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Abstract: This paper describes an algorithm to calibrate the misalignment between sensor
and body frames using only estimates of user-chosen attitudes. The focus is on the reduction of
requirements, such as precise positioning, without introducing errors, so that any user without
auxiliary equipment can calibrate a system. The greedy algorithm proposed is able to correctly
calibrate the rotation in most cases, with the error median below the noise median, and the
conditions where it may not work are discussed and a solution presented.
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1. INTRODUCTION

The sensor reading is an important phase during the
filtering step in a robot’s control loop. Although state
estimation algorithms usually assume that the readings
occur in a particular frame, e.g. Elkaim et al. (2012);
Gebre-Egziabher et al. (2000); Thrun et al. (2005); Schopp
et al. (2010), called the body frame, that may not be
true because of misalignments due to sensors calibration
and placement. If the difference between the sensor frame,
where the readings really occur, and the body frame
isn’t taken into account, the states estimates may become
incorrect and cause the system to fail.

An algorithm to calibrate the misalignment between two
three-axis sensors, whose sensed unit vectors are known in
the inertial frame and can be measured in the body frame,
was introduced in Elkaim (2013). The problem is posed as
a Wahba’s problem, see Shuster (2006), and its solution is a
rotation matrix that transforms readings from the second
sensor to readings in the same frame used by the first
sensor, eliminating the misalignment. When sensors can
be grouped to produce 3D points, the generic framework
described in Le and Ng (2009) can be used to calibrate
sensors’ parameters and frames of reference by matching
the information captured by each group. Although all
these techniques allow sensors to work on the same frame
of reference, they provide a sensor frame that may still be
misaligned with the desired body frame.

Due to the polar decomposition theorem, as described
in Alonso and Shuster (2002), the calibration algorithms
aren’t able to distinguish between the body’s current
attitude and the misalignment between sensor and body
frame. Therefore, the calibration must be performed in a
specific frame of reference, which may be different from the
body one. In the case of field sensors, a solution provided
by Vasconcelos et al. (2011) is to use another sensor, which
has already been calibrated to match the body frame,
to measure the field at the same orientations that the
⋆ This work was supported by FAPESP through the process
2012/01511-6.

new sensor is placed. Comparing the readings, a rotation
matrix can be found to transpose the readings from the
sensor to the body frame. Although this method correctly
solves the problem, it depends on another pre-calibrated
sensor, which may not be available, and may propagate
calibration errors from one sensor to another. Another
solution is to pre-define the samples’ orientations so that
correct body attitude is known. However, this method
requires the user to be precise during calibration, which
may require tools not available or restrict the number of
orientations that can be achieved.

The algorithm presented in this paper proposes a solution
to the problem of finding the rotation between the sensor
and body frame without additional sensors. Furthermore,
the algorithm must be easy to use, so that a layman can
follow the steps needed. This requirement is often ignored,
but the calibration performed at the vendors may become
incorrect due to incorrect transportation or usage, and
it must be redone by the user. The algorithm is a gen-
eralization and relaxation of the pre-defined orientations
method previously described, and uses attitude estimates
computed by another algorithm, such as those proposed
by Gebre-Egziabher et al. (2000); Sabatini (2006); Madg-
wick et al. (2011); Mahony et al. (2008); Batista et al.
(2009), at attitudes constructed in a restricted way, while
providing the user freedom to choose the exact positioning.
This work is an improvement of the authors’ previous
algorithm, introduced in Miranda and Ferreira (2013),
to reduce restrictions and improve robustness, and these
two are, to the best of the authors’ knowledge, the only
algorithms to perform this calibration without external
references or enforcing specific system positioning.

This paper is organized as follows: Section 2 describes the
reference frames, their relation and how to capture the
attitude estimates. Based on data capture methodology,
Section 3 formulates an optimization problem for the cal-
ibration, stating how it is decomposed and solved, while
Section 4 presents an overview of the calibration algorithm
that performs the optimization. Section 5 presents the al-
gorithm’s test through simulation, as the authors currently
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Fig. 1. Example of attitude decomposition with d(i) = x and s(i) = +1, showing how the body frame B must be
positioned with respect to the inertial frame I used by the attitude estimation algorithm.

lack the required equipment, and an analysis of the results.
Finally, Section 6 provides concluding remarks and future
research directions.

2. DATA CAPTURE

The algorithm described in this paper uses attitude es-
timates collected at restricted orientations to calibrate
the rotation between body and sensor frame. To properly
describe these orientations, first the frames of reference
and their relations must be defined. Figure 1 shows an
example of a correctly collected estimate, which can be
used as a guide to how the frames must be related. The
idea is that, while a full 3D arbitrary orientation can’t
be distinguished from the misalignment, a rotation with 2
degrees of freedom instead of 3 and some other information
provide enough data to reconstruct the orientation used.

The fixed inertial frame I, defined by the attitude estima-
tion algorithm, and the intermediate body frame B′ differ
only by a rotation around the shared coordinate direction
z. Each attitude estimate is then collected at the true body
frame B, which differs from B′ by a rotation around a local
basis vector, chosen by the user. Note that B′ is introduced
so that B can be described by 2 rotations from I using
only the basis vectors as axis. This also makes it clear
that, for this algorithm, B must follow a rule that limit
its positioning, as an arbitrary rotation would require 3
rotations around basis vectors. Finally, the sensor frame
S, where all the measurements are made, differs from B
by an unknown fixed rotation. It must be highlighted that
more general rotations between the frames can be used by
creating intermediary frames, as long as the alignments
are known, and not all rotations need to be performed, so
that the respective angles are null. For instance, the pre-
defined orientation alignment method can be described by
a known rotation between I and I ′ and no further body
rotation, defining I ′ = B′ = B.
As the attitude estimation algorithm is only aware of the
inertial frame I, used as a reference, and the sensor frame
S, in which the sensors were calibrated, each attitude
estimate represents a rotation from I to S, which can be
written as the quaternion iqS

I
. Using the frames described

previously, these attitudes can be written as
iqS

I = qS
B ⊗ iqB

B′ ⊗ iqB
′

I (1)

where qS
B

is the rotation between the body and sensor
frame, shared by all samples, iqB

B′ is the rotation between

the intermediate body frame and the real body frame, iqB
′

I

is the rotation between the fixed inertial frame and the
intermediate body frame, and ⊗ is the quaternion product
operator.

As a quaternion can be described by a vector and an angle,
the notation for this format used in this paper is given by

qα,v := cos
(α

2

)

+ v sin
(α

2

)

. (2)

where α is the rotation performed around v.

Using this notation, the quaternions with specific direc-
tions can be rewritten as iqB

′

I
= qαi,z and iqB

B′ = qβi,d(i),
where αi, βi ∈ [−π, π) are the rotation angles and d(i) is
the rotation direction for the i-th sample. Note that d(i)
may assume values x, y or z, but the last one is redundant
since iqB

′

I
already describes a rotation in that direction.

Therefore, one can fix βi = 0 when d(i) = z and let αi de-
scribe the rotation, thus avoiding a continuous subspace of
solutions that could decrease the algorithm’s performance.
Additionally, due to the multiplicity of solutions, which
is clear when the mirroring of all axis is considered, the
sign of the rotation βi around d(i) must be provided. Such
information is given to the algorithm through a function
s(i) = sign(βi).

3. OPTIMIZATION PROBLEM

An appropriate formulation for the quaternion averaging
problem is given by Markley et al. (2007), where the prob-
lem is defined by finding the solution q̂ to the optimization

min
q∈S3

n
∑

i=1

wi ‖R(q)−R(qi)‖2F (3)

where R(·) is the rotation matrix defined by its argument,
‖·‖F is the Frobenius norm, and wi is the weight associated
with the uncertainty of the i-th sample qi. This problem
can be rewritten as

max
q∈S3

qTMq, M =

n
∑

i=1

wiqiq
T
i (4)

and its solution is given by the eigenvector ofM associated
with the maximum eigenvalue.
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Based on Eq. (3), the problem of estimating the quater-
nions defined in Eq. (1) can also be posed as an optimiza-
tion problem. Let {iqS

I
} be a set of n attitudes collected

by the method described in the Sec. 2. The optimization
problem tries to reconstruct the samples and is given by:

min
q
S

B
∈S

3

αi,βi∈[−π,π)

n
∑

i=1

wi

∥

∥

∥
R(iqS

I )−R(qS
B ⊗ iqB

B′ ⊗ iqB
′

I )
∥

∥

∥

2

F

subject to s(i)βi ≥ 0

d(i) = z⇒ βi = 0
iqB

B′ = qβi,d(i)

iqB
′

I = qαi,z

(5)
where s(i) is the sign and d(i) is the direction given by the
user for the i-th sample.

The optimization problem doesn’t have a direct closed-
form solution and optimizing all variables simultaneously
would be too expensive while possibly providing poor per-
formance. However, each quaternion by itself has a closed-
form solution, as they can be written in a similar fashion to
Eq. (4). Therefore, they’ll be optimized individually using
a greedy algorithm, that is, one quaternion is estimated
while the other are considered fixed. The next sections
describe how each one is optimized.

It’s important to highlight that this cost function depends
on many parameters other than the desired qS

B
, due to the

flexibility allowed for the rotations. This not only increases
the optimization complexity, but may also increase the
number of local minima, possibly resulting in poorer
results. Moreover, a good reconstruction, which is the
objective of the proposed cost function, doesn’t always
leads to a good value for qS

B
. However, there’s no way to

measure the calibration objective directly, so this indirect
method must be used.

3.1 qS
B
estimation

Considering every quaternion except for qS
B
as fixed in Eq.

(5), the problem can be rewritten as:

min
q
S

B
∈S3

n
∑

i=1

wi

∥

∥

∥
R(qS

B)−R(iqS
I ⊗ (iqB

B′ ⊗ iqB
′

I )−1)
∥

∥

∥

2

F

which has the same form as Eq. (3). Therefore, it can
be rewritten as Eq. (4) and its solution is given by the
eigenvector associated with the maximum eigenvalue of
the matrix M built using the equation above.

3.2 iqB
B′ estimation

Consider now that every quaternion except for iqB
B′ is fixed

in Eq. (5). In this case, the algorithm still has restrictions
that must be satisfied. To solve it, the problem will be
relaxed, and the solution will be transformed into a valid
solution to the original problem. Note that, if d(i) = z, this
estimation is ignored since βi must be zero, as described
earlier.

Although the relaxed problem is similar to the one given
by Eq. (3), the sum has only one term. This simplifies the

solution, which is given by simply equating the quaternions
describing the rotations:

iq̃B
B′ = (qS

B)
−1 ⊗ iqS

I ⊗ (iqB
′

I )−1, (6)

where iq̃B
B′ is the relaxed quaternion.

The first problem from the relaxation is defining how
to get iqB

B′ , which only rotates around d(i), from the

general quaternion iq̃B
B′ . Let q be a quaternion, whose

vector form can be written as q = [q0, q1, q2, q3]
T . Without

loss of generality, the rotation described by q can be
decomposed in a rotation around the z axis, named qz =
[qz,0, 0, 0, qz,3]

T , and a rotation around a vector on the
xy plane, named qxy = [qxy,0, qxy,1, qxy,2, 0]

T , so that
q = qxy ⊗ qz. The quaternion product can be written
as the following system of linear equations:

q0 = qxy,0qz,0
q1 = qxy,1qz,0 + qxy,2qz,3
q2 = qxy,2qz,0 − qxy,1qz,3
q3 = qxy,0qz,3

(7)

If q0 6= 0 or q3 6= 0, then qz can be built from a
non-normalized quaternion q̃z = [q0, 0, 0, q3]

T such that
qz = q̃z/‖q̃z‖. If q0 = q3 = 0, then the rotation angle
for q is given by θ = π + 2kπ, k ∈ Z and the direction v
doesn’t have any component in the z direction, according
to Eq. (2). This means that the resulting rotation given by
q only express a rotation around a vector in the xy plane,
even if a rotation around z occurred before. Therefore, the
information about the rotation around z is lost and any
value can be chosen here, as all of them produce consistent
results. In this case, the previous estimate is kept.

This method of extracting a rotation around a single axis
from a general 3D rotation is similar for all directions
aligned with coordinates axis, although only the case for
z was shown. Hence the estimate of iqB

B′ is obtained from
iq̃B

B′ using the direction d(i) and a system of equations
similar to Eq. (7).

Once the estimate has only the desired components, the
sign constraint given by

s(i)βi ≥ 0

must be satisfied. If it’s not already satisfied, there are two
methods to correct the estimate.

The first one is using the null quaternion q0,d(i), which
satisfies the constraint, but provides no information to the
algorithm about the axis direction. The second method,
chosen to be used in this paper, changes the sign of βi,
which corresponds to changing the sign of the quaternion’s
scalar term. Although this change may increase the cost
function more than using the null quaternion, the infor-
mation provided is beneficial.

Although it may seem obvious at first that assuming no
rotation is better than assuming a wrong one, it limits
the algorithm’s exploration. With no information about
the direction d(i), the quaternion iqB

′

I
can rotate the

coordinate system to whatever orientation provides the
best result, with no regard about the actual orientation
for the i-th sample. This hypothesis was confirmed during
tests, where using the null quaternion made the algorithm
converge to worse local minima than the alternative.
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Additionally, the incorrect sign in the relaxed solution
comes from noise in the attitude estimate in the regions
where βi changes sign, namely close to 0 and π. As this
noise usually is small compared to the range of values
available, the solution with correct sign is close to the
relaxed one, creating a small increase in the cost described
by Eq. (5). However, as will be shown in Sec. 5.2, this small
change may have drastic affects on the result if ignored by
the user during data collection.

3.3 iqB
′

I
estimation

This estimation step is similar to the one described in
the previous section, except that the rotation is always
performed around the z axis and there’s no sign constraint.
Hence it is solved by finding a relaxed solution similar to
Eq. (6), and extracting the scalar and z vector compo-
nents, respectively q0 and q3.

4. CALIBRATION ALGORITHM

Using each estimation problem defined in Sec. 3, a greedy
calibration algorithm can be defined as shown in Alg. 1.
However, not every step reduces the cost function, so there
is no guarantee that it will converge. Hence the argument
IT is introduced to the algorithm to specify the maximum
number of iterations possible.

Algorithm 1 Rotation estimation between B and S
procedure Calibration({iq̂S

I
}, d(·), s(·), IT)

q̂S
B
← q0,z

for i← 1 to n do
i
q̂B
B′ ← q0,z

5:
i
q̂B

′

I
← q0,z

end for
repeat

Estimate q̂S
B
using Sec. 3.1

for i← 1 to n do
10: if d(i) 6= z then

Estimate i
q̂B
B′ using Sec. 3.2

end if
Estimate i

q̂B
′

I
using Sec. 3.3

end for
15: IT ← IT− 1

until convergence or IT = 0
return q̂S

B

end procedure

5. SIMULATION

The simulation performed for this paper consists of noisy
synthetic data to assess the algorithm’s performance for
many sets of attitude estimates. No experimental results
with real sensors are provided because, at the time of
writing, the authors didn’t have access to the equipment
required.

5.1 Synthetic data

A total of 1000 Monte Carlo runs were performed to
evaluate the algorithm’s performance, and IT was set to

Table 1. Simulation parameters

Parameter Description Value

m Number of attitudes for each axis
q
S

B
Rotation between frames See Eq. (8)

αi Rotation angle for i
q
B

′

I
U ([−π, π))

βi Rotation angle for i
q
B

B′ U

(

Iβ
)

γ Estimates’ noise level
Total of Monte Carlo runs 1000

1000, as at that point all runs had either converged or
started oscillating in the neighborhood of a single point
due to the non-minimizing changes in βi.

For each Monte Carlo run, the quaternion qS
B
was created

according to the method described in Kuffner (2004),
which is given by:

s, p1, p2 ∼ U ([0, 1])

σ1 =
√
1− s, σ2 =

√
s

θ1 = 2πp1, θ2 = 2πp2

q = [σ2 cos θ2, σ1 sin θ1, σ1 cos θ1, σ2 sin θ2]
T

(8)

where U(·) is the uniform distribution. The quaternions
iqB

′

I
were given by qαi,z, where αi ∼ U ([−π, π)), while

iqB
B′ were given by qβi,d(i), where d(i) is the direction

associated with the i-th sample and each direction x, y,
and z is used m times for each run, making a total of
n = 3m samples per run. Additionally, the number of
positive and negative values for αi or βi differed by at
most 1 for a given axis, as a way to ensure some variety of
estimated attitudes.

As described at the end of Sec. 3.2, the sign constraint on
βi shown in Eq. (5) may cause problems for the algorithm
due to noise. To test this effect, two datasets were used to
evaluate the algorithm’s performance. The first set, named
D1, defines an interval Iβ = [−π, π), so that βi can have
any value, even if it decreases performance. The second
one, named D2, defines an interval Iβ =

[

− 3π
4 ,−π

4

)

∪
[

π
4 ,

3π
4

)

, thus forbidding βi to be in a range of π
4 from

the regions where it changes sign. For D1 and D2, the
rotations were sampled from a uniform distribution over
their respective Iβ , that is, βi ∼ U (Iβ).

Once determined each quaternion, the real attitudes iqS
I

were computed using Eq. (1). Each sample was also subject
to noise to simulate errors from the algorithm used for
attitude estimation, which can provide noisy estimates
due to measurement noise. The noise was created using a
random quaternion given by Eq. (8), which can be written
as iqn

αi,vi
according to Eq. (2), and multiplying the angle

by a factor γ ≤ 1 to reduce the noise level, obtaining
the noise quaternion iqn

γαi,vi
, thus describing a noise be

composed of a rotation up to γπ in a random direction.
Then this noise quaternion is multiplied by the correct
attitude to obtain the attitude estimate iq̂S

I
= iqn

γαi,vi
⊗

iqS
I

used in Alg. 1. As the noise was the same for all
samples, the weights wi were considered equal.

Table 1 provides a summary of the parameters used in the
simulation.
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Fig. 2. Calibration error θ for dataset D1 and D2, with varying noise level and number of attitudes measured for each
axis. The median for each noise level is shown by a dotted line.

5.2 Simulation results

After the calibration, the estimate q̂S
B
is compared to the

true value qS
B
. Let the quaternion error be given by

qǫ = q̂S
B ⊗

(

qS
B

)−1

and let qǫ0 be its scalar component, assumed positive
without loss of generality. From Eq. (2), the angle between
q̂S
B
and qS

B
is given by

θ = 2arccos (qǫ0) .

Figure 2 shows the errors obtained for D1 and D2 and a
variate of values for γ and m. In each figure, the noise’s
median, given by γπ

2 , is shown as a dotted black line for
comparison. As can be noted, the algorithm’s median error
is always below the noise’s median, showing that it can
correctly merge the information provided by the samples
to provide an improvement in the calibration.

As discussed in the end of Sec. 3.2, the choice to change the
sign of βi as a solution to satisfy the inequality restriction
must be taken into account during data collection. For
D1, where βi can assume any value, the estimation error
is large for some cases when m is small. In these cases,

the number of samples isn’t able to compensate for the
increase in cost due to the sign change, so the algorithm
looks for other ways to reduce the total cost in Eq. (5) and
ends up increasing the calibration’s error for the desired
rotation between body and sensor frames. However, for
larger values of m, the presence of more samples reduces
the relative cost of an error in βi and provides more
evidence for the correct rotation, leading to more precise
estimates.

For D2, where the values of βi are restricted to regions
where the noise won’t change the sign of its best fit, no such
problem occurs for anym and γ, and the estimate is always
close to the correct value. Moreover, the performance using
D2 is similar to using D1, even though it has lower diversity
on its samples.

If an upper bound for the noise level of the attitude
estimates and orientation error is known, the restriction
on ranges for βi can be properly adjusted to prevent
large estimation errors by avoiding regions where the sign
provided through s(i) may become inconsistent with the
attitude estimate. If the noise level is unknown, results
show that the algorithm will converge to values similar
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to the restricted case if enough samples are provided,
establishing a trade-off between the number of samples
needed for an adequate calibration and the confidence that
the signs provided through s(i) are consistent with the
attitude estimates.

6. CONCLUSION

This paper presented a calibration algorithm to estimate
the rotation between the sensor and body frames based
on the quaternion averaging problem. The algorithm de-
pends only on attitude estimates and minimal user input,
thus being easy to use and compatible with any attitude
estimation algorithm the system may already have.

Using noisy synthetic data, the algorithm was able to
achieve estimates close to the real values in most cases,
even though the optimization problem has many more
degrees of freedom than only the desired rotation, due to
the usability constraint that imposes less restrictions on
the user, and its objective is different from the calibration
one, although they are related. For any number of samples,
the error median is below the noise median, showing it was
able to filter out part of the noise, and the error decreases
as more samples are provided. Furthermore, the conditions
in which the algorithm may perform poorly were described
and a solution to avoid such cases was tested successfully,
showing that a more strict methodology during the atti-
tude sampling allows the user to avoid low-quality esti-
mates. This methodology creates a trade-off between user
knowledge about the system and the number of samples
required for proper calibration.

This trade-off occurs because the information provided by
the user may be inconsistent with the attitude estimates
due to estimation errors, which in turn leads to a con-
straint in the problem not being satisfied. Two solutions
to this problem are discussed, both having significant but
distinct disadvantages. If a hybrid solution, that is able
to detect when the constraint is violated only because of
attitude estimates’ noises and correctly choose the appro-
priate way to satisfy the constraint, is found, then the user
may always follow the simplified data capture method.
Furthermore, such method may even decrease the error
for the cases the current one already works.

Another, possibly much simpler but not as effective, so-
lution would be to detect whether the error would be
excessively high. This could be achieved, for instance, by
an error predictor, which estimates the calibration error
given the estimated quaternions. However, such predictor
may not exist, so another possibility is to compare the
solutions obtained from subsets of samples, which allows
comparison between rotations that should have similar
values.

Finally, the algorithm is currently being validated using
real sensors, and preliminary results show that the perfor-
mance obtained in simulation is similar to the one obtained
with experimental data, hence future work will include
experiments, not only simulations.
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