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Abstract: Motor throughput is a standard measure of how rapidly information can be
transmitted through an input device (such as a mouse or wand) by a human user carrying
out point-to-point movement (also known as a Fitts’ task.) As low-cost motion tracking
systems become more prevalent, engineers are presented with increasing opportunities to control
operations using hand gestures. However, accurate analysis of motor throughput in such cases
may be difficult, as muscle tremors may prevent midair motions from coming to an absolute
stop, and visual obstructions may prevent endpoint data from being reliably captured. A lack
of accurate temporal and spatial endpoint information precludes any determination of motor
throughput. Inspired by Fitts’ information channel model, we derive a measure of instantaneous
motor throughput. Observation of this instantaneous measure demonstrates how the traditional
measure of information bandwidth, Fitts’ motor throughput, emerges during the course of an
aimed movement. Further, an experimental study demonstrates that instantaneous throughput
(ITP) profiles exhibit a common shape when plotted against normalized distance. We select
the moment of peak variance to be the most convenient landmark along the ITP trajectory
for computing an overall throughput value, and demonstrate that this new method compares
favorably with traditional throughput measures.

Keywords: Human factors, Information flow, Physiological models, Positional variance, Fitts’
hypothesis

1. INTRODUCTION

With the advent of low-cost tracking systems, a number
of new control challenges related to human gesturing are
becoming evident. Mid-air movements of the hand and
arm may be used to interact with large-screen displays
(Baudisch, 2006), move objects in virtual environments
(Liu et al., 2011), or teleoperate remote robots (Eliav
et al., 2011); all areas of potential interest to control
engineers. However, much of the literature related to
pointing and gesturing is associated with research into
human-computer interfaces (HCI). A standard practice of
the HCI field (Zhai, 2004) is to express the effectiveness
of a particular gesture or pointing device in terms of
“information throughput.”

For those in the control community, the notion of as-
sociating “information” with a moving body’s trajectory
may seem a bit unusual. This interpretation results from
the seminal work of Fitts (1954). Inspired by Shannon’s
information theory (Shannon and Weaver, 1949), Fitts as-
signed an informational value (measured in bits) to aiming
tasks of varying relative precision. He defined the index of
difficulty for a movement to be

IDFitts = log2

(

2D

W

)

, (1)

where D is the movement distance (or amplitude), and W
is the target width. (We use the subscript to denote Fitts’

original definition for task difficulty; a slightly modified
definition will be introduced shortly.) He further defined
an index of performance (IP) to capture the mean rate of
movement information transfer, which he expressed as

IP =
IDFitts

MT
, (2)

with MT representing mean movement time. This mea-
sure, also referred to as throughput, blends the performance
elements of speed and accuracy into a single parameter
that can be compared across differing task configurations.
Relying on experimental data, Fitts found the human mo-
tor system to behave as a bandwidth-limited information
channel, constrained in the amount of movement “infor-
mation” it can process per a given time unit. His notion
of an upper bound on the information processing rate is
herein referred to as the motor channel hypothesis.

Although the communication analogy used by Fitts to
describe motor behavior is conceptually informative, it
must be acknowledged that applying information theory to
motor control is potentially confusing. Any bridge between
Fitts’ ID parameter and Shannon’s definition of infor-
mation is tenuous at best. Unlike new data flowing into
Shannon’s information channel, the position and velocity
of a rigid limb cannot instantaneously change. Although
we follow convention in referring to the ID term as an
information measure, Fitts’ appropriation of information
theory terminology is to be considered descriptive, rather
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than explanatory (Baird, 1984). Reviews of HCI research
utilizing Fitts’ motor channel hypothesis can be found in
MacKenzie (1992) and Seow (2005). This paper attempts
to explain Fitts’ notion of information throughput in terms
of movement kinematics. This is accomplished by intro-
ducing the concept of instantaneous throughput (ITP).

2. MEASURING MOVEMENT INFORMATION

Throughput, as defined in (2), expresses the average rate
at which movement information is transmitted. Fitts found
throughput to remain “approximately constant over a
considerable range of movement amplitudes and tolerance
limits.” He theorized, therefore, that the rate of motor
information transfer is independent of task configuration.

Although Fitts’ ID measure is widely accepted, many
researchers have proposed alternate definitions that bet-
ter agree with experimental data (Plamondon and Alimi,
1997). A particular shortcoming of Fitts’ definition is that
his index of difficulty turns negative as D approaches zero
from above. One of the most widely-used alternative defi-
nitions (Soukoreff and MacKenzie, 2004; Zhai, 2004; Seow,
2005) is the “Shannon” formulation, so named because it
takes on a algebraic form that is similar to Theorem 17 in
Shannon and Weaver (1949). First proposed by MacKenzie
(1989), this formulation holds that

ID = log2

(

D

W
+ 1

)

. (3)

While this measure is always non-negative, the smallest
achievable ratio of D/W is 1/2 when the target is centered
on its own width and W > 0. We thus note a practical
lower bound of 0.585 on the Shannon formulation for ID.
Since the mathematical development shown below benefits
from a non-negative ID, the Shannon formulation of (3) is
used hereafter in this paper.

2.1 Effective motor information

Subjects carrying out repeated aiming or pointing trials
are usually unable to match their mean endpoint to the
target center. Additionally, they fail to distribute their
endpoints across the entire target width, either clustering
their endpoints too narrowly, or spreading their endpoints
beyond the target region (Zhai et al., 2004). This results in
a transfer of more or less information than is required by
the nominal task configuration (Soukoreff and MacKenzie,
2004). To compensate for the difference between nominal
and actual information transfers, motor information values
are often computed using measures for effective distance
(De) and effective target width (We). Effective distance is
the mean distance traveled for an ensemble of trials, while
the effective target width is frequently computed as

We = 4.133 · s (Df) , (4)

where s (Df) is the sample standard deviation of the
movement endpoints. The factor of 4.133 derives from
the maximal entropy associated with a one-dimensional
Gaussian distribution (Shannon and Weaver, 1949, p. 56).
Since subjects distribute their endpoints in an approxi-
mately normal manner (Crossman, 1960; Fitts and Rad-
ford, 1966), We also provides an estimate of how wide a
target is required to ensure that 96% of all movements ter-
minate within the target bounds. Matching the algebraic

form of (3), an effective index of difficulty can be defined
as

IDe = log2

(

De

We

+ 1

)

. (5)

This results in an effective throughput of

IPe =
IDe

MT
. (6)

2.2 Instantaneous throughput

This study proposes an instantaneous rate of information
transfer, analogous to Fitts’ mean rate. Consider an en-
semble of n > 1 trials. Let I(t) represent all information
transmitted by the ensemble between times t0 and t > t0,
with each trial starting at t0. Since information flow is
associated with limb movement, and such movements are
limited in size and speed, we assume I(t) to be continuous
and finite, with an initial value of I(t0) = 0. There must
exist, therefore, some instantaneous throughput function,
φ(t), whereby

I(t) =

∫ t

t0

φ(τ) dτ. (7)

Information is to be transmitted as quickly as possible in
rapid movement, making any reversal in the direction of
information flow counterproductive. We thus assume that
both I(t) and φ(t) are uniformly non-negative, such that

φ(t)

{

= 0, t < t0
≥ 0, t ≥ t0

. (8)

Once movement is initiated, additional information con-
tinues to be delivered as long as at least one trial from the
ensemble remains in motion. Let δk represent the instant at
which the kth trial is completed, where k = {1 . . . n}. Infor-
mation ceases to be conveyed when t ≥ max {δk} = δmax;
that is, when all endpoint data has been established. We
assume that IDe, as defined in (5), captures all motor
information delivered via limb motion.

2.3 Computing instantaneous throughput

When all ensemble movement is completed, I(δmax) = IDe.
For this reason, we let I(t) assume the algebraic form
shown for IDe in (5), while maintaining the relationship
of (7). Thus, we let

φ(t) =
dI(t)

dt
=

d

dt

[

log2

(

θ(t)

ω(t)
+ 1

)]

, (9)

where θ(t) and ω(t) are the instantaneous effective position
and instantaneous effective position spread. Let θ(t) be
equal to the mean ensemble position at time t, while
ω(t) = 4.133 · s(t), with s(t) representing the coincident
sample standard deviation for the ensemble. Since move-
ment data is usually sampled at discrete instances, the
above equations are next converted to a discrete form.

We assume position data is gathered during n trials of
a common task. These samples, are collected at intervals
of duration ∆. Each trial is retrospectively synchronized
to begin at time t = 0. Next, values for mean position
and sample standard deviation are calculated at each
sample index. Allow j = 1, 2, . . . , n to track the trial
number, and k = 0, 1, . . . , N to identify the sample index,
with N = ⌈δmax/∆⌉. Let d(j, k) represent the position
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Distance Target Nominal Nominal
Config. (deg) Width (deg) Fitts ID Shannon ID

1 15 5 2.58 2.00

2 15 2.5 3.58 2.81

3 30 5 3.58 2.81

4 15 1.25 4.58 3.70

5 30 2.5 4.58 3.70

6 60 5 4.58 3.70

7 30 1.25 5.58 4.64

8 60 2.5 5.58 4.64

9 60 1.25 6.58 5.61

Table 1. Experimental task configurations for
targeted forearm movement.

of trial j at time index k, with d(j, 0) = 0. Then the
discrete instantaneous effective position for sample index
k is denoted as

Θ(k) =
1

n

n
∑

j=1

d(j, k). (10)

A discrete instantaneous effective position spread at sam-
ple index k is defined as

Ω(k) = 4.133 · s(k) , (11)

where s(k) is the sample standard deviation of the n
position values measured at time t = k∆. Let Dk denote
numerical differentiation with respect to index k, and
allow I(k) to be discrete samples of I(t) at times t = k∆.
Following the structure of (9), it is possible to define the
rate of change in movement information at sample index
k as

Φ(k) = Dk {I(k)} = Dk

{

log2

(

Θ(k)

Ω(k)
+ 1

)}

, (12)

with Φ(k) being deemed the discrete instantaneous through-
put for a movement ensemble.

3. EXPERIMENTAL METHOD

Seven subjects (six male and one female) with no known
neurological deficits participated in this experiment. In-
formed consent was given by each subject prior to entering
the study, and none of the subjects were paid for their par-
ticipation. As self-reported, one subject was left-handed,
while the remainder were right-hand dominant. All sub-
jects were required to use their right arm in performing
aimed movement tasks. Subsequent reference to the seven
subjects is notated as S1 through S7.

3.1 Experimental setup

A freely rotating mechanical swing arm was attached to a
large wooden desk. Each subject placed their right forearm
atop the swing arm, with the knob of their right elbow
located on a rubber grommet centered on the vertical pivot
axis. Subjects were seated such that their right elbow was
horizontally aligned with the right shoulder, effectively
tying rotation of the test fixture swing arm to a subject’s
right forearm movement about the elbow joint.

Beginning with the swing arm abutting a vertical start
post, a single task trial consisted of having the subject
rotate their forearm, while grasping the swing arm handle,

away from their body until a pointer at the end of the
mechanical arm was positioned in front of, and inside
the width of, a vertical target. Multiple trials were made
in each of nine task configurations, detailed in Table 1.
Test sessions were segmented into two halves. During
each half, subjects ran 30 trials in each of the nine task
configurations, which took place in a random sequence
that was different for each subject.

3.2 Data acquisition

A BEI (Goleta, CA, USA) Model HS-25 Incremental En-
coder, having a resolution of 3600 cycles per turn, was used
to measure swing arm rotational position. This data was
stored using a US Digital (Vancouver, WA, USA) Model
USB4 Encoder Acquisition Device, which kept track of
the cumulative position count, storing data at a sampling
rate of 500 Hz. Accelerative data was captured using a
capacitive triaxial accelerometer, Model 3713 from PCB
Piezotronics (Depew, NY, USA), with a sensing range of
±20 g. Both rotary encoder and accelerometer signals were
filtered offline using a 9th-order Butterworth lowpass filter
with a cutoff frequency of 18 Hz. Velocity values were
produced by cumulatively summing acceleration data for
each trial, after offsetting the acceleration data to have
zero mean. The resulting velocity traces were found to
closely match those obtained by differentiating position
data.

4. RESULTS

Oscillations due to muscle tremor remained evident in
the position data at the beginning and end of each trial.
It was therefore necessary to algorithmically determine
the instances of movement initiation and cessation. Each
movement was deemed to start 30 ms after its acceleration
turned uniformly positive, in advance of reaching an accel-
erative maximum. As acceleration passes from negative to
positive, limb velocity is necessarily at a local minimum.
Thus, all movements were aligned near this kinematic
roadmark, but were then given an additional 30 ms to
return to a velocity of approximately zero. Each trial was
were declared complete when the rate of rotation slowed
to 6.5◦ per second and stayed below that velocity for at
least 200 ms. Unpaired two-sampled t-tests were used to
check for learning effects; only one subject in a single
configuration was faster during the first five trials of the
second block, as compared to the first five trials of the first
block. Hence, no substantive learning effect was detected.

4.1 Instantaneous throughput (ITP) profiles

Estimates of instantaneous throughput were calculated,
in accordance with (12), at 2 ms intervals for all seven
subjects in each of nine task configurations. Values for
instantaneous throughput Φ(k) were obtained by pass-
ing I(k) data through a low-pass (18 Hz) differentiating
filter. Results for S3, who posted the median movement
time, are displayed in Fig. 1(a). Previous studies have
shown positional variance in aiming tasks to display a
single bell-shaped peak centered in the middle of the
movement (Todorov et al., 2005; Selen et al., 2006). Thus,
points of peak positional variance are easy to extract from
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Fig. 1. Progression of instantaneous throughput in each of nine task configurations. Leading markers (light gray) indicate
points of peak positional variance, while trailing markers (dark gray) denote algorithmically-determined instances
of movement termination. ITP is plotted against movement time in (a), against normalized time in (b), and against
normalized movement distance in (c). Averaging the nine ITP curves from (c) produces the solid black trace shown
in (d). The square marker identifies the point of peak variance. Conventional measures of throughput, IP and IPe

are shown as horizontal lines.
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Fig. 2. Average of mean ITP curves across all seven subjects. The square white marker indicates the mean peak variance

ITP, also notated as IPi. A running average of the Φ(ζP ) curve is shown as a dashed line.

kinematic data, and are denoted in Fig. 1(a) by the leading
light gray markers. Trailing dark gray markers indicate
the mean times of movement cessation in each of the nine
test configurations. Declines in ITP, evident beyond the
trailing markers, occur as slower-than-average trials move
into the target zone, thereby reducing positional spread.

Although ITP curves should theoretically start from zero,
seven of the nine traces in Fig. 1(a) begin with slightly
negative values. This situation stems from allowing sub-
jects to initiate movement from non-stationary states, and
thus having to algorithmically approximate (as described
above) a stationary start. After 15 ms, all nine configura-
tion traces turn positive. Negative ITP values can also be
seen later in the movements; as will be shown, this is an
indicator that the movement is nearing its endpoint.

Beyond 100 ms, the configuration trajectories of Fig. 1(a)
begin to diverge; the only significant similarity becomes
a slow oscillatory decline toward zero as movement time
increases. However, considering the possibility of propor-
tional timing, these curves are plotted against normalized
time in Fig. 1(b). Again, there doesn’t seem to be a great
deal of commonality in the time-normalized ITP profiles
beyond the first third of the movement. We next examined
the ITP curves as functions of normalized position, as
shown in Fig. 1(c). This graph significantly skews the data
at movement initiation, pushing the initial ITP spikes to
the far left edge, since they occur while limb velocity is
just beginning to climb, and limb displacement remains
near zero. All ITP oscillations taking place beyond 300 ms
are pushed to the far right edge, as the movements are
substantially complete after the first quarter-second of
movement time.

Although they are not identical, there is a noticeable
uniformity to the configuration ITP profiles seen in panel
(c). Each ITP curve rises smoothly from zero toward a
maximum that occurs near ζP = 0.95. A rise of more than
22 bits/s is evident for S3 in the top trace of panel (c),
indicating a substantive change in ITP during the ensem-
ble movement. All seven subjects revealed this type of
positive incline, with the level of instantaneous throughput
rising as the movement proceeds. During the movement,
the spread of ITP values, from the lowest starting value
to the highest peak value, across all nine configurations
for each of the seven subjects was, respectively: 13.92,
13.82, 23.47, 10.54, 12.91, 29.29, and 10.26 bits/s. This

indicates that the average incline seen for S3 is steeper,
by a nearly 2:1 margin, than that for 5 of the remaining 6
subjects. To provide a gauge of mid-movement spread, the
standard deviations of each subject’s ITP values, at points
of peak variance, were, respectively: 0.75, 0.62, 1.22, 0.36,
1.25, 1.07, and 0.46 bits/s. Thus, when compared to the
other six subjects, S3 produced one of the steepest inclines,
and the largest separation between individual IPT traces.
Traces for remaining subjects are mostly flatter and more
tightly clustered.

Averaging the nine traces of Fig. 1(c), with respect to
normalized position, produces the solid black line shown
in Fig. 1(d). The white marker identifies the mean peak
variance value of 6.64 bits/s, which was computed by tak-
ing the average peak variance values, Φ(kpv), for the nine
task configurations. For reference, conventional measures
of IP and IPe are shown as horizontal lines.

Calculating an overall mean ITP for all seven subjects
produces the curve shown in Fig. 2. The mean peak
variance ITP of 5.51 bits/s is identified by the white square
marker. For comparison, the IPe value is 6.29, while IP is
6.18 bits/s. Examination of similar data gathered for an
as-yet-unpublished study (collected under the same test
protocol, but using lower task difficulties), indicates that
the point of mean peak variance ITP may lie above the
IPe line, as well as below it. The notation IPi is hereafter
used in referring to this peak variance point, which we call
the peak variance instantaneous throughput.

4.2 Effective throughput

Based on the ITP definition, we expect I(t)/t to approxi-
mate IPe for t ≥ δmax. Let the running average of φ(t) with
respect to t be denoted as T (t). Since φ(t) was defined as
being uniformly non-negative, so is T (t). Average ITP as
movement concludes is

T (δmax) =
IDe

δmax
. (13)

If all movements in the ensemble are of the same duration,
then MT = δk=1...n = δmax, and T (δmax) = IPe. How-
ever, when multiple trials from an ensemble have unequal
temporal lengths, the mean movement time is less than
the maximum trial duration; MT < δmax. Therefore, the
traditional index of performance is greater than terminal
value of the ITP running average, as
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T (δmax) =
I(δmax)

δmax
=

IDe

δmax
<

IDe

MT
= IPe (14)

This effect can be seen in Fig. 2, where the running average
is less than IPe as the movement concludes. The extent
of this inequality depends, of course, on the difference
between MT and δmax. The standard deviation of the IPe

values gathered in this study was 1.45 bits/s, while the
standard deviation of the Φ(kpv) values (that went into
the computation of IPi) was 1.51 bits/s. Thus, there is a
similar spread in these two throughput measures.

5. DISCUSSION

This study examines only “unfinished” movements; that
is, movements that do not come to complete stops. Once
inside the target region, subjects continued to exhibit
slight movement tremors. Thus, the IPe values in this
study are based on algorithmically-determined movement
durations and endpoint locations. Since IPe is used as a
reference for evaluating the validity of IPi values, a future
investigation needs to compare the IPe and IPi values for
a discrete aiming task in which all movements halt fully.
Nonetheless, a method has been shown for determining
motor information throughput in the absence of temporal
or spatial knowledge of aimed movement endpoints, thus
providing an alternate computation of motor throughput
in situations where in-situ measurements of endpoint data
cannot be gathered.

5.1 Relationship to Fitts’ motor channel hypothesis

Fitts’ speculated that mean movement throughput was
constant for all aiming movements of a given type, regard-
less of task configuration. The least complicated means for
achieving this end, absent all other physiological objectives
and constraints, would be for the ITP to remain constant
throughout the movement. Prior studies have not inves-
tigated throughput on a continuous basis, as established
throughput definitions considered only the mean rate of
information flow. This hurdle is eliminated with a defini-
tion for measuring throughput on an instantaneous basis.

Our experimental data indicates that the ITP varies sig-
nificantly as the movement progresses. Nonetheless, ITP
curves take on a common shape when plotted against nor-
malized position. Thus, Fitts’ hypothesis can be explained
in terms of kinematic similarities. While the relationship
between distance traveled and spatial variance is common
across tasks of varying difficulty with respect to normalized
distance, the information flow is certainly not constant.
This understanding serves to remove some of the mystery
from Fitts’ notion of “motor information.”

5.2 Conclusion

A method for determining aimed movement throughput
without endpoint data has been described. Experimental
data suggests that this method produces results that are
comparable with traditional measures requiring tempo-
ral and spatial knowledge of movement endpoints. This
methodology also suggests that Fitts’ motor hypothesis
is due to kinematic similarities in discrete aiming tasks,
rather than an ongoing regulation of motor information

throughput. Alignment of ITP curves on a normalized-
displacement basis suggests that further research needs to
be conducted into how the body might regulate movement
via displacement-based, rather than time-based, control
methods.
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