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Abstract: Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) is
a nonlinear state-feedback control approach which can be used for stabilization and tracking
control of a wide range of physical systems. Among many variants of this technique, algebraic
IDA-PBC is by far the simplest method as it involves differential-algebraic equations rather
than partial-differential equations. However, the equations are generally under-determined and
the possible solutions for the unknown elements are non trivial. This issue becomes more evident
for tasks on nonlinear systems, for example, swing-up and stabilization of a pendulum or
stabilization of electro-mechanical systems. In this paper we mitigate some of the difficulties
of algebraic IDA-PBC by using Reinforcement learning. Thanks to the robustness properties
of learning the resulting learning based algorithm is insensitive to model uncertainties. We
demonstrate the usefulness of the proposed learning algorithm both by simulations and through
experimental validation.

Keywords: Passivity-based control, interconnection and damping assignment, nonlinear
control, reinforcement learning, actor-critic scheme.

1. INTRODUCTION

Port-Hamiltonian (PH) theory is a well developed model-
ing framework to represent the dynamics of complex phys-
ical systems. As PH theory is derived from network based
modelling of physical systems, it can be used to model
multi-domain systems. Notable examples include mechan-
ical, electrical, electro-mechanical, thermal systems, and
their combinations. For in-depth analysis and examples,
see (Duindam et al., 2009). A major advantage of the
PH representation is that it highlights the relationship
between various system characteristics, such as energy
storage, dissipation, and interconnection. This emphasizes
the suitability of energy-based methods for controlling PH
systems (Ortega et al., 2001).

Passivity-based control (PBC), introduced by Ortega and
Spong (1989), is a prominent energy-based control method
for PH systems. PBC achieves the control objective, for
example stabilization, by making the closed-loop passive in
relation to a desired Hamiltonian. PBC for PH systems can
be classified into three main categories: stabilization by
damping-injection, energy-shaping and damping-injection
(ES-DI), and interconnection and damping assignment
IDA-PBC. The first, damping-injection, is the simplest ap-
proach but it has only limited applicability. Energy shap-
ing and damping injection is widely used for stabilizing
mechanical systems, but due to dissipation constraints ES-

DI cannot be used to control all multi-domain system, for
example electromechanical systems (Ortega et al., 2001).
Additionally due to its inherent limitations ES-DI cannot
be used for tracking control. The third approach, IDA-
PBC, can be used to solve various control problems and
on a wide range of physical systems. For example, by
using IDA-PBC one can achieve regulation and tracking
of multi-domain complex systems like magnetic levitation
(Ortega et al., 2001).

In all the stated PBC methods, the control law that
achieves the desired control objective is obtained by solv-
ing a set of partial differential equations. Most of the
available literature on PBC for PH systems deals with
simplification of the complex partial differential equations
either for a particular example or for a restricted set of
systems (Ortega and Garcia-Canseco, 2004). In general,
solving the partial differential equations can be extremely
difficult, thus hindering the use of PBC methods. Another
disadvantage of model-based synthesis methods like PBC
is their strong dependency on the system model (Duindam
et al., 2009).

Fortunately, some alternative control methods exists that
are (quasi-)independent of the system model. One such ex-
ample is Reinforcement Learning (RL), a semi-supervised
learning-based optimal-control method (Sutton and Barto,
1998). In RL, the controller (alternatively termed as ‘pol-
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icy’ or ‘agent’ in RL literature) improves its behavior by
continuously interacting with the system. For each inter-
action, the controller receives a numerical reward which is
a function of the system’s state transition and the control
effort. The RL algorithm’s objective is to maximize the
total cumulative reward (Sutton and Barto, 1998; Busoniu
et al., 2010). However, RL algorithms suffer from a few
notable drawbacks, such as the black-box nature of the
learned control law and slow convergence of the algorithm.
Additionally, prior system knowledge that is often avail-
able for physical systems cannot be used in standard RL
algorithms.

To address some of the issues of energy-shaping and
damping-injection PBC and RL, a novel learning algo-
rithm called energy-balancing actor-critic was developed
by Sprangers et al. (2012). This method was extended
by Nageshrao et al. (2014) to multi-input multi-output
systems. However, the energy-balancing actor-critic algo-
rithm can only be applied to a subset of physical systems,
for example, fully-actuated mechanical systems. Addition-
ally, tracking control problems cannot be solved by the al-
gorithm due to the inherent limitations of energy-shaping
and damping-injection PBC. The goal of this paper is to
address some of the stated issues. We introduce a novel
learning algorithm for algebraic IDA-PBC. The algorithm
is evaluated in simulations and real-time experiments of
the pendulum swing-up task. As demonstrated by Åström
et al. (2008), the synthesis of a single smooth control law
that achieves both swing-up and stabilization is rather
involved. In this work we have considerably reduced the
complexity of the design approach by using RL. One ma-
jor advantage of IDA-PBC is its usability for controlling
multi-domain systems. This is demonstrated in our second
example: stabilization for the magnetic-levitation system.

This paper is organized as follows: Section 2 gives the
theoretical background on PH systems and IDA-PBC. In
Section 3, we provide a brief overview of reinforcement
learning and introduce the RL based algorithm that solves
the algebraic IDA-PBC synthesis problem. In Section 4, we
evaluate the learning algorithm on the pendulum swing-
up and stabilization task, and on the stabilization of a
magnetic-levitation system. Finally, Section 5 concludes
the paper.

2. IDA-PBC

2.1 Theoretical background

The dynamics of a time-invariant, input-affine, nonlinear
system, can be represented as

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state vector, function f(x) : Rn → Rn
describes the system dynamics, and g(x) : Rm → Rn is the
input function.

The objective of IDA-PBC is to find a state-feedback law
u = β(x) such that the resulting closed-loop is of the form
(Ortega and Garcia-Canseco, 2004).

ẋ = Fd(x)∇xHd(x), (2)

where∇ denotes the gradient of a scalar function, Hd(x) ∈
R is the desired closed-loop Hamiltonian, and Fd(x) ∈
Rn×n is the desired system matrix. This matrix can be

separated into a skew-symmetric interconnection matrix
Jd(x) ∈ Rn×n and a symmetric dissipation matrix Rd(x) ∈
Rn×n. They satisfy the relation

Fd(x) = Jd(x)−Rd(x). (3)

The desired closed-loop Hamiltonian Hd(x) has a local
minimum at the desired equilibrium x∗ ∈ Rn:

x∗ = arg minHd(x). (4)

Using the Moore-Penrose inverse of the input matrix g(x),
the control law β(x) that achieves the desired closed-loop
(2) is

β(x) =
(
gT (x)g(x)

)−1
gT (x)

(
Fd(x)∇xHd(x)−f(x)

)
. (5)

The unknown elements of Fd(x) and Hd(x) can be ob-
tained using the matching condition

g⊥(x)
(
Fd(x)∇xHd(x)− f(x)

)
= 0, (6)

where g⊥(x) ∈ R(n−m)×n is the full-rank left annihilator
matrix of g(x), i.e., g⊥(x)g(x) = 0.

Using the matching condition (6), one can obtain a max-
imum of n −m free elements. However, the total number
of free elements in Fd(x) and Hd(x) is larger. This issue
is generally addressed either by constraining Fd(x), Hd(x)
or both. Depending on the design choice, there are three
main variants of IDA-PBC (Ortega and Garcia-Canseco,
2004):

• Non-parameterized IDA-PBC (Ortega et al., 2002).
In this general form, the desired system matrix Fd(x)
is fixed and the partial differential equation (6) is
solved for the desired closed-loop Hamiltonian Hd(x).
Among the admissible solutions, the one satisfying (4)
is chosen.
• Algebraic IDA-PBC (Fujimoto and Sugie, 2001).

The desired energy function Hd(x) is fixed, typically
quadratic in increments (i.e., Hd((x − x∗)

2)). This
makes (6) an algebraic equation in unknown elements
of Fd(x).
• Parameterized IDA-PBC (Ortega and Garcia-Canseco,

2004). Here the partial structure of the energy func-
tion Hd(x) is fixed. This imposes constraints on the
unknown matrix Fd(x), which needs to be satisfied
by the partial differential equation (6).

2.2 Algebraic IDA-PBC

In this section we explain algebraic IDA-PBC method
using a fully actuated mechanical system as an example.
We also highlight some of the difficulties encountered
in using algebraic IDA-PBC. Consider a fully actuated
mechanical system[

q̇
ṗ

]
=

[
0 I
−I 0

]
∂H

∂q
(x)

∂H

∂p
(x)

+

[
0
I

]
u, (7)

where the state vector x = [qT pT ]T consists of the
generalized position q ∈ Rn̄ and generalized momentum
p ∈ Rn̄, with 2n̄ = n. The total energy or the system
Hamiltonian H(x) is given by the sum of the kinetic and
potential energy:

H(x) =
1

2
pTM−1(q)p+ V (q), (8)
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where the mass-inertia matrix M(q) ∈ Rn̄×n̄ is positive-
definite. The potential energy term V (q) ∈ R is bounded
from below.

In algebraic IDA-PBC, one can choose the desired closed-
loop Hamiltonian to be quadratic in increments. Condition
(4) at x∗ = [qT∗ 0]T can be satisfied by choosing Hd(x) as

Hd(x) =
1

2
pTM−1(q)p+

1

2
(q − q∗)TΛ(q − q∗) (9)

where Λ ∈ Rn̄×n̄ is a positive-definite scaling matrix.

For a generic system matrix Fd(x)

Fd(x) =

[
F11(x) F12(x)
F21(x) F22(x)

]
(10)

by using (7)–(10) in (6) we obtain the algebraic equation

F11(x)Λ(q − q∗) + F12(x)M−1(q)p−M−1(q)p = 0, (11)

which can be trivially solved by choosing F11(x) = 0 and
F12(x) = I. Similarly by substituting (7)–(10) in (5) the
control law will be

u = β(x) = F21(x)Λ(q−q∗)+F22(x)M−1(q)p+
∂H

∂q
, (12)

where the unknown entries F21 and F22 need to chosen ap-
propriately. For simple control problems, like stabilization
of the mass-spring-damper, the choice of F21 and F22 is
straightforward (Ortega et al., 2001). However, for more
challenging control tasks such as the pendulum swing-up
and stabilization, finding these parameters can be difficult.

In this work, rather than choosing the unknown elements
F21 and F22, we parameterize them by using linear-in-
parameters function approximators

β(x) = ξT1 φ(x)Λ(q − q∗) + ξT2 φ(x)M−1(q)p+
∂H

∂q
, (13)

where ξ = [ξT1 ξ
T
2 ]T is the unknown parameter vector

and φ(x) is a user-defined matrix of basis functions. In
this work, we use fourier basis functions (Konidaris et al.,
2008). The parameter vector ξ of (13) is learned using
actor-critic RL. Prior to introducing the algorithm, we
provide a brief overview of RL actor-critic methods.

3. REINFORCEMENT LEARNING

Reinforcement learning is a semi-supervised, stochastic,
model-free optimal control method. The controller (in RL
termed the learning agent) achieves the required optimal
behaviour by constantly interacting with the system. In
each interaction, the agent applies a control action uk =
π(xk), which is a general nonlinear state-feedback law. The
control input uk results in a system transition to a new
state xk+1. Along with the state transition, a numerical
reward rk = ρ(xk, uk) is provided, which is often based on
the error between the new state and the desired final goal
x∗. In RL, the control objective is to maximize the long-
term cumulative reward, called the return. The expected
value of the return is represented by a value-function
(Sutton and Barto, 1998)

V π(xk) =

∞∑
i=0

γiρ(xk+i+1, π(xk+i)) =

∞∑
i=0

γirk+i+1, (14)

where k and i are time indices, 0 < γ < 1 is the discount
factor, and ρ is a user-defined, problem-specific reward
function providing an instantaneous reward r.

Depending on whether the RL algorithm searches for a
value function, for a control law or both, RL methods
are broadly classified into three subcategories (Grondman
et al., 2012):

• Actor-only: these methods directly search for an op-
timal control law.

• Critic-only: these methods learn an optimal value
function. The control law is then obtained from the
value function by one-step optimization.

• Actor-Critic (AC): these methods explicitly search
for an optimal control law – the actor. Additionally,
the critic learns a value-function and provides an
evaluation of the controller’s performance.

In the following section we provide a brief review of actor-
critic methods.

3.1 Actor-Critic

Generally, RL methods are used for systems having dis-
crete state-spaces and finite action-spaces. However, most
physical systems have continuous state-spaces and the con-
trol law also needs to be continuous. This problem is often
solved by using function approximation – for methods and
examples, see Chapter 8 in (Sutton and Barto, 1998) and
(Busoniu et al., 2010).

The AC method consists of two independent function-
approximators (Grondman et al., 2012). The critic ap-
proximates the value-function (14) using the parameter
vector θ ∈ Rnc and a user defined basis function vector
φc(x) ∈ Rnc

V̂ π̂(x, θ) = θTφc(x). (15)

Similarly, the actor approximates the policy by using the
parameter vector ϑ ∈ Rna

π̂(x, ϑ) = ϑTφa(x), (16)

where φa(x) ∈ Rna is a vector of user-defined basis
functions.

The reinforcement learning objective can be restated as
follows: Find an optimal policy π̂(x, ϑ), such that for

each state x, the discounted cumulative reward V̂ π̂(x, θ)
is maximized.

The unknown critic parameters are updated using the
gradient-ascent rule

θk+1 = θk + αcδk+1∇θV̂ (xk, θk), (17)

where αc is the critic update rate, and δk+1 is the temporal
difference, obtained as (Sutton and Barto, 1998)

δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk). (18)

The rate of parameter convergence can be increased by
using the eligibility trace ek ∈ Rnc , yielding the following
parameter update rule:

ek+1 = γλek +∇θV̂ (xk, θk),

θk+1 = θk + αcδk+1ek+1, (19)

where λ ∈ [0, 1] is the trace decay rate.

Using a zero-mean white Gaussian noise ∆uk as an explo-
ration term, the control input to the system is

uk = π̂(xk, ϑk) + ∆uk. (20)

The policy parameters ϑ of (16) are increased in the
direction of the exploration term ∆uk, if the resulting
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temporal difference δk+1 of (18) due to control input
(20) is positive. Otherwise they are decreased. The actor
parameter update rule in terms of the update rate αa is

ϑk+1 = ϑk + αaδk+1∆uk∇ϑπ̂(xk, ϑk). (21)

Remark: Similarly to the critic, eligibility traces can also
be used for the actor parameter update. For the sake of
simplicity, this is not used in the current work.

3.2 AIDA-AC algorithm

The algebraic interconnection and damping assignment
actor-critic algorithm (AIDA-AC) is constructed as fol-
lows. Consider the generic algebraic IDA control law in
(5), parameterize the matrix Fd as Fd(x, ξ) to obtain

π̂(x, ξ) =
(
gT (x)g(x)

)−1
gT (x)

(
ξTφ(x)︸ ︷︷ ︸
Fd(x,ξ)

∇xHd(x)−f(x)

)
,

(22)

where ξ is the unknown parameter matrix. These parame-
ters are updated by using the actor-critic scheme in Algo-
rithm 1. A block diagram representation of the algebraic
IDA learning algorithm is given in Fig. 1.

Cost FunctionLearning Algorithm

PlantControl Law 
    Eq (22)

Actor-Critic
refreward

Fig. 1. Block diagram representation of AC algorithm for
Algebraic IDA-PBC.

4. EXAMPLES

The AIDA-AC algorithm is evaluated for the pendulum
swing-up and stabilization task and the stabilization of a
magnetic-levitation system.

4.1 Pendulum swing-up and stabilization

Devising a single smooth energy-based control-law that
can achieve both swing-up and stabilization of a pendulum
is an arduous task, as explained by Åström et al. (2008).
Here, we show that by using the learning method of Sec-
tion 3.2 we are able to achieve swing-up and stabilization
of a pendulum with low controller complexity. We use a
laboratory setup shown in Fig. 2 along with a schematic
drawing of the pendulum.

The system dynamics are

Jpq̈ = Mpglp sin(q)− bq̇ +
Kp

Rp
u, (23)

where q is the angular position. System (23) can be written
in state-space form in terms of state vector x = (q, p)
where p = Jpq̇ is the momentum, see (Sprangers et al.,

Algorithm 1 Algebraic IDA-PBC actor-critic algorithm

Input: System (1), λ, γ, αaξ for actor, αc for critic.
1: e0(x) = 0 ∀x
2: Initialize x0, θ0, ξ0
3: for number of trails do
4: k ← 1
5: loop until number of samples
6: Execute: Draw action using (22), apply the

control input uk(x, ξ) = sat (π̂(xk, ξk) + ∆uk) to (1),
observe next state xk+1 and reward rk+1 = ρ(xk+1)

7: Temporal Difference:
8: δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk)
9: Critic Update:

10: for i = 1, . . . , nc do
11: ei,k+1 = γλei,k +∇θi,k V̂ (xk, θk)
12: θi,k+1 = θi,k + αcδk+1ei,k+1(x)
13: end for
14: Actor update:
15: for i = 1, . . . , na do
16: ξi,k+1 = ξi,k + αaξδk+1∆uk∇ξi,kuk(x, ξ)
17: end for
18: end loop
19: end for

q

lp

Mp

u

Fig. 2. Pendulum setup and schematic.

2012). We adopt the same parameter values as in Table
1 of (Sprangers et al., 2012). The objective is to find a
feedback control law u = β(x) resulting in a closed-loop[

q̇
ṗ

]
=

[
0 1

−F21(x) −b

] [
∇qHd(x)
∇pHd(x)

]
. (24)

The full system state is given by x = [q p]T . The desired
Hamiltonian is chosen to be quadratic in increments

Hd(x) =
1

2
γq(q − q∗)2 +

p2

2Jp
, (25)

where γq is a unit conversion factor and Hd(x) satisfies the
desired equilibrium condition (4) at x∗ = (q∗, p) = (0, 0).
Using (23)–(25) in (5) we get the control law as

β(x) = −F21(x)γq(q − q∗)−Mpglp sin(q)

= −ξTφ(x)γq(q − q∗)−Mpglp sin(q). (26)

The unknown vector ξ is learned using Algorithm 1 with
the actor and critic learning rates given in Table 1. For
other simulation parameters, see Table 2 of (Sprangers
et al., 2012).

Table 1: Learning rates for the pendulum swing-up task

Learning rate Symbol Value [Units]
Learning rate critic αc 0.01 [-]
Learning rate F21(x) αaξ 1× 10−8 [-]
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Two controllers are learnt: one in simulation and the other
on the physical system. Figure 3 illustrates the evaluation
of the learned control laws in simulation and experiment.
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Fig. 3. Simulation and experimental result for pendulum.

Due to the limited actuation, the pendulum first builds
up the required momentum by swinging back and forth.
After sufficient energy is achieved, the controller is able
to swing-up and stabilize the pendulum at the desired up-
right position.

4.2 Stabilization of magnetic-levitation system

The dynamics of the magnetic-levitation system (Hafner
and Riedmiller, 2011), illustrated in Fig. 4, are

Mq̈ = Mg − e2C1

2
(
C1 + L0(C2 + q)

)2 ,
ė = −R e(C2 + q)

C1 + L0(C2 + q)
+ u, (27)

where q is the position of the steel ball, and e = L(q)i is
the magnetic flux, a function of the current i through the
coil and the varying-inductance L(q) given by

L(q) =
C1

C2 + q
+ L0. (28)

The actuating signal is the voltage u across the coil. The
system parameters are given in Table 2.

Fig. 4. Schematic of the magnetic-levitation system.
Adopted from (Schaft, 2006).

Table 2: System parameters for magnetic levitation

Model parameters Symbol Value Units
Mass of steel ball M 0.8 kg
Electrical resistance R 11.68 Ω
Coil parameter 1 C1 1.6× 10−3 Hm
Coil parameter 2 C2 7× 10−3 m
Nominal inductance L0 0.8052 H
Gravity g 9.81 m/s2

For this system we obtain a control law u = β(x) with the
resulting closed loop:

 q̇ṗ
ė

 =

 0 1 0

1 −F22(x) F23(x)

0 −F23(x) −R




∂Hd

∂q
(x)

∂Hd

∂p
(x)

∂Hd

∂e
(x)


. (29)

The system state is x = [q p e]T , where p = Mq̇ is the
momentum. The desired Hamiltonian is again chosen to
be quadratic in increments:

Hd(x) =
1

2
γq(q − q∗)2 +

p2

2M
+

1

2L0
(e− e∗)2, (30)

with e∗ =
√

2Mg/C1

(
C1 + L0(C2 + q∗)

)
. The desired

Hamiltonian Hd(x) satisfies the equilibrium condition (4)
at x∗ = (q∗, 0, e∗)

T . The control law using (5) is

β(x) = −F23(x)
p

M
−R (e− e∗)

L0
+R

e(C2 + q)(
C1 + L0(C2 + q)

)
= −ξTφ(x)

p

M
−R (e− e∗)

L0
+R

e(C2 + q)(
C1 + L0(C2 + q)

)
(31)

The unknown parameter vector ξ of (31) is learnt using the
AIDA-AC algorithm 1. It must be noted that we did not
explicitly considered the matching condition so as to have
a higher freedom in learning. The simulation parameters
are given in Table 3.

Table 3: Learning parameters for magnetic levitation

Parameter Symbol Value Units
Trials − 100 -
Time per trial Tt 2 s
Sample time Ts 0.004 s
Decay rate γ 0.95 -
Eligibility trace λ 0.65 -
Learning rate critic αc 0.01 -
Learning rate F23(x) αaξ 1× 10−7 -

Due to physical constraints, the control input and sys-
tem states are bounded, and their respective ranges are
given in Table 4. A stabilizing control law without pre-
magnetization was learned in simulation. The resulting
learning curve and a sample simulation of the learnt con-
trol law are illustrated in Figures 5 and 6, respectively.
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Table 4: Bounds on system states and input

System state Symbol Value Units
Input voltage umax 60 V

umin −60 V
Position qmax 13 mm

qmin 0 mm
Momentum pmax 3× 10−1 kg m/s

pmin −3× 10−1 kg m/s
Magnetic flux emax 3 Wb

emin −3 Wb
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Fig. 5. Magnetic levitation learning curve.
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Fig. 6. Evaluation of learned control law for magnetic
levitation.

Although there is an input, the steel ball stays in the rest
position (i.e. 13mm) till 0.05 seconds since this is the time
required to magnetize the coil.

5. CONCLUSIONS

In this work we have presented a novel approach to obtain
the parameters of the algebraic IDA-PBC control law.
Actor-critic reinforcement learning algorithm is used to
learn the parameters. Thanks to the PBC control law
structure, the RL algorithm is augmented with prior
information which improves the learning performance. We
have observed that the learning algorithm proposed here
is less sensitive to model and parameter uncertainties, and
experimental results have shown faster learning times than
the standard actor-critic.

There are numerous open points that are yet to be ad-
dressed. For example, the negative semi-definiteness of the
derivative of the desired Hamiltonian is relaxed. The proof

of convergence of the proposed learning algorithm is yet to
be shown. Potential future work includes extending the RL
based algorithm to parameterized and non-parameterized
IDA-PBC, and extending the learning algorithms to ad-
dress tracking control.
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