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Abstract: Robot-assisted gait training has shown promising results in inpatient rehabilitation.
However, the progress the patients can achieve during this period often stagnates or even
deteriorates after their discharge. To extend the robot-assisted gait training to the patient’s
home area, a new rehabilitation robot is developed. Since the home training is not supervised
by physiotherapists, a challenging training is needed as well as a reliable and comprehensible
feedback to the patient. Therefore, the patient activity has to be estimated and set apart from
the occurring friction forces falsifying the estimation. In this paper, an approach is described
that offers a combined estimation of friction forces and patient activity, based on a new dynamic
friction model and a central difference Kalman filter.
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1. INTRODUCTION

Robotic devices are essential elements in today’s rehabil-
itation of patients with neuromuscular gait disorders. As
proposed in Kakabeeke et al. (2006), an improvement of
the capability to walk can only be achieved by an intense
training with high repetition rates. Since manually train-
ing assisted by physiotherapists is hard work, it is more
and more supplemented by robotic devices to increase the
intensity to a sufficient amount. In the inpatient rehabili-
tation, the usage of huge, complex, and expensive robots
has been enforced with positive influence on the walking
capabilities of the patients, as was shown in Wirz et al.
(2005).

After the inpatient phase, it is often not possible to main-
tain the extensive gait training and the former achieved
progress stagnates or even deteriorates. Thus, it was ob-
vious to extend the robotic gait training to the patient’s
home area. In a first approach described in Knestel (2010)
and evaluated in Rupp et al. (2011), it was shown that
the robot assisted training at home leads to a significant
improvement of walking speed and stamina of chronic
patients with incomplete spinal cord injuries.

Based on these promising results, a follow-up project was
started and the gait trainer was revised. It was necessary
to replace the formerly used pneumatic muscles by electric
drives, which are easier to maintain. Furthermore, a more
realistic gait pattern was requested by the patients. Thus,
the concept of the new gait trainer, shown in Fig. 1, has
considerably changed. Due to reasons of safety, the patient
is still arranged in a half-lying position and tied to the
exoskeleton of the rehabilitation robot by three orthosis.
The gait trainer is able to simulate an almost natural gait,
concerning the hip, knee, and ankle trajectories, with only
two degrees of freedom defined by the hip angle and the

position of the linear slide below the foot. For relieving
the electric drives, the drive units are supplemented by
springs that compensate the weight of the exoskeleton and
the human leg. Since a good gait approximation is not
sufficient to trigger the effect of motor learning based on
neuroplasticity without the weight load on the feet that
occurs at the roll-over from heel to strike, the gait trainer
is supplemented by a stimulative shoe unit.

The combination of a good gait approximation with the
stimulative shoe is a promising basis for a successful reha-
bilitation, but due to the fact that the gait trainer is used
without supervision by a physiotherapist, there are other
requirements that have to be considered. The training
device should be save and easy to operate, challenging to
keep the patient motivated, and able to offer a reliable and
comprehensible feedback to the patient.

As a basis for adaptive control and feedback, the influence
of the patient on the gait trainer has to be estimated. This
can be done using a state observer based on the system
model extended by a disturbance model. If the dynamic
behaviour of the disturbance is unknown, it is common
to replace it by a simple integrator model that aggregates
all occurring disturbances into as many states as system
inputs.

In the case of the new gait trainer, the application of
a simple integrator model would lead to an undesired
side effect. Since the integrator model summarizes all
disturbances, it cannot distinguish between the patient
activity and the occurring friction forces, which are in this
case very high due to transmission losses and the usage of
slide bearings. To set the patient activity apart from the
friction forces, another disturbance model has to be used
that approximates the friction in an adequate accuracy
and that is applicable with a non-linear state observer.
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Fig. 1. Sketch of the gait trainer with human leg in the
sagittal plane.

In this contribution, an approach is proposed which en-
ables a precise estimation of the dynamic states of the
system model, the values of two dominating friction forces,
and the influence of the patient at the same time and with
high accuracy. It is based on a dynamic friction model
proposed in Specker et al. (2014) and a Central Difference
Kalman Filter (CDKF) as described by van der Merwe
(2004) and Fox (2007).

The paper is structured as follows: The overall system
model is aggregated from three submodels, which are
derived and combined to the overall model in Section 2.
In Section 3, the CDKF is introduced and completed by
the applied algorithm given in Appendix A. The results
retrieved by the application of the overall model and the
CDKF on a prototype of the gait trainer are presented
in Section 4. The paper closes with conclusions and an
outlook on further work in Section 5.

2. MODELLING

To obtain an accurate overall system model for state ob-
servation, three submodels are presented in the following:
a submodel of the rehabilitation robot including minor
friction effects, an additional friction submodel describing
the major friction effects which cannot be regarded within
Lagrangian mechanics, and a simple integrator submodel
summing up the disturbances due to the patient activity.
Finally the submodels are combined to the overall model.

2.1 Rehabilitation Robot Submodel

For modelling, the construction of the gait trainer, which is
depicted in Fig. 1, can be simplified to the schematic view
shown in Fig. 2. The system has two degrees of freedom
and thus two generalised coordinates, the hip joint angle
ϕ and the position of the slide s, summarized in

q =

[
ϕ
s

]
. (1)

Based on the generalised coordinates q, their first deriva-
tives q̇, and the constructive conditions, the position and
velocity functions for all masses can be derived. The func-
tions for the thigh profile and the slide depend on one
coordinate only and are therefore simple to calculate. The
terms for the shank profile and the stimulative shoe depend
on both variables and are based on the calculation of the
intersection of to circles with moving center points, as
depicted in Fig. 2. This makes them more complex and
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Fig. 2. Schematic view of the rehabilitation robot with
masses m, moments of inertia J , lengths l and s, offset
angles δ, spring flexibilities k, damping coefficients
d, hip torque τ , slide force F , and indices for thigh,
shank, stimulative shoe, slide, hip joint, knee joint,
ankle joint, slide joint, hip spring, and linear spring.

requires a simplification of the model which is described
below.

Since all positions and velocities are known, it is possible
to calculate the overall energy of the system, distinguished
between kinetic energy

T = Tth + Tsh + Tss + Tsl (2)

and potential energy

V = Vth + Vsh + Vss + Vsl + Vhsp + Vlsp (3)

as well as the minor dissipative energies

D = Dhj +Dkj +Daj +Dsj (4)

caused by the friction in the ball bearing mounted joints
and described by terms of linear damping. The kinetic and
potential energy can be aggregated to the Lagrangian

L = T − V. (5)

Applying the Euler-Lagrange equation
d

dt

∂L

∂q̇i
− ∂L

∂qi
+
∂D

∂q̇i
= 0 with i = 1, 2 (6)

yields the non-linear system of differential equations

M(q)q̈ +C(q, q̇)q̇ + g(q) = 0, (7)

with the mass and inertia matrix M , the Coriolis, cen-
trifugal, and dissipation matrix C and the potential force
and torque vector g.

The Coriolis and centrifugal terms considered in C depend
on the calculation of the Hessian matrices for all position
functions, including those for the shank profile and the
stimulative shoe. As already mentioned, these functions
are complex to calculate and a second order partial deriva-
tive leads to a strong increase of the computational costs.
Since the occurring angular velocities are rather small,
the Coriolis and centrifugal terms can be omitted with
no significant falsification of the overall accuracy, yielding
the matrix C̃ comprising dissipative terms only.

The linear slide force F and the the hip torque τ effect the
system in the same direction as the generalised coordinates
are defined, thus they are equal to the generalised forces

Q =

[
τ
F

]
. (8)

Neglecting Coriolis and centrifugal terms and extending
the system of differential equations with the generalised
forces, the submodel of the rehabilitation robot yields

M(q)q̈ + C̃(q, q̇)q̇ + g(q) = Q, (9)
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which can be transformed into a system of non-linear first-
order differential equations[

q̇
q̈

]
= fr (q, q̇,Q) . (10)

Since the resulting equations are too extensive to be
enlisted, they have to be omitted in this contribution.

2.2 Dynamic Friction Submodel

Apart from the viscous friction effects, which are already
considered in the robot submodel, there are two remaining
friction forces with a significant influence on the overall
system, which are caused by the transmission of the hip
drive and the bearings of the linear slide. Since those two
dissipative forces are based on the effects of Coulomb
and Stribeck friction, they cannot be described in an
accurate manner using Lagrangian mechanics. Therefore,
an additional submodel is proposed based on a dynamic
friction model described in Specker et al. (2014).

Fs(v) × 1
T1

1
s

a(v)

v

Ḟd(v) Fd(v)

−

LPV lowpass filter

Fig. 3. Block diagram of the dynamic friction model as a
serial connection of the static friction model Fs and
the adaptive first-order lowpass filter.

The dynamic friction submodel consists of a static friction
model with smooth force transitions at standstill and a
linear parameter-varying (LPV) first-order lowpass filter.
It is based on continuous functions only, which offers
numeric stability for high sample times and makes it
applicable with non-linear observer approaches like the
CDKF described in section 3. The dynamic behaviour of
the friction model is defined by the differential equation

Ḟd(v) =
a(v)

T1
(Fs(v) − Fd(v)) = fd(v) (11)

with time constant T1, edge velocity v0, adaption factor

a(v) = 1 − e−
(

v
v0

)2
(12)

and the static friction model output

Fs(v) =

(
F̂s − F̂c tanh

(
vsp
vt

)
− dvsp

)
v

vsp
e
−
(

v√
2vsp

)2

+ 1
2

︸ ︷︷ ︸
Stribeck friction

+ F̂c tanh

(
v

vt

)
︸ ︷︷ ︸
Coulomb friction

+

(
dv.

)
︸ ︷︷ ︸

Viscous friction

(13)

The behaviour of the static friction model is defined
by the linear damping factor d, the Coulomb force F̂c,
the transition velocity vt, the Stribeck force F̂s, and the
Stribeck peak velocity vsp. A detailed description of the
single parameters and their effects on the model behaviour
is given in Specker et al. (2014).

Since there are two dominating friction sources in the
rehabilitation robot that have to be considered in the

overall model, the robot’s friction submodel consists of two
independent non-linear first-order differential equations of
the form (11):

τ̇d,fr = fd,hip (τd,fr, ϕ̇) , (14)

Ḟd,fr = fd,slide (Fd,fr, ṡ) . (15)

They describe the behaviour of the friction torque τd,fr
in the transmission of the hip drive and the friction
force Fd,fr caused by the slide bearings. Both equations
depend on their particular velocities, which are equal to
the generalised velocities in q̇.

2.3 Integrator Disturbance Submodel

The remaining disturbance effects based on the patient
activity are described by a linear integrator disturbance
submodel consisting of two independent integrators. Each
integrator summarizes all occurring disturbances belong-
ing to one generalised force. For this application, the state
variables of the model are chosen in the same manner as
the drive forces effect the system. Thus, the dynamics of
the disturbance submodel is represented by the differential
equations

τ̇d,i = 0 (16)

Ḟd,i = 0 (17)

with the disturbance torque τd,i occurring at the hip drive
and the disturbance force Fd,i occurring at the slide drive.

2.4 Overall Model

The three submodels can be aggregated to a non-linear
state-space model of order eight with the state variables

x = [ϕ s ϕ̇ ṡ τd,fr Fd,fr τd,i Fd,i]
ᵀ
, (18)

the two system inputs defined by

u = [τ F ]
ᵀ
, (19)

and the system outputs

y = [ϕ s]
ᵀ
. (20)

To receive the dynamics of the overall model, the dynamics
of the different submodels have to be connected to each
other.

The forces and torques of the friction and the disturbance
submodels defined by (14)-(17) effect the submodel of the
rehabilitation robot defined by (10) in the same way as
the generalised forces (8). Therefore, the dynamics of the
robot submodel can be extended to[

q̇
q̈

]
= fr

(
q, q̇,Q+

[
τd,i − τd,fr
Fd,i − Fd,fr

])
= f̃r (x,u) . (21)

The dynamics of the friction model are already dependent
on the generalised velocities q̇ of the rehabilitation robot
and they are independent of the disturbance model. So,
(14) and (15) can be aggregated to

fd (x) =

[
fd,hip (τd,fr, ϕ̇)
fd,slide (Fd,fr, ṡ)

]
(22)

without any changes. Since the dynamics of the distur-
bance model is independent from the other models, the
overall model can finally be written in the following non-
linear state-space representation:

ẋ = f (x,u) =

f̃r (x,u)
fd (x)

0

 , y = h(x) =

[
x1
x2

]
. (23)
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3. CENTRAL DIFFERENCE KALMAN FILTER

Kalman filters belong to the most common observer ap-
proaches for state estimation in non-linear systems. Espe-
cially the extended Kalman filter (EKF), which is based
on the linearisation of the underlying non-linear system
model, is used in many practical applications. With respect
to the overall model proposed in the previous section, the
EKF has two disadvantages. As mentioned in Section 2.1,
the Coriolis and centrifugal terms of the shank profile and
the stimulative shoe are omitted because of their complex
and huge terms based on the second partial derivation. If
an EKF is used, those terms would have to be calculated
due to the required linearisation. Furthermore, it is shown
in Specker et al. (2014) that the friction model proposed in
Section 2.2 is more precise using a steeper force transition
at standstill, but linearising a steep transition can cause
numeric problems and, therefore, should be avoided.

Another Kalman filter with growing popularity is the
unscented Kalman Filter (UKF) belonging to the class of
sigma point Kalman filters (SPKF). SPKFs approximate
the probability density of the state estimation with char-
acteristic points, the so-called sigma points. For SPKFs, a
partial derivative of the underlying model is not needed
and, as mentioned in van der Merwe (2004), they are
expected to require less computational costs than EKFs
while offering a higher estimation accuracy. Thus, an
SPKF is a good choice to be applied to the overall model
derived in Section 2.

Since the commonly used UKF has a big set of parameters
that has to be chosen, the CDKF, a closely related SPKF,
is used in this contribution. It is mentioned in Fox (2007)
that in comparison to the UKF, the CDKF shows an
equal performance in all practical purposes, but has the
advantage of a lower parameter count of the algorithm. A
description of the used CDKF algorithm is given in the
Appendix A.

4. APPLICATION RESULTS

To evaluate the combined estimation approach distin-
guishing between friction forces and patient activity, the
overall model proposed in Section 2 and the CDKF de-
scribed in Section 3 and Appendix A are combined for
the usage on a real-time linux system which controls the
rehabilitation robot and is executed with a rather high
sample time of Ts = 10 ms.

The data shown in Fig. 4 and Fig. 5 were retrieved from a
prototype of the new gait trainer and are evaluated for one
leg of the exoskeleton. The disturbances normally caused
by a patient are simulated by artificial disturbances to
make a quantitative evaluation of the observer accuracy
possible. For recording the results, the rehabilitation robot
was operated in open-loop effected by sinusoidal actuating
variables.

The application data belonging to the hip variables are
shown in Fig. 4, containing the actuating variables ef-
fecting the hip drive as well as the falsified hip torque
seen by the observer, the measured and the estimated
hip angle, the estimated velocity in comparison to the
numeric derivative of the hip angle, the estimated friction

torque, and a comparison between the estimated distur-
bance torque and the preset disturbance torque calculated
by subtracting the actuating variable seen by the observer
from the one effecting the robot.

At the beginning, the torque of the hip drive remains
zero and the gait trainer is only effected by the linear
slide. After 2 s, the drive torque steps to a random value
enhancing a velocity peak. Even for this short velocity
peak, the dynamic behaviour of the observer is fast enough
to follow. Nonetheless, the magnification of the hip velocity
shows also a good noise filtering.

The torque step is followed by a sinusoidal torque tra-
jectory maintained to the end of the regarded time pe-
riod. In the time slot between 2 s and 15 s, there are no
disturbances effecting the hip and all state variables are
estimated in an accurate manner. When the hip is moving,
the value of the estimated friction torque is approximately
equal to the determined Stribeck and Coulomb torques,
whereas at standstill, it is somewhere in between due to
the memory effect of the friction model. The transition
between lowpass behaviour and memory effect can be seen
in the magnification.

Beginning at 15 s, an artificial disturbance is added to
the drive torque seen by the observer, which is simulating
the patient activity and changing the characteristic of the
actuator variable significantly. As can be seen, there is
almost no change in the estimated values except for the
state variable describing the disturbances. The disturbance
estimation shows a good approximation of the preset
disturbance trajectory and, therefore, it should be possible
to achieve a satisfying estimation of the patient activity as
well.

The application data belonging to the slide variables are
shown in Fig. 5 and arranged in the same manner as
the hip variables. The slide is effected by a continuous
sinusoidal force trajectory moving the slide back and forth.

The friction effect in the linear slide is significantly higher
than the hip friction, yielding longer periods at standstill.
In case of standstill, the friction submodel changes its
behaviour to an integrator as well, therefore, there are two
disturbance models with equal model dynamics.

Since the process noise covariance of the friction model
is chosen much higher than the process noise covariance
of the disturbance model, the estimation of the friction
state has a higher dynamic and, therefore, absorbs the
simulated disturbance force beginning at 10 s as well.
However, there is no standstill occurring in the trajectories
of the hip angle and the slide position for the gait training
and, therefore, this effect should not appear in closed-loop
control. As soon as the slide starts to move again, the
value of the estimated friction force decreases to its usual
value and the disturbance force is transferred to the desired
state variable. At the moment the artificial disturbance
disappears, the slide is moving and the friction state shows
no significant changes.

Apart from this, the estimation of the state variables at the
linear slide shows the same good results as the estimation
of the hip variables, consisting of a high accuracy, a good
noise filtering, and a sufficient dynamic. Furthermore, a
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Fig. 4. Estimation results at the hip.
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Fig. 5. Estimation results at the linear slide.
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cross-connection between hip and slide disturbances is not
visible.

5. CONCLUSION

In this contribution, a combined friction disturbance and
patient activity estimation approach for a gait rehabil-
itation robot has been proposed. The method is based
on an overall system model including a dynamic friction
model based on Specker et al. (2014). This friction model
was specially designed for numerical stability even with
high sample times. The applicability and usefulness of
this friction model was shown in this paper on a relevant
practical application, where a CDKF was used as a real-
time observer with a relatively high sample time. This
setup shows very good results for the patient activity and
thus also the friction forces, what was shown with real
measurements from a prototype of the training robot.

The next steps will include closed-loop control of the gait
rehabilitation robot for an assist-as-needed functionality
and an adequate training feedback, both based on the
estimated patient activity.
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Appendix A. ALGORITHM OF THE CENTRAL
DIFFERENCE KALMAN FILTER

The following description of the algorithm is based on
the work of Fox (2007). A detailed derivation of SPKFs
can be found in van der Merwe (2004). The CDKF works
with a predictor-corrector structure. In the time update
step, the model-based predictor calculates a state vector
x̂−
k+1 (model simulation for one time step), which is

corrected with measurements from the observed system
in the measurement update to x̂+

k+1. The time update
equation f(·) and measurement update equation g(·) are
evaluated i = 2n+ 1 times (where n is the model order)
in the so-called sigma points χi,k+1 to approximate the
non-linearities.

Algorithm:

Initialization:

x̂0 = E{x0}
Sx,0 = chol{E{(x0 − x̂0)(x0 − x̂0)

ᵀ}}

Calculation of sigma points for time update:

χ−
0,k+1

= x̂+
k

χ−
i,k+1

= x̂+
k

+ h
(
S+

x,k

)
:,i

χ−
i+n,k+1

= x̂+
k
− h
(
S+

x,k

)
:,i

Time update:

χp
i,k+1

= f(χ−
i,k+1

,uk,0)

x̂−
k+1

=
h2 − n
h2

χp
0,k+1

+
1

2h2

2n∑
i=1

χp
i,k+1

S
(1)
x =

1

2h

{
χp

i,k+1
− χp

i+n,k+1

}
i=1,...,n

S
(2)
x =

√
σ4 − 1

2h2

{
χp

i,k+1
+ χp

i+n,k+1
− 2χp

0,k+1

}
i=1,...,n

S−
x,k+1

= QR
{(
S

(1)
x S

(2)
x

√
Qw

)}
Calculation of sigma points for measurement update:

χ+
0,k+1

= x̂−
k+1

χ+
i,k+1

= x̂−
k+1

+ h
(
S−

x,k+1

)
:,i

χ+
i+n,k+1

= x̂−
k+1
− h
(
S−

x,k+1

)
:,i

Measurement update:

Yi,k = g(χ+
i,k+1

,uk,0)

ŷ−
k+1

=
h2 − n
h2

Y0,k +
1

2h2

2n∑
i=1

(Yi,k)

S
(1)
y =

1

2h

{
(Yi,k −Yi+n,k)

}
i=1,...,n

S
(2)
y =

√
σ4 − 1

2h2

{
(Yi,k +Yi+1,k − 2Y0,k)

}
i=1,...,n

S−
y,k+1

= QR
{(
S

(1)
y S

(2)
y

√
Rw

)}
P̂

−
xy,k+1 = S−

x,k+1
(S

(1)
y )ᵀ

Kk+1 = P̂
−
xy,k+1(S

−
y,k+1

S−ᵀ
y,k+1

)−1

x̂+
k+1

= x̂−
k+1

+Kk+1(yk+1 − ŷ
−
k+1

)

S+
x,k+1

= QR

{(
S−

x,k+1
−Kk+1S

(1)
y Kk+1S

(2)
y Kk+1

√
Rw

)}
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