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Abstract: For a 3-link planar robot moving in the vertical plane with a single actuator, this
paper studies the effect of its actuator configuration from the perspective of the energy-based
control. For the control objective of simultaneous stabilization of the actuated variable and
of the desired level of the total mechanical energy of the robot corresponding to those of the
upright equilibrium point, where all three links of the robot are in the upright position, this
paper presents an energy-based controller for three configurations of the single actuator in a
unified way. Moreover, this paper carries out a global motion analysis of the robot with a single
actuator at joint 1 or 2 under the presented controller. Specifically, this paper shows that the
control objective is achievable for the robot with the actuator at joint 1 for almost all initial
conditions of angular displacements and velocities without any condition on the mechanical
parameters of the robot, and the control objective is achievable for the robot with the actuator
at joint 2 for almost all initial conditions provided that another condition on the mechanical
parameters of the robot is satisfied. The numerical simulation shows that the presented control
can be applied to the swing-up and stabilizing control for a physical 3-link robot with a single
actuator at joint 1 or 2.

Keywords: Underactuated robotic systems, two passive joints, robot control, nonlinear control,
controllability, motion analysis, Lyapunov stability.

1. INTRODUCTION

The last two decades have witnessed considerable pro-
gresses in the study of underactuated robotic systems, see,
e.g., Spong [1995], Reyhanoglu et al. [1999], Jiang [2002],
Fang et al. [2012]. One of the most important control prob-
lems for underactuated robots with passive (unactuated)
joint(s) is the set-point control (regulation or stabiliza-
tion) of a desired equilibrium point of the robots, that
is, to find a feedback control law that makes the desired
equilibrium point asymptotically stable. Many researchers
studied a particular problem of the set-point control called
the swing-up and stabilizing control (Furuta et al. [1991],
Spong [1995], Fantoni et al. [2000], Kolesnichenko and
Shiriaev [2002], Ma and Su [2002]). Indeed, the swing-up
and stabilizing control is to swing a planar robot to a small
neighborhood of the UEP (upright equilibrium point) and
then balance it about that point, where all links are in the
upright position. The swing-up and stabilizing control for
various kinds of 2-DOF (degree-of-freedom) systems has
been solved by the energy-based control, see, e.g., Fantoni
et al. [2000], Kolesnichenko and Shiriaev [2002] regarding

⋆ This work was supported in part by a Grant-in-aid Scientific
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the Pendubot, and Xin and Kaneda [2007] regarding the
Acrobot.

Although there are many results for mechanical systems
with underactuation degree one (Grizzle et al. [2005],
Acosta et al. [2005]), that is, the number of control inputs
is one less than that of degrees of freedom, designing and
analyzing controllers for mechanical systems with under-
actuation degree greater than one is still a challenging
problem. In this paper, we study a 3-link planar robot
moving in the vertical plane with a single actuator, that
is, a robot with underactuation degree two. Specifically,
we investigate the effect of its actuator configuration from
the perspective of the energy-based control. We say a joint
of a robot is active (A) if it is actuated and is passive (P)
if it is unactuated. The APP robot, PAP robot, and PPA
robot denote the robot with the actuator at the joints 1,
2, and 3, respectively. These robots are three cases of the
failure of two actuators of the 3-link planar robot.

For the 3-link planar robot with a single actuator, we study
whether we can achieve the control objective of simultane-
ous stabilization of the actuated variable and of the desired
level of the total mechanical energy of the robot corre-
sponding to those of the UEP by using the energy-based
control proposed in Fantoni et al. [2000], Kolesnichenko
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and Shiriaev [2002]. We present an energy-based controller
for three configurations of the single actuator in a unified
way. Moreover, we present a global motion analysis of the
APP and PAP robots under the controller and present
some conditions on control gains for achieving the control
objective. For the APP robot, we show that the control
objective is achievable for almost all initial conditions
without any condition on the mechanical parameters of
the robot. However, for the PAP robot, we show that it is
achievable for almost all initial conditions provided that
another condition on the mechanical parameters of the
robot is satisfied. In this way, we show two differences
between the APP and PAP robots from the perspective
of the energy-based control.

Finally, when the control objective of the energy-based
control is achieved, it has been proved that the underactu-
ated robots with underactuation degree one can be swung-
up to any arbitrarily small neighborhood of the UEP due
to tracking homoclinic orbits of these robots, see, e.g.,
Fantoni et al. [2000], Kolesnichenko and Shiriaev [2002],
Xin and Kaneda [2007]. However, different from this fact,
it is unclear theoretically whether there exists time such
that one of the APP and PAP robots can be swung up
close to the UEP. This shows a limitation of using the
energy-based control to solve the swing-up and stabilizing
control for underactuated robots with underactuation de-
gree two. From numerical simulation investigations to the
physical 3-link robot in Nishimura and Funaki [1998], we
find that by choosing control gains appropriately each of
the APP and PAP robots can be swung up close to the
UEP for achieving a successful switch to a local stabilizing
controller for balancing at the UEP.

2. PRELIMINARY KNOWLEDGE

Consider a 3-link planar robot with a single actuator
shown in Fig. 1. For link i (i = 1, 2, 3), mi is its mass,
li is its length, lci is the distance from joint i to its center
of mass (COM), and Ji is the moment of inertia around
its COM, θi is the angle measured counter-clockwise from
the positive Y -axis.
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Fig. 1. 3-link planar robot.

In this paper, to simplify notations, for i, j = 1, 2, 3, we
use Si = sin θi, Ci = cos θi, Sij = sin(θi − θj), and
Cij = cos(θi − θj). The motion equation of the robot is

M(θ)θ̈ +H(θ, θ̇) +G(θ) = Wτ, (1)

where θ = [ θ1, θ2, θ3 ]
T
and

M =

[
α11 α12C21 α13C31

α12C21 α22 α23C32

α13C31 α23C32 α33

]
, (2)

H =

 0 −α12θ̇2S21 −α13θ̇3S31

α12θ̇1S21 0 −α23θ̇3S32

α13θ̇1S31 α23θ̇2S32 0

 θ̇, (3)

G =

[−β1S1

−β2S2

−β3S3

]
, (4)

with

W =


[ 1, 0, 0 ]

T
, the APP robot

[ 0, 1, 0 ]
T
, the PAP robot

[ 0, 0, 1 ]
T
, the PPA robot

, (5)



α11 = J1 +m1l
2
c1 + (m2 +m3)l

2
1,

α22 = J2 +m2l
2
c2 +m3l

2
2,

α33 = J3 +m3l
2
c3,

α12 = (m2lc2 +m3l2)l1,
α13 = m3l1lc3,
α23 = m3l2lc3,

(6)

{
β1 = (m1lc1 +m2l1 +m3l1)g,
β2 = (m2lc2 +m3l2)g,
β3 = m3lc3g,

(7)

where g is the acceleration of gravity.

The total mechanical energy of the robot is

E(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ + P (θ), (8)

where P (θ) is its potential energy defined as

P (θ) = β1C1 + β2C2 + β3C3. (9)

3. DESIGN OF ENERGY-BASED CONTROLLER
FOR 3-LINK ROBOT WITH A SINGLE ACTUATOR

In this section, we apply the energy-based control design
procedure in Fantoni et al. [2000], Kolesnichenko and
Shiriaev [2002] to design a controller for three different
configurations of a single actuator of the 3-link robot.
Consider the following UEP:

θ = 0, θ̇ = 0. (10)

Let Er be the potential energy of the robot at the UEP.

Er = E(θ, θ̇)
∣∣∣
θ=0, θ̇=0

= β1 + β2 + β3. (11)

Since the actuated angular displacement can be expressed
as WTθ (which is a scalar), the control objective is to
design τ such that

lim
t→∞

E = Er, lim
t→∞

WTθ̇ = 0, lim
t→∞

WTθ = 0. (12)

The Lyapunov function candidate is

V =
1

2
(E − Er)

2 +
kD
2
(WTθ̇)2 +

kP
2
(WTθ)2, (13)

where scalars kD > 0 and kP > 0 are control parameters.
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Using Ė = WTθ̇τ , we obtain the time-derivative of V
along the trajectories of (1) as follows:

V̇ = WTθ̇
(
(E − Er)τ + kDWTθ̈ + kPW

Tθ
)
. (14)

If we can find τ such that

(E − Er)τ + kDWTθ̈ + kPW
Tθ = −kV W

Tθ̇, (15)

for kV > 0, then

V̇ = −kV (W
Tθ̇)2 ≤ 0. (16)

To investigate under what condition (15) is solvable

with respect to τ for any (θ, θ̇), we obtain θ̈ from

(1) and substitute it into (15). This yields Λ(θ, θ̇)τ =

kDWTM−1(θ)(H(θ, θ̇)+G(θ))−kV W
Tθ̇−kPW

Tθ, where

Λ(θ, θ̇) = E(θ, θ̇)− Er + kDWTM−1(θ)W. (17)

Hence, when

Λ(θ, θ̇) ̸= 0, for ∀(θ, θ̇), (18)

we obtain

τ = Λ−1
(
kDWTM−1(H +G)− kV W

Tθ̇ − kPW
Tθ

)
.(19)

By using LaSalle’s invariant principle Khalil [2002], we can
obtain the following lemma.

Lemma 1. Consider the closed-loop system consisting of
the robot (1) and the controller (19). Suppose that kD > 0,
kP > 0, and kV > 0. Then, the controller (19) has no

singularities for any (θ, θ̇) if and only if

kD > kDm = max
θ

(
(Er − P (θ))(WTM−1(θ)W )−1

)
(20)

holds. In this case,

lim
t→∞

V = V ∗, lim
t→∞

E = E∗, (21)

lim
t→∞

WTθ = a constant, lim
t→∞

WTθ̇ = 0, (22)

where V ∗ and E∗ are constant. Moreover, as t → ∞, every
closed-loop solution, (θ(t), θ̇(t)), approaches the invariant
set

Ξ =
{
(θ, θ̇)

∣∣∣ E(θ, θ̇) ≡ E∗, WTθ ≡ a constant
}
, (23)

where “≡” denotes that an equality holds for all time t.

4. GLOBAL MOTION ANALYSIS

We analyze the motion of the APP and PAP robots to
characterize the invariant set Ξ in (23) by studying two
cases of E∗ ̸= Er and E∗ = Er, separately. Consider

an equilibrium configuration θe = [ θe1, θ
e
2, θ

e
3 ]

T
under

equilibrium torque τe. From (15) (from which we derived
the controller (19)) and (1) with E(θe, 0) ≡ P (θe) and
θ ≡ θe, we obtain

(P (θe)− Er)τ
e + kPW

Tθe = 0, (24)

G(θe) = Wτe. (25)

4.1 APP Robot

Regarding the APP robot with W = [ 1, 0, 0 ]
T
, from (24)

and (25), we obtain

β1(Er − P (θe)) sin θe1 + kP θ
e
1 = 0, (26)

θei = 0 or π (mod 2π), i = 2, 3. (27)

Define

Ωapp = {(θe, 0) | θe satisfies (26), (27), P (θe) ̸= Er} (28)
and

Sapp =
{
(θ, θ̇)

∣∣∣ E(θ, θ̇) ≡ Er, θ1 ≡ 0
}
. (29)

We present the following theorem.

Theorem 1. Consider the closed-loop system consisting the
APP robot described by (1) and the controller (19). Sup-
pose that kD satisfies (20), kP > 0 and kV > 0 hold.

Then, as t → ∞, every closed-loop solution, (θ(t), θ̇(t)),
approaches the invariant set:

Ξapp = Ωapp ∪ Sapp, (30)

where Ωapp (corresponding to E∗ ̸= Er with E∗ be the
convergent value of E defined in Lemma 1) and Sapp

(corresponding to E∗ = Er) are defined in (28) and (29),
respectively.

If one of the equilibrium points in Ωapp is stable, then the
control objective (12) can not be achieved. Regarding Ωapp

defined in (28), θe1 = 0 satisfies (26) for any kP . We find
a condition on kP such that (26) has a unique solution
θe1 = 0 for all θe2 and θe3 in (27). This yields that Ωapp

in (28) just contains the up–up–down, up–down–up, and
up–down–down equilibrium points defined in

Ωapps = {(θe, 0) | θe ≡ (0, 0, π), (0, π, 0), (0, π, π)} . (31)

We present another main result of this paper.

Theorem 2. Consider the closed-loop system consisting the
APP robot described by (1) and the controller (19). Sup-
pose that kD satisfies (20), kP > 0 and kV > 0 hold. If kP
satisfies

kP > kPm = max
π≤w≤2π

fapp(w), (32)

where for w ̸= 0,

fapp(w) =
−β1 (β1(1− cosw) + 2β2 + 2β3) sinw

w
. (33)

Then Ωapp in (28) equals Ωapps in (31). Moreover, the
Jacobian matrix evaluated at each equilibrium point of
Ωapps has at least one eigenvalue in the open-right-half-
plane; that is, each equilibrium point of Ωapps is unstable.

We provide the following remark for Theorems 1 and 2.

Remark 1. Since the Jacobian matrix evaluated at each
equilibrium point of Ωapps has at least one eigenvalue
in the open-right-half-plane, the set of initial states from
which E is not convergent to Er is of Lebesgue measure
zero, see e.g., Ortega et al. [2002] (p. 1225). Thus, under
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the controller (19), from all initial states with the excep-
tion of a set of Lebesgue measure zero of the APP robot,
the closed-loop solution (θ(t), θ̇(t)) approaches Sapp, and
the control objective (12) is achieved.

4.2 PAP Robot

Regarding the PAP robot with W = [ 0, 1, 0 ]
T
, from (24)

and (25), we obtain

β2(Er − P (θe)) sin θe2 + kP θ
e
2 = 0, (34)

θei = 0 or π (mod 2π), i = 1, 3. (35)

Define

Ωpap = {(θe, 0) | θe satisfies (34), (35), P (θe) ̸= Er} (36)
and

Spap =
{
(θ, θ̇)

∣∣∣ E(θ, θ̇) ≡ Er, θ2 ≡ 0
}
. (37)

We present the following theorem.

Theorem 3. Consider the closed-loop system consisting the
PAP robot described in (1) and the controller (19). Suppose
that the mechanical parameters of the PAP robot satisfy

(α2
12α13α23 + 2α12α

2
23α33 − 3α13α

3
23)β1

+ (α12α13α
2
23 + 2α11α

2
12α23 − 3α3

12α13)β3 = 0. (38)

Suppose that kD satisfies (20), kP > 0 and kV > 0
hold. Then, with the quantities defined in Lemma 1, as
t → ∞, every closed-loop solution, (θ(t), θ̇(t)), approaches
the invariant set:

Ξpap = Ωpap ∪ Spap, (39)

where Ωpap (corresponding to E∗ ̸= Er) and Spap (cor-
responding to E∗ = Er) are defined in (36) and (37),
respectively.

We give the following remark about Theorem 3.

Remark 2. It is worth pointing out that the condition
(38) is a sufficient condition such that the robot remains
at an equilibrium point under the controller (19) for the
case E∗ ̸= Er. Different from the corresponding result for
the APP robot, there is no condition on the mechanical
parameters of the robot. The physical explanation of the
condition (38) is still under investigation.

Similar to Theorem 2, we find a condition on kP such
that (34) has a unique solution θe2 = 0 for all θe1 and θe3 in
(35). This yields that Ωpap in (36) just contains the up-up-
down, down-up-up, and down-up-down equilibrium points
defined in

Ωpaps = {(θe, 0) | θe ≡ (0, 0, π), (π, 0, 0), (π, 0, π)} . (40)

We present another main result of this paper.

Theorem 4. Consider the closed-loop system consisting the
PAP robot (1) and the controller (19). Suppose that the
mechanical parameters of the PAP robot satisfy (38).

Suppose that kD satisfies (20), kP > 0 and kV > 0 hold.
If kP satisfies

kP > kPm = max
π≤w≤2π

fpap(w), (41)

where for w ̸= 0,

fpap(w) =
−β2 (β2(1− cosw) + 2β1 + 2β3) sinw

w
. (42)

Then Ωpap in (36) equals Ωpaps in (40). Moreover, the
Jacobian matrix evaluated at each equilibrium point of
Ωpaps has at least one eigenvalue in the open-right-half-
plane; that is, each equilibrium point of Ωpaps is unstable.

Finally, although the UEP is included in Sapp in (29) or
Spap in (37), it is unclear whether there exists time for the
APP or PAP robot moving close to the point. Through our
simulation investigation, we find that the APP or PAP
robot can be swung up close to the point by choosing
the control parameters kD, kP , and kV . Since the UEP
is unstable in the closed-loop system, when the APP or
PAP robot is swung up close to the point, we need to
switch the controller (19) to a local stabilizing controller
(43) to balance the robot about the point, see Section 5
for further reference.

5. SIMULATION RESULTS

We verified the theoretical results via numerical simulation
for using the mechanical parameters of the physical 3-link
robot in Nishimura and Funaki [1998] which are given in
Table 1. We took g = 9.8 m/s2.

Table 1. Mechanical parameters of physical 3-
link robot in Nishimura and Funaki [1998].

Link i Link 1 Link 2 Link 3

mi [kg] 0.41 4.10 0.41

li [m] 0.268 0.258 0.268

lci [m] 0.134 0.128 0.095

Ji [kg ·m2] 4.52× 10−3 6.11× 10−2 4.52× 10−3

When the robot is linearly controllable at the UEP, the
robot can be locally stabilized about the UEP by a state-
feedback controller

τ = −Kx, (43)

where constant gain K can be obtained by apply the LQR
method to the linearized model of the 3-link robot in (1)
around the UEP for example.

Took an initial condition
(
θ1, θ2, θ3, θ̇1, θ̇2, θ̇3

)
= (−5π/6,

−6π/7,−7π/8, 0, 0, 0), which is close to the downward

equilibrium point (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) = (−π,−π,−π, 0,
0, 0). The condition for switching the controller (19) to
the controller (43) was taken as

|θ1|+ |θ2|+ |θ3|+ 0.1|θ̇1|+ 0.1|θ̇2|+ 0.1|θ̇3| < 0.5. (44)

5.1 APP Robot

From (20) and (32), we have kD > 11.2100 and kP >
81.1069. We validated that the objective (12) was achieved
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for the control parameters satisfying the above conditions,
and E∗ ̸= Er did not occur in our simulation investigation.
To swing-up the APP robot close to the UEP, we took
kD = 12.8495, kP = 101.6513, and kV = 34.9863. The
simulation results are shown in Figs. 2 and 3. Figure 2
shows that V and E − Er converged to 0. Figure 3 shows
that θ1 converged to 0, and the time responses of θ2 and
θ3 depicted by modular 2π were complicated. From the
time response of three angles, we know that the robot was
swung up very quickly close to the UEP during 4 s to 5 s.

0 2 4 6 8 10
0

500

1000

 V

0 2 4 6 8 10
−50

0

50

 E
−

 E
r [

J]

0 2 4 6 8 10
−50

0

50

Time [s]

 τ
 [

N
m

]

Fig. 2. Time responses of V , E − Er, and τ for the APP
robot under the controller (19).
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0 2 4 6 8 10
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−π/2
0

π/2
π

 θ
3 [

ra
d]
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Fig. 3. Time responses of θ1, θ2, and θ3 for the APP robot
under the controller (19).

When the APP robot moved close to the UEP, according to
(44), we switched the controller (19) to a local stabilizing
controller (43), with K = [ 24.8073, −130.5994, 285.4057,
11.0839, 5.2043, 40.7782 ], which was computed by using
the Matlab function “lqr” with the weight matrix related
to state x being a 6 × 6 identity matrix and the weight
related to the torque being 1. The simulation result is
given in Fig. 4. The switch was taken at about t = 4.67 s.
Thus, we showed numerically effectiveness of the proposed
control for swinging up and stabilizing control of this APP
robot.

0 2 4 6 8 10
−π

−π/2
0

π/2
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0 2 4 6 8 10
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−π/2
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 θ
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0
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π

 θ
3 [

ra
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Fig. 4. Time responses of θ1, θ2, and θ3 for the APP robot
under the controllers (19) and (43).

5.2 PAP Robot

First, we verify that the condition (38) on the mechanical
parameters holds for the above robot. This shows that
the control objective for this PAP robot is achievable
from all initial states with the exception of a set of
Lebesgue measure zero provided the conditions on the
control parameters (20) and (41), that is, kD > 5.1964
and kP > 44.9673, are satisfied. Second, to swing-up
the PAP robot close to the UEP, we took kD = 5.2088,
kP = 46.8100, kV = 49.3061. The simulation results are
shown in Figs. 5 and 6. Figure 5 shows that V and E−Er

converged to 0. Figure 6 shows that θ2 converged to 0, and
the time responses of θ1 and θ3 depicted by modular 2π.
From the time response of three angles, we know that the
robot was swung up quickly close to the UEP during 10 s
to 12 s.

0 5 10 15 20
0

500

1000

 V

0 5 10 15 20
−50

0

50
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Fig. 5. Time responses of V , E − Er, and τ for the PAP
robot under the controller (19).

When the PAP robot moved close to the UEP, according to
(44) we switched the controller (19) to a local stabilizing
controller (43) with K = [−752.7714, 12.4238, 480.9975,
−79.9495, 5.8035, 68.2008 ]. The simulation result is given
in Fig. 7. The switch was taken at about t = 11.2 s.
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Fig. 6. Time responses of θ1, θ2, and θ3 for the PAP robot
under the controller (19).
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Fig. 7. Time responses of θ1, θ2, and θ3 for the PAP robot
under the controllers (19) and (43).

Thus, we showed numerically effectiveness of the proposed
control for swinging up and stabilizing control of this PAP
robot.

6. CONCLUSION

For the 3-link planar robot moving in the vertical plane
with a single actuator, we studied the effect of its ac-
tuator configuration from the perspective of the energy-
based control. We presented an energy-based control for
three configurations of the single actuator in a unified
way, and we succeeded in carrying out the global motion
analysis of the APP and PAP robots under the presented
controller by using properties of the mechanical parame-
ters of the 3-link robot. Specifically, we showed that the
control objective (12) for the APP robot is achievable for
almost all initial conditions without any condition on the
mechanical parameters of the robot. On the other hand, we
showed that the control objective (12) for the PAP robot
is achievable for almost all initial conditions provided that
another condition on the mechanical parameters of the
robot is satisfied. We also presented numerical results of
the physical 3-link robot to validate the theoretical results

and showed a successful application to the swing-up and
stabilizing control of the APP and PAP robots.

It is expected that the energy-based controller (19) is
effective for the PPA robot with some conditions on control
gains and/or on the mechanical parameters of the robot
after achieving a global motion analysis of the robot under
the controller.
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