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Abstract: As pointed out in Baillieul and Antsaklis (2007), in the three decades since re-
searchers at Bosch GmbH launched the technology of networked control systems for automobiles,
there has been an explosion of interest in both the theory and deployment of real-time networks
of devices. This interest is especially apparent in much of the current research on the smart grid.
In what follows, recent work to illuminate the challenges and benefits of various communication
and control protocols within pools of networked energy consuming devices and energy providers
is discussed. We compare what can be possibly achieved in demand side management under
two different protocols between the smart building operator [SBO] and the distributed energy
consuming appliances. In the first protocol carrying the complete appliances’ state information,
the SBO is able to design a control law to reduce consumption uncertainty and to guarantee con-
sumers’ satisfaction. In the second protocol that communicates binary appliances’ information,
the scheduling performance reflects lower consumer utility and greater consumption uncertainty.
In addition, we discuss the optimal energy reserve purchasing strategy for the SBO that strikes
a balance between having excess capacity and having energy deficiency. Numerical simulation
illustrates the protocols.

Keywords: Load networks, smart grid, demand response, direct load control, communication
and control protocol

1. INTRODUCTION

The realization of the full potential of the Smart Grid
heavily relies on information exchange between distributed
nodes in this electric networked control system. These
nodes include communication enabled local appliances
at the lower level, the SBO with control authority at
the middle level, and the ISO who manages the grid at
the higher level. To achieve the promise of demand side
management, intermittent interactions among the three
levels are needed, and in a growing body of literature, a
variety of control and optimization solutions have been
proposed that include the reduction of peak consumption
and uncertainty in Lu et al. (2005), Samadi et al. (2013),
the provision of dynamic ancillary services in Alizadeh
et al. (2012), Caramanis et al. (2012), etc. Parallel to these
solutions, a fundamental problem is to understand how
different protocols for information exchange facilitate the
operation of the smart grid. This motivates us to consider
the networked information aspects of the smart grid,
and more specifically communication protocols needed to
maximally realize the potential of grid-friendly appliances
in providing demand response.

The contribution of this paper is to establish a rough
hierarchy of the effectiveness of different control and com-
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munication strategies based on recent work reported in
[Zhang and Baillieul (2012), Zhang and Baillieul (2013)].
We focus our attention on heating and cooling appliances
since these have the greatest capacity for demand side reg-
ulation response. A particular control protocol called the
Packetized Direct Load Control [PDLC] is proposed based
on the concept of an energy packet that is distributed to
local appliances. The PDLC framework can be used on
top of two communication protocols that contain vastly
different levels of information exchange between the SBO
and the distributed appliances. The baseline case is one
in which grid friendly appliances communicate essentially
complete information about their states–including the am-
bient temperature of their thermal loads and their status
of operation (time spent since becoming idle or time spent
since commencing operation). The alternative protocol
communicates information that is much courser. In this
case the appliances provide only binary information to the
SBO – a 0 if the appliance does not need to change its
operating state (from either operational or idle) or a 1
if it senses the need to change its operating state. After
reviewing the optimal performance of both protocols, we
present a comprehensive comparison of the two protocols
that explains the different roles of the SBO, the contrast
in terms of the loss of consumer utility, and the increased
system uncertainty due to an essential information loss in
passing information from complete to binary. We further
show that when the SBO is constrained to binary informa-
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tion, there is a trade off for the SBO to choose the proper
value of energy packet length δ where a small value of
δ will reduce the mean time for appliances to get energy
packets with the potential of increased system uncertainty,
and vice versa. Furthermore, we propose an optimization
framework for the SBO to determine the optimal amount
of energy reserves to purchase from the ISO when binary
information presents. This strategy minimizes the sum of
a penalty for excess capacity Ex(m, δ) and for capacity
deficiency De(m, δ) when the energy reserve level m (pack-
ets) and choice of packet length δ are provided. In the
course of our derivation, we show monotonicity properties
of the excess capacity and the capacity deficiency when
the SBO either changes the value of m or the value of δ.
These monotonicity properties guarantee the existence of
the optimal strategy with purchase m?(δ) that balances
the two costs for a given packet length δ. We also note
that the optimal energy reserve strategy m?(δ) tends to
increase when δ increases.

The paper proceeds as follows. Sec. 2 formally defines en-
ergy packet and briefly reviews two control/communication
protocols between the SBO and the distributed appliances.
Sec. 3 compares the system uncertainty and implicit model
assumptions of the two systems. Sec. 4 proposes an optimal
energy reserve purchasing strategy that strikes the balance
between having too much and too little capacity. Sec. 5
presents simulations that verify the theoretical results.
Sec. 6 concludes.

2. COMMUNICATION BETWEEN THE SBO AND
THE DISTRIBUTED APPLIANCES

We discuss the control performance that can be achieved
when the communication channels are established between
the SBO and the distributed appliances. Each appliance
is connected with a communication channel that can
transmit the state information regulated by the appliance.
All the information is then sent to the SBO who is in
charge of the energy scheduling of the building with the
authority to exercise direct control of the on/off switch of
appliance once the consumers provide the comfort settings.
Unlike traditional energy distribution, the SBO would
dispatch energy to all appliances in the form of energy
packets which are defined as follows.

Definition 1. An energy packet for a given appliance is a
fixed time interval δ during which electricity is consumed
at the appliance’s rated power with its nominal voltage
and current.

The electricity consumption of an appliance with binary
intermittent operating state can be view as a consecutive
consumption of energy packets, see Fig. 1. The correspond-
ing direct load control [DLC] protocol based on the energy
packet is therefore called packetized direct load control
[PDLC]. In this protocol an appliance will consume one
energy packet if authorized, and the SBO can re-authorize
additional energy packets after time δ based on the infor-
mation received within δ. We will use the control of air
conditioners [AC] as an illustrative example for the rest of
the paper. The control of the AC can be easily extended
to other thermostatic appliances.

Fig. 1. Electricity consumption in the operating cycle can
be viewed as consecutive needs of the energy packets.

2.1 PDLC with Complete State Information

We provide a baseline control result that can be maximally
achieved under an ideal communication protocol. To be
specific, we assume the communication channel enables the
SBO to acquire real time temperature information from
the sensors that are installed around the AC. The SBO
plans to provide a certain number of energy packets over
time to serve the needs of all appliances in the building.
There are two challenges for the SBO: 1) Determine
the right amount of energy to purchase based on the
information collected from all appliances, and 2) consume
at the energy level that has been purchased with minimum
deviation and guarantee consumers’ comfort.

As for AC temperature control, each consumer i will
provide a preferred set point T iset, and the objective
for successful temperature regulation is to control the
temperature within a small temperature range ∆i with
T iset ∈ ∆i. We use the model in Ihara and Schweppe (1981)
to represent the evolution of the temperature T (t)

d

dt
T (t) =

Tout − T (t)− Tgu
τ

, (1)

where Tout is the outside temperature, Tg is the tempera-
ture gain when the AC operates, τ is the effective thermal
time constant, and u is binary specifying the on/off oper-
ating status. Denoting the total number of appliances by
N , we show that the PDLC protocol can determine the
right number of energy packets that need to be provided
to the network of appliances.

Proposition 1. If the SBO purchases and schedules a fixed

number m = (NTout −
∑N
i=1 T

i
set)/Tg of packets, then

the average room temperature converges to the average

set point lim
t→∞

N∑
i=1

T i(t) =
N∑
i=1

T iset where T i(t) is the

temperature at time t for appliance i, staring from any
initial conditions T i(0), i = 1, . . . , N . The system reaches
the steady state thermal equilibrium [SSTE].

In addition, the SBO can schedule exactly m packets at
any time to guarantee that all consumers’ room temper-
atures can be controlled to lie within their designated
comfort bands by properly choosing δ.

Proposition 2. Assuming that the system reaches the
SSTE at time t? and that T i(t?) ∈ ∆i,∀i, then there
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exists a δ > 0 such that if the fixed number of m packets
are allocated for time t ≥ t?, then all consumers’ pre-
ferred temperatures can be properly controlled to satisfy
T i(t) ∈ ∆i for all t ≥ t?.

Both Proposition 1 and 2 are proved in Zhang and Baillieul
(2012). From a practical point of view, the SBO may not
be able to acquire real time complete information from
all appliances due to consumer privacy issues, inaccurate
temperature monitoring, etc. This motivates us to consider
a constrained communication scenario. Nevertheless, the
above results on PDLC establish an important baseline of
optimal performance that can be achieved by an SBO in
a building micro grid.

2.2 PDLC with Binary State Information

We consider next what can be maximally achieved with
the same energy level, where m appliances are allowed
to operate at the same time in the case that constrained
binary information is transmitted from local appliances to
the SBO. Binary information means that the appliance will
send a request signal to the SBO if it wishes to consume
energy or a relinquish signal if it does not need energy. The
SBO, after receiving the request, will authorize energy if
the current number of operating appliances is less than m;
otherwise the authorization is delayed until some appliance
sends a relinquish signal.

We can model the request and relinquish process as a queu-
ing system with Markov arrivals and departures. Assuming
the request rate from an idle AC is λ, and the relinquish
rate from an operating AC is µ, then the system can be
described as a multi-server (maximum m servers) closed
loop queuing system (N appliances), namely an M/M/m
queuing system. From standard queuing system theory,
we can associate a mean waiting time (MWT) WM/M/m

with this system (Kleinrock and Gail (1996)). This means
consumers will on average wait for WM/M/m to get en-
ergy when their temperatures reach the threshold Tmax.
This can lead to an unfair energy dispatch where some
consumers consume electricity continuously but other con-
sumers who are in greater need have to wait to get energy.

The notion of energy packet can be used to guarantee
fair energy share. The idea is to share m energy packets
authorization at any time t among appliances such that we
can reduce the MWT for the appliance pool. In addition,
we wish to reduce the total waiting time (TWT) for an
appliance to receive the necessary number of packets in
an operating duty cycle. When the SBO schedules energy
packets with fixed duration δ, the system can be described
as a multi-server queuing system with deterministic service
time δ and queue re-entries with probability p(δ), namely
an M/D/m system. An appliance will return and request
an additional packet if it does not get the desired level of
energy within δ. This probability is p(δ) =

∫∞
δ
µe−µtdt =

e−µδ; otherwise with probability 1 − p(δ) an appliance
will switch to the idle operating state. The MWT to
get an energy packet for the M/D/m system can be
approximated according to Kleinrock and Gail (1996), by

WM/D/m(δ) ∼=
WM/M/m

WM/M/1
WM/D/1(δ), (2)

where WM/M/1 and WM/D/1(δ) are the MWT for the sin-
gle server system with the exponential and deterministic
servers, respectively. In order to receive the desired amount
of energy in an operating cycle, the expected number of
energy packets that need to be requested is E(δ, n) =
1/[1− p(δ)]. Therefore the TWT to get desired number of
energy packets is TM/D/M (δ) = WM/D/m(δ)E(δ, n). We
derive the following limits to guarantee that the MWT
is reduced while the TWT remains at the same level for
binary information PDLC (Zhang and Baillieul (2013)).

Proposition 3. Both WM/D/M (δ) and TM/D/M (δ) are
monotonically increasing functions of δ. Moreover,

lim
δ→0

WM/D/m(δ) = 0,

lim
δ→0

TM/D/m(δ) = WM/M/m.
(3)

3. COMPARISONS OF THE TWO PROTOCOLS

3.1 Uncertainty Comparison

We show that the SBO can completely reduce the demand
uncertainty around the average consumption level of m
packets if (a) it can directly allocate energy with finely
quantized packet duration δ, and (b) it has real time
temperature information from all the appliances. In the
control protocol based on binary information, there is an
associated probability distribution p̄(n, δ) for the number
of consuming appliances n = 0, . . . ,m in steady state. This
distribution is determined by the steady state probability
distribution of the number of appliances p(x, δ) for x =
0, . . . , N in the queue. We analyze p(x, δ) as follows.

When x appliances are in the queue at time t, k =
min(x,m) servers are operating to serve the appliances
with packet duration δ. All k appliances will finish the
energy packet [t, t+ δ] by the end of the interval and they
will independently decide whether to request additional
packets. With probability p(δ) = e−µδ, an appliance will
request an additional packet and there is no departure
in this case. With probability 1 − p(δ) = 1 − e−µδ, an
appliance will switch into the idle state that results in
one departure. Since the probability of departure linearly
increases with the departure rate for small value of δ, the
departure rate for an appliance is (1 − p)/δ. Therefore
the departure rate with k operating appliances is k[1 −
p(δ)]/δ. In addition, the arrival rate that packet requests
are received from idle appliances is (N−x)λ. We can solve
for the steady state probability distribution p(x, δ) based
on the departure/arrival rate

p(x, δ)(N − x)λ = p(x+ 1, δ)k[1− p(δ)]/δ, (4)

where k = min(x,m). This yields

p(x, δ) =

{ p(0, δ)(Nx)r(δ)x, x < m

p(0, δ)
(
N
x

)
r(δ)x x!

mx−mm!
, x ≥ m,

(5)

where r(δ) = λδ
1− e−µδ

, m = Nλ/(λ + µ) is the average

packet level, and p(0, δ) is the normalizing factor

p(0, δ) =

[
m−1∑
i=0

(
N

i

)
r(δ)i +

N∑
i=m

(
N

i

)
r(δ)i

i!

mi−mm!

]−1

.

(6)
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This can be used to define

p̄(n, δ) =

{ p(n, δ), n = 0, . . . ,m− 1
N∑
k=m

p(k, δ), n = m.
(7)

In simulation when we chose a small value of δ, the vari-
ance of the number of consuming appliances n approached
the variance of the system that does not use energy pack-
ets. We state this property formally as follows.

Proposition 4. Let q(x) denote as the probability distribu-
tion of the number of appliances x in the queue that are
not using energy packets, and let q̄(n) be defined by q(x)
similar to (7). Then we have lim

δ→0
p̄(n, δ) = q̄(n) for all n.

Proof. Based on queuing theory in Kleinrock and Gail
(1996), q(x) is given by

q(x) =

{ q(0)
(
N
x

)
(λ/µ)x, x < m

q(0)
(
N
x

)
(λ/µ)x x!

mx−mm!
, x ≥ m.

(8)

Note that lim
δ→0

r(δ) = λ/µ. Therefore p(x, δ) equals to q(x)

when δ → 0 and the Proposition holds. 2

In simulation, we also note that the variance of n decreases
as δ increases. This property is hard to prove due to the
complex structure in (5) and (6). We provide a proof for
the special case when λ = µ. The result is stated as follows.

Proposition 5. When λ = µ, the variance of the number
of consuming devices n decreases as δ increases.

Proof. When λ = µ, we have N = m(λ + µ)/λ = 2m.
First we prove that for n = 0, . . . ,m− 1, p̄(n, δ) decreases
when we increase δ. We take a derivative to determine the
change of p̄(n, δ)

d
dδ
p̄(n, δ) = d

dδ

[(
2m
n

)
r(δ)n/p(0, δ)

]
,

=
[
d
dδ

(
2m
n

)
r(δ)n]p(0, δ) +

(
2m
n

)
r(δ)n[ d

dδ
p(0, δ)

]
p(0, δ)−2.

(9)
We only need the sign of the derivative to determine the
monotonicity of p̄(n, δ). It can be verified that the sign in
(9) equals the following

sgn(
d

dδ
p̄(n, δ)) =

m−1∑
i=0

(2m
i

)
r(δ)

i
(n−i)+

2m∑
i=m

(2m
i

)
r(δ)

i
(n−i)

i!

m
i−m

m!
.

(10)

Since the terms in the second summation are negative and
i!

mi−mm!
≥ 1, we have

sgn( d
dδ
p̄(n, δ)),

≤
m−1∑
i=0

(
2m
i

)
r(δ)i(n− i) +

2m∑
i=m

(
2m
i

)
r(δ)i(n− i),

≤
m−1∑
i=0

(
2m
i

)
r(δ)i(n− i) +

2m∑
i=m+1

(
2m

2m−i

)
r(δ)i(n− i),

=
m−1∑
i=0

(
2m
i

)
r(δ)i(n− i) +

m−1∑
i=0

(
2m
i

)
r(δ)2m−i(n− 2m+ i),

≤
m−1∑
i=0

(
2m
i

)
[r(δ)i − r(δ)2m−i](m− 1 − i).

(11)

The second inequality is derived by dropping the negative
term

(
2m
m

)
r(δ)m(n − m) and noting that

(
2m
i

)
=
(

2m
2m−i

)
.

The third inequality is derived by substituting the maxi-
mum value of n which is n = m−1. When δ > 0, r(δ) > 1,
and the term r(δ)i − r(δ)2m−i is negative, the above sum-

mation is negative and d
dδ
p̄(n, δ) < 0 for n = 0, . . . ,m−1.

Therefore p̄(n, δ) decreases for n = 0, . . . ,m − 1. Conse-
quently p̄(m, δ) increases as the sum of probability equals
to 1.

From (5) and (7), we know that p̄(n + 1, δ) ≥ p̄(n, δ) for
all δ and n = 0, . . . ,m − 1 when λ = µ. Therefore when
we increase δ, the probability distribution p̄(n, δ) will be
concentrated more to the state n = m that decreases the
variance of n. 2

Remark. λ = µ is the scenario when the probability dis-
tribution of the number of appliances in the uncontrolled
queueing system has the maximum uncertainty (variance
and entropy). When λ < µ (λ > µ), the average aggre-
gated level of consumption shifts to the right (left) from
the half consumption level that reduces the uncertainty of
the system.

From the above proposition, we see a trade off between the
waiting time performance and the variance of the energy
consumption, namely when we decrease the value of packet
duration, we can reduce both the MWT and the TWT
with a sacrifice of growing the consumption variance.
The good news is that this variance is bounded above
by the variance generated by the protocol that does not
use packetized energy. This means we can always achieve
a variance reduction with the control protocol based on
energy packets. This discussed further in Sec.5.

3.2 Model Comparison

We will end this section by discussing the two underlying
models which the SBO assumes to characterize the be-
haviours of appliances in the buildings. In the first model
(1) is a drift process that results in a deterministic duty
cycle. This is different from the second model in which
exponential inter-arrival time is assumed. To transform the
deterministic model into a stochastic model, we assume
that consumers’ random behaviors will affect the thermal
model by contributing i.i.d Gaussian random variables
w(t) ∼ N(0, σ2) between each interval [t, t+dt]. Therefore
the contribution introduced by the randomness between
time [s, t] is a Brownian diffusion process. When the out-
side temperature is far from the set point such as in the hot
summer or cold winter, the drift rate (Tout − T )/τ can be
viewed as a constant (Tout− Tset)/τ . Hence the stochastic
thermal model becomes the following drift-diffusion pro-
cess

dT = (Tout − Tset)/τdt+ σdB(t). (12)

The inter-arrival time for an idle appliance to request an
energy packet is the first passage time that the tempera-
ture rises from Tmin to Tmin + ∆ which is inverse Gaussian
distributed (Karatzas and Shreve (1991)):

p(t) =
∆√

2πσ2t3
exp

[
− [∆− (Tout − Tset)t/τ ]2

2σ2t

]
. (13)

To have a reasonable choice of λ in the Markov model, we
need to match the mean arrival time to the mean time of
the first passage,
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1

λ
=

∞∫
t=0

tp(t)dt =
∆τ

Tout − Tset
. (14)

Hence we choose λ = Tout − Tset
∆τ . When the first order

information is matched, we consider the proximity of the
second order information. The variance of the exponential

inter-arrival time model is ( ∆τ
Tout − Tset

)2. The variance of

the first passage time model is ∆σ2τ3

(Tout − Tset)
3 . Therefore

the variance of the two models will be equal when the

variance of the noise satisfies σ2
? =

∆(Tout − Tset)
τ . If the

variance of the noise is around σ2
?, we will see in Sec. 5 that

the Markov model can accurately capture the duty cycle of
the thermal process. If the variance of the noise is too large
or small, then it will corrupt the accuracy of the Markov
model with exponential duty cycle time assumption.

4. OPTIMAL PACKET RESERVES FOR THE SBO

In this section we relax the restriction that in the binary
information protocol the SBO will purchase the average
packet level m = Nλ/(λ + µ). Instead, we discuss the
optimal procurement level m? such that the SBO can
balance between the risk of purchasing too much energy
and the risk of having a long requesting queue. Based
on the steady state probability distribution of the queue
in (5), the excess capacity, which is related with the
expected number of packets consumed in steady state, can
be defined for a pair of {m, δ}.

Ex(m, δ) =

m−1∑
x=0

p(x, δ)(m− x). (15)

In addition to the expected excess capacity, there is an
associated expected capacity deficiency that characterizes
the expected number of consumers queued in the system.
We define the capacity deficiency as follows

De(m, δ) =

N∑
x=m+1

p(x, δ)(x−m). (16)

An optimal procurement level of energy packets will de-
pend on the value of Ex(m, δ) and De(m, δ). The following
result describes the dependence Ex(m, δ), De(m, δ) on a
pair of {m, δ}.
Proposition 6. Two properties hold:

(1). The expected excess capacity Ex(m, δ) is a mono-
tonically increasing function of m for fixed δ, and is a
monotonically decreasing function of δ for fixed m.

(2). The expected capacity deficiency De(m, δ) is a mono-
tonically decreasing function of m for fixed δ, and is a
monotonically increasing function of δ for fixed m.

Proof. (1). We first prove that Ex(m, δ) monotonically
increases as a function of m. When the SBO purchases m
packets, denote the normalizing constant in (5) by

N(m) =

m−1∑
i=0

(
N

i

)
r(δ)i +

N∑
i=m

(
N

i

)
r(δ)i

i!

mi−mm!
. (17)

We consider the purchasing level n = m + 1. Denote the
normalizing constant for this purchase level by N(n), it
can be verified that

N(n)−N(m)

=
m∑
i=0

(
N
i

)
r(δ)i +

N∑
i=m+1

(
N
i

)
r(δ)i i!

(m+1)i−m−1(m+1)!

−
m−1∑
i=0

(
N
i

)
r(δ)i +

N∑
i=m

(
N
i

)
r(δ)i i!

mi−mm!

=
N∑

i=m+1

(
N
i

)
r(δ)i

[
i!

(m+1)i−mm! −
i!

mi−mm!

]
< 0.

(18)

Denote p(x, δ,m) as the steady state probability distribu-
tion that x appliances are in the queue when the SBO
has purchased reserves of m packets from the ISO and
authorizes packet duration δ, then p(0, δ,m) = N(m)−1

and p(0, δ, n) = N(n)−1. We have

p(0, δ,m) < p(0, δ, n). (19)

From (5) and (19) we have

p(x, δ,m) < p(x, δ,m+ 1), ∀x < m. (20)
Based on the definition of excess capacity

Ex(m, δ) − Ex(n, δ)

=
m−1∑
x=0

p(x, δ,m)(m− x) −
m∑

x=0

p(x, δ,m+ 1)(m+ 1 − x)

<
m−1∑
x=0

p(x, δ,m+ 1)(m− x) −
m∑

x=0

p(x, δ,m+ 1)(m+ 1 − x)

= −
m−1∑
x=0

p(x, δ,m+ 1) − p(m, δ,m+ 1) < 0.

(21)

The above inequality indicates that the excess capacity
increases as the SBO increases the purchasing level m.

We next prove that Ex(m, δ) monotonically decreases
as a function of δ. We investigate how the steady state
probability distribution in (5) will change as a function of
δ. We take the derivative with respect to δ and focus on
the sign of the derivative to get

sgn[ ddδp(x, δ)]

= sgn[
m−1∑
i=0

(
N
i

)
(x− i)ri(δ) +

N∑
i=m

(x− i)ri(δ) i!
mi−mm! ]

(22)

It can be verified that sgn[ d
dδ
p(0, δ)] < 0 and that

sgn[ d
dδ
p(N, δ)] > 0. Since the value in the square bracket

in (22) is a monotonically increasing function of x, the sign
in (22) only changes once. There exists a value x? such that

sgn[
d

dδ
p(x, δ)]

{
≤ 0, x ≤ x?

≥ 0, x ≥ x? + 1
. (23)

Now consider a slight decrease of packet length from δ to
δ̄, which results in a change in the probability distribution
from p(x, δ) to p(x, δ̄) for each state x with corresponding
probability change ∆(x) = p(x, δ)− p(x, δ̄). We have

∆(x)

{
≤ 0 x ≤ x?
≥ 0 x ≥ x? + 1

(24)

In addition to the conservation of probability we have,
N∑
x=0

∆(x) = 0. (25)

The change of the excess capacity is given by

Ex(m, δ)− Ex(m, δ̄) =
m−1∑
x=0

(m− x)(p(x, δ)− p(x, δ̄))

=
m−1∑
x=0

(m− x)∆(x).

(26)
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When x? ≥ m, ∆(x) in the above equation is less
than zero. It is clear that Ex(m, δ) will decrease when
δ increases. When x? ≤ m− 1, based on (26) we have

Ex(m, δ)− Ex(m, δ̄)

=
x?∑
x=0

(m− x)∆(x) +
m−1∑

x=x?+1
(m− x)∆(x)

< (m− x?)
m−1∑
x=0

∆(x) + (m− x? − 1)
m−1∑

x=x?+1
∆(x)

= −(m− x?)
N∑

x=m
∆(x)−

m−1∑
x=x?+1

∆(x)

< 0,

(27)

where the equality above is from (24) and the third equal-
ity is from (25). Therefore the excess capacity decreases as
we increase δ for fixed m.

(2) We first prove that De(m, δ) monotonically decreases
as a function of m. We investigate how p(x, δ) changes
when the number of packets being served changes from m
to m + 1. From the previous proof, we know that p(x, δ)
will decrease when x ≤ m. When x ≥ m+1, similar to the
derivation in (22) we have

sgn[p(x, δ,m)− p(x, δ,m+ 1)]
= sgn[mm−x/p(0, δ,m+ 1)− (m+ 1)m−x/p(0, δ,m)]

(28)
It can be verified that the sign only changes once as we
increase x.

Defining ∆̄(x) = p(x, δ,m)−p(x, δ,m+1), then there exists
a x? such that

∆̄(x)

{
≤ 0 x ≤ x?
≥ 0 x ≥ x? + 1.

(29)

Repeating the proof in the first part of this proposition, it
can be seen that capacity deficiency De(x, δ) decreases as
m increases for a fixed δ.

We next prove that the De(m, δ) monotonically increases
as a function of δ. From the definition of capacity defi-
ciency

De(m, δ)−De(m, δ̄)
=
∑N
x=m+1(x−m)(p(x, δ)− p(x, δ̄)),

=
∑N
x=m+1(x−m)∆(x).

(30)

When x? ≤ m, ∆(x) in the above equation is greater
than zero. It is clear that De(m, δ) will increase when δ
increases. When x? ≥ m+ 1, using a derivation similar to
above based on (24), (25), and (30) we have

De(m, δ)−De(m, δ̄)

=
x?∑

x=m+1
(x−m)∆(x) +

N∑
x=x?+1

(x−m)∆(x)

> (x? −m)
x?∑

x=m+1
∆(x) + (x? + 1−m)

N∑
x=x?+1

∆(x)

= −(x? −m)
m∑
x=1

∆(x) +
N∑

x=x?+1
∆(x)

> 0.
(31)

This indicates that the capacity deficiency increases when
we increase δ for fixed m. 2

Fig. 2 illustrates graphically the statement of the propo-
sition in terms of the change of Ex(m, δ), De(m, δ) as
a function of m and δ. Since for a given δ, Ex(m, δ)

Fig. 2. Monotonicity properties of the excess capacity and
capacity deficiency when m ∈ [36, 65], δ = {1, . . . , 5}
with N = 100, λ = µ. Average packet level 50.

(De(m, δ)) increases (decreases) with m, there must exist
an optimal packet procurement level m?(δ) to balance the
cost of this two value for a given δ; see the last subplot in
Fig. 2. We note that the unit of the two values is packet in
both cases. It is reasonable to directly minimize the sum of
the two values to achieve the optimal packet reserve level.
We propose that the SBO can determine m?(δ) by solving
the following optimization problem

m?(δ) = arg min
m∈[1,N ]

T (m, δ) = Ex(m, δ)+De(m, δ). (32)

where T (m, δ) stands for the total cost of the system. This
is an integer optimization problem that needs us to search
inside the feasible space of m. A good initial point of m is
the average consumption level and we increase m till the
cost starts increasing to get m?. In addition, the optimal
purchasing level m? can change when the SBO chooses a
different value of δ, and that m?(δ) is a non-decreasing
function of δ. It is easy to see that the two curves with
packet duration δ1, δ2 (δ1 < δ2) must cross at one point
m∗. This is because T (m, δ) is dominated by De(m, δ)
when m is small and dominated by Ex(m, δ) when m is
large. (It can be shown that the Ex(m, δ) between different
value of δ are negligible for small values of m, and that
De(m, δ) between different value of δ are negligible for
large values of m.) It can be seen that m?(δ1) ≤ m∗ and
that m?(δ2) ≥ m∗. Therefore the optimal purchasing level
does not decrease as δ increases.

In practice, the SBO may behave conservatively or ag-
gressively when determining the optimal energy reserve
level. It can add different weight into the optimization
of (32) which results in a shift of m? either to the left
with aggressive purchase strategy or conservative purchase
strategy. When the price of energy is high during a high
demand period, the cost of holding excess capacity can be
high with the result of a lower reserve of energy packets.
On the other hand, if consumers have inelastic utility
preferences that penalize the cost of waiting to the SBO,
then reserving a large number of packets can be a good
choice.

5. SIMULATION ILLUSTRATION

Fig. 3 shows the trade off between reducing the consump-
tion uncertainty and the MWT and that we cannot expect
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to reduce both when we vary the packet length δ. However,
the increase of δ results in a significant increase in the
MWT, but an insignificant decrease of the consumption
variance. This indicates that the effectiveness of decreasing
the consumption uncertainty by increasing the value of
packet length δ is limited. In order to essentially decrease
the uncertainty of the aggregated consumption, we need
more than binary information.

Fig. 3. Trade off illustration between the reduction of
the consumption uncertainty and the MWT. With
limited binary state information, we cannot expect
to decrease both simultaneously by varying δ.

The duty cycle distributions differ when we use a stochas-
tic thermal model and the Markov model that are inverse
Gaussian distributed and exponential distributed, respec-
tively. However, when the variance of the noise is moder-
ate, the Markov model can accurately capture the essence
of the inter-arrival times; see Fig. 4. We simulate the first
1000 inter-arrival times based on the stochastic thermal
model as well as the Markov model. The samples are then
used to draw the probability density function [PDF] and
the cumulative density function [CDF] of the inter-arrival
time with the blue curve being the distribution for the
stochastic thermal model, and the red curve being the
Markov model. We note that when the variance of the noise
is too large (small), then the thermal model inter-arrival
time distribution becomes flat (deterministic). This can
result in an inaccurate Markov model that may invalidate
the assumption of exponential duty cycles.

6. CONCLUSION

The paper has addressed the effectiveness of the PDLC
solution when either complete or binary information is
exchanged between the SBO and the local appliances in
a smart building microgrid. It has been shown that when
complete information is exchanged, the SBO can guar-
antee a high level of consumer utility while minimizing
uncertainty. The loss of utility and increase in uncertainty
when only binary information is exchanged have been char-
acterized. We have further shown that our framework for
packetized energy distribution admits an optimal packet
reserve strategy to balance the cost of having having too
much or too little reserve capacity.

Fig. 4. Compare the inter-arrival time generated by the
inverse Gaussian distribution and the exponential
distribution. With moderate value of the noise, the
Markov model can accurately capture the inter-arrival
characteristic of the stochastic thermal model.
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