution to this problem provides both the
data sequence and the sequence of LED projection lo-
cations on the image. This information is useful for the
vehicle state trajectory estimation.

This paper is organized as follows: Section 2 defines
the predicted region and data association hypothesis,
and formulates the problem mathematically. Section 3.1
analyzes the posterior probability of the joint hypothesis.
Section 3.2 introduces the implement method obtaining q-
best hypotheses. Section 4 shows the experimental results.

2. PROBLEM FORMULATION

The photo-detector is assumed to be part of a rigid system
with kinematic state (i.e., position, velocity, attitude)
denoted by x(t). We will refer to this rigid system as a
rover. The rover trajectory evolves over time according to

ẋ = f (x, u) , (1)

where f is a known nonlinear mapping and u is the system
input. In our navigation system, the input u represents
the rover’s motion information, which is measured by an
encoder or inertial measurement unit (IMU).

The l-th LED at location Fl projects onto the rover photo-
detector at position zl(t) = h(x(t), Fl) at time t, where the
projection function h is defined in Zheng et al. (2013b)
(camera) and Zheng et al. (2013a) (linear array). Each
LED is switching its “on” or “off” status to communicate
information to the rover.

Given a time interval λ ∈ [ts, t], the projected position of
the l-th LED zl(λ) defines a trajectory across the photo-
detector. Detection of the projected LED position depends
on the LED “on” or “off” status, as well as environmental

conditions and interference from other light sources. The
accuracy of each LED’s recovered on-off status is highly
dependent on the accuracy of the data association at each
time step. Therefore, the data recovery and trajectory
estimation problems are coupled. Improvement in the
solution of either problem enhances the solution of the
other.

The purpose of this article is to develop an algorithm that
simultaneously estimates the most likely data association
sequences and navigation system state for each time inter-
val λ ∈ [ts, t]. Without loss of generality, we define ts = 0
and the total number of time steps in the interval is K.

2.1 Predicted Measurement Region

The computer calculates an estimate x̂ of x according to
˙̂x = f (x̂, û), where û is the measurement of u. Define
δx = x − x̂ as the state error. The value of δx at each
time is unknown; however, its linearized discrete-time state
transition is modeled as

δx(k) = Φk−1δx(k − 1) + ωk−1, (2)

where Φk−1 is the state transition matrix from time step
k−1 to time step k, and ωk−1 ∼ N (0, Qk−1) is the process
noise. Methods to compute Φk−1 and Qk−1 are presented
in Section 7.2.5.2 of Farrell (2008). The state covariance
Pk evolves over time according to Pk = Φk−1Pk−1Φ

⊤
k−1 +

Qk−1.

Given the state estimate at time step k, it is straightfor-
ward to compute both the predicted measurement position
of the l-th LED ẑl(k) and its error covariance Sl(k), where

ẑl(k) = h(x̂(k), Fl), (3)

Sl(k) =Hl,kPkH
⊤
l,k +Rl,k, (4)

where Hl,k is the linearized measurement matrix, and Rl,k

is the covariance of measurement noise, both of which are
defined in Zheng et al. (2011). The quantities ẑl(k) and
Sl(k) define a prior distribution for the LED trajectory
that can focus the algorithm. A region in the measurement
space for the l-th LED can be defined as

Vl,γ(k), {z : (z(k)− ẑl(k))
⊤S−1

l (k)(z(k)− ẑl(k)) ≤ γ}
= {z : rl(k)⊤S−1

l (k)rl(k) ≤ γ}, (5)

where rl(k) = z(k) − ẑl(k) is the residual and γ is a
parameter that determines the probability that the real
measurement falls in Vl,γ(k). For the camera and linear
array measurement, the region Vl,γ represents the interior
of an ellipse and segment, respectively. In the following,
without loss of generality, we only consider a single LED in
its predicted region Vl,γ ; therefore, we drop the l subscript.
The parameter γ is selected using a χ2-distribution table.
In the examples to follow, γ is selected such that the
probability that the residual falls within Vl,γ is 0.997.

2.2 Data Association Hypothesis

The set of measurements that fall into the predicted region
Vl,γ at time step k are
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Z(k) , {zj(k)}mk
j=1, (6)

where zj(k) is the position of j-th detection and mk is
the total number of them. Since each or none of the
measurements in this set could have originated from the
LED, the number of data association hypotheses is (mk +
1). Suppose there are total of K time steps, the state
estimates {x̂(k)}Kk=1 and its covariance matrix {Pk}Kk=1 are
calculated based on the inputs UK = {u(k)}Kk=1 and prior
state distribution x(0) ∼ N (x̂(0), P0). Then the predicted
region at each time step is calculated by eqns. (3-5), and
the measurements that fall into Vγ are extracted. We also

define Zk , {Z(j)}kj=1, as the set of measurements up
to time step k. Since there are total of K time steps, the
number of joint data association hypotheses is

LK =
K∏

k=1

(mk + 1). (7)

Each data association sequence corresponds to a LED
trajectory across the detector, which in turn decodes a
sequence of detection and nondetection events into an ID
sequence.

A symbol θk,ℓ, where ℓ ∈ [1, Lk], represents a specific list
of joint data association hypotheses up to time step k. For
example, a hypothesis θk,ℓ has the form

θk,ℓ = {j1, j2, · · · , ji, · · · , jk}, (8)

where ji ∈ [0,mi]. The symbol θk,ℓ(i) = j represents
that the j-th detection at time step i is originated from
the LED and θk,ℓ(i) = 0 represents that none of the
measurements at time step i is originated from the LED.
We say the joint hypothesis θk,ℓ is an extension of θk−1,s, if
θk,ℓ = {θk−1,s, jk} where jk ∈ [0,mk]. Herein, the symbol
ℓ and s in the superscribe of θ are not necessarily identical,
since the two hypotheses are enumerated independently at
different time steps. Note that each joint data association
hypothesis includes a potentially distinct posterior vehicle
trajectory.

2.3 Technical Problem Statement

Given the measurement set, we would like to find the most
probable joint data association hypotheses (i.e. q-best
hypotheses {θK,ℓ}qℓ=1). After these hypotheses are found,
their corresponding ID sequences are straightforward to
recover. By comparing each of the recovered ID with
the predicted ID, the most probable data association
hypothesis with correct ID is found and used for the
navigation state update. The advantage of finding q-best
hypotheses instead of only the most probable one is,
several candidate hypotheses indicate more chances to
recover the correct ID.

The problem is state as: Given measurements ZK and
navigation system inputs UK , find the q-best joint data
association hypotheses {θK,ℓ}qℓ=1 among the total number
of LK hypotheses, where q-best means the q hypotheses
that maximize the hypothesis posterior probability.

3. METHOD

We firstly evaluate the posterior probability mass function
(pmf) of a joint data association hypothesis up to time

step k. We assume that the measurements due to clutter
are uniformly distributed in the predicted region Vγ .

3.1 Hypothesis Probability

The joint probability of an association hypothesis up to
time step k ∈ [1,K] is

p
(
θk,ℓ | Zk, Uk−1

)
=

1

c
p(θk,ℓ, Z(k) | Zk−1, Uk−1)

=
1

c
p(Z(k) | θ(k), θk−1,s, Zk−1, Uk−1) · (9)

p(θ(k) | θk−1,s, Zk−1, Uk−1)p
(
θk−1,s | Zk−1, Uk−2

)
,

where the normalization factor c = p
(
Z(k) | Zk−1, Uk−1

)
is independent of the data association hypothesis θk,ℓ.

The first term in the right hand side (RHS) of eqn. (9)
is the joint probability of the current measurement posi-
tion distribution given the hypotheses, measurements and
inputs of all the previous time steps. Since the different
measurements in set Z(k) are independent, it is decom-
posed as

p(Z(k) | θk,ℓ, Zk−1, Uk−1)

=

mk∏
j=1

p(zj(k) | θk,ℓ, Zk−1, Uk−1) =

mk∏
j=1

f(j). (10)

The measurements due to clutter or false alarm are as-
sumed to be uniformly distributed in the predicted region,
while the one from LED is assumed to be corrupted by
Gaussian noise. Therefore, we have

f(j) =

{
1

V
for clutter,

N (zj(k); ẑ
s(k), Ss(k)) for the LED,

(11)

where V is the volume (area) of predicted region. The
predicted measurement position and its error covariance
under the hypothesis θk−1,s are represented as ẑs(k) and
Ss(k)), respectively. Note that this step includes state
estimation.

The second term of eqn. (9) is the prior probability of the
association hypothesis, and is given by

p(θ(k) | θk−1,s, Zk−1, Uk−1)

=


1

mk
PonµF (mk − 1) for θ(k) = 1 · · ·mk,

(1− Pon)µF (mk) for θ(k) = 0,

(12)

where Pon is the probability that the LED is on. In eqn.
(12), the number of measurements due to clutter and false
alarms is modeled as a Poisson process, see Bar-Shalom
et al. (2005), with distribution function µF parameterized
by λ:

µF (ϕ) = exp−λV (λV )ϕ

ϕ!
. (13)

Let βk,ℓ = p(θk,ℓ | Zk, Uk−1) denote the posterior pmf of
θk,ℓ in eqn. (9). Substituting eqn. (10) - (13) into eqn. (9)
and combining the constants into c′, the probability is
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βk,ℓ =


1

c′
N k−1,s(zj(k))Ponβ

k−1,s for θ(k) = j ̸= 0

1

c′
λ(1− Pon)β

k−1,s for θ(k) = 0,

(14)

where N k−1,s(zj(k)) = N (zj(k); ẑ
s(k), Ss(k)), and c′ = c ·

eλV ·mk! · λ1−mk .

From eqn. (14), the marginal likelihood function for the
hypothesis that the j-th measurement at time step k has
originated from the LED is

Ls,j(k) = N k−1,s(zj(k))Pon, (15)

and the marginal likelihood function for the hypothesis
that no measurement at time step k is from the LED is

Ls,0(k) = λ(1− Pon). (16)

Then the probability that hypothesis θ(k) = j is the
extension of joint hypothesis θk−1,s is

p(θ(k) = j | Zk, θk−1,s, Uk−1) =
Ls,j(k)∑mk

i=0 Ls,i(k)
. (17)

3.2 q-best Hypotheses

Computing the probability of all possible hypotheses and
then discarding most of them is inefficient. Only those
hypotheses having relatively high probability are consid-
ered to be the candidate LED paths. An efficient method
to implement the hypothesis based MHT (HOMHT) was
first introduced in Cox and Hingorani (1996). The basic
idea of this method is to only keep the q-best hypotheses,
discarding the hypotheses that have lower probability. This
method employs Murty’s algorithm Murty (1968) to find
the j-th best hypothesis solution.

Given the q-best hypotheses {θk−1,i}qi=1 up to the former
step and their corresponding probabilities {βk−1,i}qi=1, and
the measurement set Z(k), the new q-best hypotheses
{θk,i}qi=1 up to the current time step will be generated.
Define θk−1,i to be the parent hypothesis of θk,j , if the
latter is the extension of the former. Choosing the single
hypothesis jk at time step k is the process of generating
the extension of θk−1,i. The best extension of θk−1,i is
defined as θk,i1 = {θk−1,i, jk} where jk = argmaxj Li,j .
The notation i1 in the superscribe of θk,i1 means that
this hypothesis is the most probable extension of θk−1,i.
The best extension corresponds to the hypothesis having
maximum marginal likelihood.

To generate the q-best joint hypotheses up to current time
step k, firstly each hypothesis θk−1,i generates its best
extension according to eqns. (15) and (16). These new joint
hypotheses are ordered according to their probabilities and
stored in the ordered list HYP-LIST. Their probabilities
are calculated according to eqn. (14) and stored in PROB-
LIST.

Secondly, for each hypothesis in HYP-LIST, use its parent
hypothesis to generate the j-th (j = 2, 3, · · · ) best exten-
sion. If the probability of this extension is higher than
the lowest probability in PROB-LIST, add it to HYP-
LIST and the corresponding probability to PROB-LIST,

and delete the hypothesis with lowest probability from
HYP-LIST and its corresponding probability from PROB-
LIST. If the probability of this extension is lower than
the lowest probability in PROB-LIST, stop generating new
extensions by its parent hypothesis. After these processes,
we finally obtain the q-best hypotheses up to current time
step. The algorithm is described in Tab. 1.

Table 1. q-best hypotheses algorithm

Input: q-best hypotheses up to former time step {θk−1,i}qi=1
and their corresponding probabilities {βk−1,i}qi=1
current measurement set Z(k)

Output: q-best hypotheses up to current time step {θk,i}qi=1
and their corresponding probabilities {βk,i}qi=1

1. Initialize HYP-LIST and PROB-LIST

HYP-LIST, {θk,i1}qi=1
θk,i1 , {θi,1(k), θk−1,i}
θi,1(k) = argmax

θ(k)
p(θ(k) | Zk, θk−1,s, Uk−1)

2. Order the hypotheses in HYP-LIST according to their
probabilities

3. for i = 1 : q
If the j-th best new hypothesis generated by θk−1,i

is still in HYP-LIST, then generate its (j + 1)-th
best new hypothesis.

If the probability of the new hypothesis is higher
than the lowest probability in PROB-LIST, then
add it into the list and delete the hypothesis with
the lowest probability.

If not, break.
end

4. RESULTS

The rover’s position in the navigation frame is represented
by the vector (n, e, d) of north, east and down coordinates.
In the simulation, we assume that the rover moves in a 2-D
plane where d = 0. In this case its position and pose can be
fully described by the state vector (n, e, ψ) where ψ is the
rover’s yaw angle. Encoders attached to each rear wheel
measure the wheel rotation, which allows computation of
the rover speed u and angular rate w.

For the simulated experiment, the vehicle is moving for-
ward with velocity u = 1m/s and a yaw angle of 0o in the
vicinity of the origin. In Fig. 2, the green and blue lines
represent the prior estimate and true value of the state tra-
jectory during the first second, respectively. The estimated
state trajectory is computed based on the prior knowl-
edge of x(0) and the systems inputs UK . The trajectory
estimate in Fig. 2 is not updated by any photo-detector
measurement during its time interval. The encoder and
photo-detector work at 1KHz and 10Hz rates, respectively.
The green asterisks ∗ in the figure represent the times
when a photo-detector measurement occurs. The red line
in Fig. 2 represents three times the standard deviation of
the state error. Since the encoder measurements cannot
perfectly reproduce the rover speed and angular rate, the
state error covariance of the prior state grows with time.
The length of LED ID recovery circle is 1s, so there are
total of 11 photo-detector time steps.

The following results show the LED ID recovery by a
camera. The LED is located at (2.797,−1.500,−1.500)m.
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Fig. 2. Navigation state information: Ground truth (blue),
Prior trajectory (green), and 3-σ error regions (red)

Fig. 3 shows the camera measurements versus time. The
green asterisks represent the a priori prediction of the LED
projection location, based on the prior state trajectory
estimate. The red line represents three times the standard
deviation of the measurement error. Each blue dot is a
clutter measurement that falls into the uncertainty ellipse
(predicted region), and the magenta dot is the true LED
measurement. From the figure, the LED’s on-off sequence
is {1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0}. Fig. 4 shows the uncertainty
ellipse and measurements in the two images that are
sampled at time 0 and 0.7s, respectively. The figure shows
that the predicted LED projection location errors along
the two directions are correlated.
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Fig. 3. Camera measurements: Predicted position (green
asterisk), Clutter or noise measurement (blue dot),
LED measurement (magenta dot), and 3 − σ error
regions (red line)

At each measurement time, the detected potential LED
projection locations that fall into the uncertainty ellipse
are enumerated and stored in the measurement set. The
upper left image of Fig. 5 shows the measurements and
the prior uncertainty ellipse at time k = 0. Since there are
three measurements in the ellipse, four data association
hypotheses can be generated. Using each data association
hypothesis to update the state estimate and then repredict
the LED projection location based on each of them, the re-
sults are shown in the upper right image of Fig. 5. The ma-
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Fig. 4. Camera image plane measurements at time 0 (left)
and 0.7s (right)

genta “+” symbol represents the predicted LED projection
location after updating the state by a hypothesis, and the
corresponding magenta ellipse represents its uncertainty.
The bottom right image of Fig. 5 shows the predicted
LED projection locations at the second measurement time
t = 0.1s corresponding to the four hypotheses. At the
second measurement step, two potential LED projection
locations are measured, which indicates there will be total
of 12 hypotheses up to this step. Only the 5 most probable
hypotheses are kept and shown in the bottom left image.

Fig. 5. The process of the algorithm in the first two steps

At t = 1, the best 5 hypotheses sequences returned by the
algorithm are:

{0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0}, with p = 0.74,

{1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0}, with p = 0.12,

{3, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0}, with p = 0.06,

{3, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0}, with p = 0.04,

{3, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0}, with p = 0.04,

where 0 represents null, 1 represents the LED detection,
and any value greater than 1 represents an erroneous noise
or clutter detection. Therefore, the true data association
hypothesis sequence is {1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0}, which is
the second best hypothesis with a probability 0.12. Even
though it is not the top candidate, the fact that it is
always amongst the top candidates, yields reliable data
extraction, once the ID and checksum are checked.
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Fig. 6 shows a histogram of the position error norm
(top) and absolute yaw error (bottom) for the prior and
posterior estimates from a simulated experiment with the
vehicle in motion. The histogram includes 1000 samples.
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Fig. 6. Prior state estimate error (blue) and posterior state
estimate error (red)

5. CONCLUSION AND FUTURE WORK

This paper has developed and presented an LED path
recovery algorithm that is applicable to either a camera
and linear array, whether the photo-detector is moving or
stationary. This algorithm has utility in VLC applications,
particularly with the problem of accurately and reliably
extracting a data sequence communicated by an LED to
a camera or linear array. This approach is based on the
MHT. The presentation included analysis and discussion of
the hypothesis probability model and measurement model.
This article has focused on processing of a single LED. The
situation when a measurement can fall into multiple LEDs’
uncertainty ellipse is not considered. Future work will
consider the approach that associates the measurements
to multiple LEDs’ jointly.

When multiple LED’s data association are jointly consid-
ered, each LED’s data association hypothesis at a time
step not only depends on its own former association hy-
potheses, but also other LEDs’ association hypotheses.
This could greatly increase the complexity of the assign-
ment of the measurements to the LED’s. This could be ad-
dressed by efficient assignment algorithms such as Auction
Bertsekas (1988) and JVC algorithm Jonker and Volgenant
(1987). Finally, on-robot in-lab testing and demonstration
of these methods are underway.
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