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Abstract: In this paper, we present a novel non-raster scanning algorithm for high-speed imaging in 

Atomic Force Microscopy. In contrast to recent non-raster scanning algorithms for string-like samples, the 

proposed algorithm is developed for cells and other simple specimen samples. This algorithm collects data 

in the vicinity of the specimen to create sample contours at different heights to build the 3D topography of 

the target sample. During the scan process, the tip is steered based on a prediction of the contour curvature 

and contour tangent. The proposed scanning trajectory follows the contour of the sample and avoids 

crossing the specimen, while minimizing the possible excitation of resonances of the cantilever. For the 

prediction of the curvature and tangent of the contour, the current partially obtained contour and a previous 

contour scan are used: a prediction from both contours is suitably combined by a weighting algorithm 

derived from a reliability evaluation of both predictions. This permits the creation of topographical images 

of specific interest at a reduced scanning time in comparison to some prevalent non-raster scan algorithms 

and raster scans. Simulation results are provided. 



1. INTRODUCTION 

In this paper, we describe and illustrate a novel non-raster 

scanning algorithm for imaging simple object samples, like 

cells, in Atomic Force Microscopy (AFM). Practically the 

interaction force between a very sharp cantilever-tip and the 

specimen-substrate is collected as the measurements in AFM 

(Binning et. al., 1986). The tip is commonly driven along a 

collection of parallel horizontal lines as the scanning raster. 

In this way, the 3D topographical image of the scanned 

substrate is constructed pixel-by-pixel along the raster. Thus, 

it often takes several seconds or even minutes to scan the 

entire substrate, depending on the quality, resolution, and size 

requirements of the imaging. Such a long scanning time 

restricts the applications of AFM (e.g. Picco et. al., 2007). 

Researchers are actively striving to decrease the scanning 

time while ensuring the imaging quality in AFMs. Most of 

their research can be classified by: a) mechanical 

improvements (Schitter and Rost, 2008; Picco et. al., 2007), b) 

advanced vertical (z-axis) control (e.g. Wu et. al., 2009; Pao 

et. al., 2007), and c) design of optimal tip trajectories to 

achieve a complete scan image similar to but more efficiently 

than raster scans (Yong et. al., 2010; Tuma et. al., 2012). 

Thus, one significant similarity of all the above mentioned 

approaches is to achieve a scan pattern for a given fixed scan 

area while ignoring the information of the actual specimen 

and information collected from it. In contrast, a series of non-

raster scanning algorithms (Andersson, 2007; Chang and 

Andersson, 2008; Chang et. al., 2011; Huang and Andersson, 

2011, 2013) have been developed by Andersson for string-

like samples, e.g. DNA, using the past measurements as a-

priori knowledge. These non-raster scanning algorithms scan 

the vicinity of string-like samples by creating an estimated 

curve model from measured data (e.g. Huang and Andersson, 

2013, for an experimental verification). Thus, the scanning 

time is reduced by just focusing on the wanted area as the 

whole specimen. 

However, all these approaches have several limitations: For 

instance, raster scans create a high demand on the accuracy 

and bandwidth of the vertical cantilever height control (z-axis 

control), while collecting possibly specimen-irrelevant data 

(Abramovitch et. al., 2007). The tip-z-axis-control has to 

follow the sample surface in high-speed scans, e.g. scanning 

along a raster-scanning trajectory or along a designed spiral 

trajectory. Thus, the sharp high-speed tip has to go across the 

specimen surface and may damage the sample. In contrast, 

recent non-raster scanning approaches for string-like samples 

or boundary tracking can decrease the scanning time by 

reducing unwanted data collection. However, in biomedical 

research, it is necessary to scan the whole surface for cells or 

objects and not just scan the boundaries (Müller and Dufrêne, 

2011).  

Motivated by eliminating some of these limitations, we 

develop a non-raster scanning algorithm for simple object 

samples, which are smooth and have neither cross points nor 

links on their sample contours, similar to cells. The surface 

profile of such a sample can be treated as a collection of 

contours at different heights. We suggest scanning several 

contours of the target sample, where each contour can be 

used to predict the next contour in the specimen topography. 

For each contour scan, the tip can be steered in the vicinity of 

the contour at a fixed height above the substrate; thus, the 

fixed AFM tip height avoids issues usually connected with z-

control in AFM. Extending ideas from non-raster scanning 

(Andersson, 2007; Chang and Andersson, 2008; Huang and 
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Andersson, 2013), the underlying methodology of the 

proposed scanning algorithm is to consider not only 

knowledge from the current partially obtained contour, but 

also from a previous contour scan, to construct a prediction of 

the current contour for more efficient data collection and to 

remain close to the specimen.  

2. ANDERSSON’S NON-RASTER SCANNING METHOD 

AND A TRAJECTORY FOR OBJECT SAMPLES 

In this paper, we only focus on simple object samples, like 

cells. For such a sample, the contour can be modelled as a 

solid, smooth boundary at one height. Therefore, we consider 

the basic idea and the curve estimation schemes of 

Andersson’s non-raster scanning method (Andersson, 2007; 

Chang and Andersson, 2008; Huang and Andersson, 2013) as 

the starting point of our proposed algorithm.  

 
Fig. 1. An illustration of Andersson’s non-raster scanning 

algorithm with smooth trajectory and contour prediction. The 

tangent vector        and the curvature κk+1 are estimated by 

(2) and (3) for the tip-control in real-time according to three 

new measured points rk, rk-1, and rk-2. 

At any fixed height, the contour for a string-like, continuous 

specimen (e.g. DNA) or for the continuous, smooth boundary 

of a specimen can be modelled as a curve in a plane. Thus, 

the spatial evolution of the contour can be given in the 

Frenet-Serret Frame by 

                             (1.a) 

  
                             (1.b) 

  
                                  (1.c) 

where r(s) stands for the position vector in the fixed frame 

with arclength s on the curve,       is the tangent vector at 

the point,       is the normal vector with respect to point 

     and  (s) is the curvature at point      . The arclength 

variable s is a function of time t. The function      is defined 

for the scanning process through a desired scan velocity. 

In recent non-raster scanning methods, the tip motion 

trajectory is determined by the data associated with the 

current contour scan. Practically, the tip is moved along 

smooth sine segments around the estimated curve (see Fig. 1). 

During one boundary scan, the estimation of the curvature 

and the tangent of the curve is updated with each triple of 

newly obtained points rk, rk-1, and rk-2 on the curve in real-

time. Here rk stands for the k-th measured point on the curve 

in the Cartesian coordinates frame. Assuming a very small 

arclength difference in s between each two adjacent points on 

the boundary, the curvature and tangent at point rk is 

approximated from rk, rk-1, and rk-2. Therefore, the k+1-th 

curve “states” can be estimated from the data at the k-th step. 

For the heading direction of the current tip motion, the 

tangent vector q1,k+1 and normal vector q2,k+1 approximately 

satisfies 

       
       

         
 ,         

   
  

              (2) 

Here the Euclidean distances,       , between each two points 

among rk-2, rk-1, and rk are               ,   
          and              (see Figure 1). Based on 

Heron’s formula (e.g. Andersson, 2007), the curvature 

estimation for the k+1-th sample is given by 

         
                

   
,     

 

 
          (3) 

where  k+1 is the k+1-th curvature estimation. When the 

cosine of the angle between the vector (rk-1, rk) and the normal 

vector is positive, the  k+1 takes positive sign. Otherwise,  k+1 

is negative.
1
 

 

Fig. 2. Example of the proposed trajectory for scanning 

object samples. Here the curvature of the target contour is 

constant, while the amplitude is A = 0.2, and ω = 0.1. 

Developed from Andersson’s smooth trajectory (Chang and 

Andersson, 2008), a novel trajectory is introduced in Fig. 2, 

which is constructed in two parts: a) a sine-curve to send the 

tip towards the sample contour to allow measuring points on 

the contour; b) a cosine-curve to move away from the contour, 

thus, avoiding the crossing of the sample when a point on the 

contour is measured. For any instant s1, s2, …, where rd(si) 

describes a point on the contour, the tip trajectory is defined 

by 

          

 
 
 

 
           

 

 
                          

           
  

  

                               

     
  

  
     

  (4) 

for s-si ≥ 0. Here A denotes the amplitude of the scanning 

trajectory, ω is the spatial frequency of the trajectory,    is 

the normal vector to the contour. rd indicates the estimated 

contour position and rt is the demanded cantilever tip position 

as a function of arclength s. Thus, the two parts of the 

                                                 
1
 Measurement noise might be amplified: Here a Kalman filter is 

recommended to reduce the noise influence (see Andersson, 2007). 
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trajectory are smooth and certainly continuously joined at the 

joining point       
  

  
  Moreover, the tangent of the 

scanning trajectory coincides with the contour tangent for  

ssi+, which avoids crossing into the specimen and 

introduces the least possible change in tangent at s = si.  

The performance of the proposed scanning trajectory is 

influenced by the amplitude A and the spatial frequency ω. 

This is similar to Chang and Andersson (2008, 2009), which 

point out, that A determines the search region of the 

trajectory, i.e. the trajectory is ensured to measure a point on 

the contour with large enough A. The scalar ω determines the 

frequency of collecting data. A large value for ω implies a 

high density of points along the contour in the current scan. 

Practically, the tip is to be controlled with respect to time t. 

To derive a function s(t), we propose a constant tip velocity 

              to ensure the trajectory is as smooth as 

possible, thus, avoiding the excitation of the dynamics in the 

cantilever-tip system and the actuators. Considering the time 

derivative of the tip position in the Frenet-Serret frame and 

the requirement for a constant tip velocity               , 

we compute from (4) and (1) 

        
        

  
   f(s) 

  

  
           (5) 

where a function f(s) is defined by 

      

 
  
 

  
     

 

 
  

 

 
      ω   

 

   ω      ω    

              
  

  

          ω       ω     ω    

    
  

  
     

     

so that                 . Under the assumption of a 

constant tip velocity, the relationship between s and t is 

calculated by an integral operation as                 
 

 
. 

This permits the calculation of arclength s as a function of 

time t. For real time AFM imaging, the function s(t) has to 

be calculated offline  a-priori. Specifically, the function t(s) 

can be approximated by curve-fitting. Then the inverse of 

the function t(s) is the function of s with respect to time t. 

3. WEIGHTED PREDICTION ALGORITHM 

3.1  A Recursive Least Square Prediction Method 

When scanning simple object samples, nearby contours are 

similar to each other and it can be assumed that there is some 

projection (translation, scaling and rotation) which relates 

these close contours. Therefore, a currently partially scanned 

contour can be estimated using information from previously 

scanned contours. Here, we propose a least squares 

approximation of the currently scanned contour depending on 

previously scanned data.  

In practice, the suggestion is to scan the target sample starting 

with contours at lower height, advancing to the top point of 

the specimen; this is sensible as the uncertainty at the very 

top contour is the most significant due to noise. The current 

scanning contour is always higher and in diameter/area 

smaller than previously scanned contours. Thus, the currently 

scanned contour may be called the inner contour,  , and the 

previously scanned contour is the outer contour,  . 

Suppose the measured points from the previous scan are 

                 , where each point              

is represented in Cartesian coordinates. Due to the small 

distances between the points in X, the centre (the mean) of  

  ,    
     

 

     

 
 
 

,  can be used as a reference point 

for a map between a point on the outer contour   to a point 

on the inner contour  ; N denotes the number of obtained 

points in  . The normalized vector from one point    on the 

outer contour to the centre C is defined as    
    

      
 . To 

find a relationship between the inner and outer contours, 

suppose one point    on the inner contour is obtained from 

the point    on the outer contour along the vector Vk. In this 

way,   , can be mapped from    by transformation as 

         , or           
  

 
      (6) 

where   is a two-by-two matrix and   is a vector with 2 

elements. Here matrix   can represent a rotation or a 

contraction towards the centre point  , whiles B represents a 

simple translation. As a result, the currently scanned inner 

contour can be estimated from the previous outer contour and 

an appropriate transformation map. 

 

Fig. 3. Demonstration of a prediction using the RLS filter. 

The transformation map (6), and (9) from the outer contour 

and the inner contour is calculated by Yk and Xk, which are 

obtained by finding the closest cross point of Vk and the 

partly measured inner contour close to the current point    .  

However, an accurate approximation of the map       is not 

available a priori. Thus, a recursive least squares (RLS) 

approach is proposed to estimate the map, which allows an 

incremental improvement of the map.  Thus, it is necessary 

for the contour   to obtain some initial measurement values 

   ,    ,… within the current inner contour scan without the 

use of the map      . This creates a growing sequence of 

discrete points    measured on the inner contour:    
               , where     represent the measured points on the 

y
 (

le
n
g

th
) 

x(length) 
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(partially) measured inner contour and n is the number of 

obtained points on the currently scanned contour. In the 

current inner contour scan, Yk is proposed as the closest 

crossing point of    on the contour line created by   . The 

point Xk is the starting point of the vector Vk to provide Yk. 

Thus, when the tip measures a new point on the inner contour, 

the points              on the currently scanned contour 

and              on the outer contour are obtained. 

The transfer map can be rewritten as 

      
  

  

 
  ,       

  
  

 
   (7) 

where    and    are two vectors defining the map      ; 

     and      denote the x and y values of    . Therefore the 

RLS updating equations at time k are given by 

           
  

 
                (8.a) 

     
    

   
  
 

 
 

    

               (8.b) 

              
  

  

 
           (8.c) 

                             (8.d) 

                       
  

 
 
 

       (8.e) 

Here m = x or y indicates the index in terms of the relevant 

Cartesian coordinate elements. The scalar λ is a constant, 

positive parameter, which is set to be equal to or smaller than 

1. Often it is set slightly less than 1. For initialization, all 

elements in wk equal to 0 and Hk is an identity matrix. Thus, 

with the RLS filter, the map is estimated online for the 

current contour scan by 

             .      (9) 

In the RLS filtering process, the most recently updated 

information influences the results more than old data (Haykin, 

2001), depending on the choice of λ. Therefore, the estimated 

map will be adaptive to the changing inner contour. The next 

section will suggest a suitably weighted combination of this 

RLS-based algorithm with the contour prediction algorithm 

of Andersson from Section 2 (Chang and Andersson, 2008). 

3.2. Combined prediction via adaptive weighting  

Andersson’s prediction algorithm in Section 2 provides a 

contour estimation from three new scanned points on the 

current contour (2)-(3). Here we name this prediction as the 

current-prediction, because such a prediction of curve states 

is only based on information from the currently scanned 

contour. The estimated heading direction and curvature are 

introduced as θcur and  cur. On the other hand, the RLS-

prediction described in Section 3.1 predicts the next points 

based on both the currently scanned inner and the recently 

scanned outer contour. With these estimated points, the curve 

states as heading angle θRLS and  RLS can be calculated.  

In this work, we propose a prediction algorithm, which 

combines the current-prediction and the RLS-prediction to 

achieve an increased accuracy. In practice, two estimated 

contour states, which are given by           
 and 

          
 , are weighted to provide the prediction of the 

contour model for driving the tip. A simple weighting law is  

 
  

  
       

    

     
       

    

    
                 (10) 

The errors from the two predictions are introduced as the 

variables to be used for evaluating the weights. With the 

estimation method introduced by Andersson (2007), the 

estimated position of a point on the curve can be calculated 

from the update law using the curve states via  

           

       

  
    
   

         

             

     (11) 

where        
           
      

 
 

      
  . 

Here Pk represents the predicted point at arclength s where 

the (k-1)-th point       is measured. Here,  k, q1k, and q2k 

represent the estimates of the k-th curve states (see (2)-(3) in 

Section 2). Thus, the current-prediction and the RLS-

prediction gives two estimates of the position of the point as 

Pcur,k and PRLS,k at arclength s. With a new measured point     

on the contour, the Euclidean distances from     to Pcur,k and 

PRLS,k are introduced as the errors in the two prediction 

methods. Here the Euclidean distances are used as the 

evaluation variables for the following reasons: a) low 

computational complexity, b) ease of evaluation compared to 

the errors of estimated contour states, c) simplicity of use as a 

one dimensional value. Thus, the errors of the current-

prediction and the RLS-prediction are defined by 

                       ,                           (12) 

where ecur.k and eRLS.k indicate the errors of current-prediction 

and RLS-prediction separately.  

To avoid the effect of considerable noise in the errors, the 

weights from the two predictions are obtained by (statistically) 

averaging the errors of both predictions over time. 

Additionally, the current estimation performance is more 

important than old data for accurate contour tracking 

performance. Therefore an update algorithm, using a filter 

approach, was utilized to assess the errors of the two 

predictions:  

                               (13.a) 

                                (13.b) 

where       and       are the filter variables for the current-

data-prediction and the RLS-prediction and α is a forgetting 

parameter to consider the history of the errors. Then the 

weights Wcur and WRLS are obtained by normalizing the 

updates       and       as 

      
     

           
 ,       

     

           
.   (14) 

At the beginning of the scanning of one contour, Wcur is 

initialized as 0 and WRLS is 1, while       and       are set to 

0 since there is no efficient estimation from the current-

prediction methods until three points on the contour have 

been obtained. They will be calculated after the first three 

points on the contour have been measured. In addition, the 
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forgetting parameter   is a positive constant smaller than 1. 

When   equals 1, all historical errors can influence the 

weighted prediction.  

As more points are measured, the overall performance of the 

weighted prediction improves, i.e. the curve is estimated with 

an increasing accuracy. There is no need for driving the tip 

with a very large searching region to ensure an efficient 

error-free scan. The tip can be kept in a very small 

neighbourhood to the sample contours. Therefore, the 

parameter A, which determines the tip searching range, can 

be adjusted to the prediction accuracy. One possible adaptive 

A is designed as 

   

                               

                               

                            

     (15) 

Here, parameter Amin is set as the smallest amplitude of the tip 

trajectory and parameter Amax is set as the maximal scanning 

amplitude. As a consequence, the tip can move away from or 

closer to the contour boundary for measuring the next point 

on the curve. In this way, the impact of considerable noise in 

the error can be eliminated to some extent.  

In practice, at the beginning of the scanning process, the 

statistically weighted prediction is not available due to a lack 

of knowledge about the sample’s shape. Thus, as suggested 

in Section 3.1, a scan from the bottom of the specimen is 

essential for initialization at first. The scan height should be 

set from the surface of the substrate to scan the first contour 

of the target specimen as an initial scan using the proposed 

novel trajectory together with Andersson’s prediction 

algorithm (Chang and Andersson, 2008). Then, the proposed 

weighted scanning algorithm can be applied for contour scans 

at stepped different fixed (constantly increasing scanning) 

heights. An issue is that the tip will fail to scan the top of the 

sample, because the uppermost contour has a too small scale. 

Thus, the non-raster scanning algorithm should be terminated 

before the very top of the target sample is reached.   

4. SIMULATION RESULTS  

In order to evaluate and illustrate the proposed algorithm, the 

original data from a (1.6μm)
2
 bacteria image were processed 

for the simulation experiment. The original bacteria image 

(Fig. 4. a) was obtained from a raster scan by Dazzi (2013). 

The left-upper bacterium (Fig. 4. a) was used as the target 

sample. In our approach, the sample topography is assumed 

to be smooth and continuous. Therefore, the original image 

was resized into 1nm
2
/pixel by the Bicubic interpolation 

method and smoothened by a Gaussian filter (Fig. 4. b).  

The height scale in Fig. 4 and Fig. 5 is from 0 nm to 300 nm. 

However, the images are processed as 256 levels of colour in 

Matlab. Thus, the 300nm length on the z-axis is divided into 

256 units, by which means each height unit stands for 1.18nm. 

This height “unit” of 1.18 nm will be used in the following 

simulations in Matlab. For the x-y coordinates, one horizontal 

unit is 1nm. In the simulation tests, we introduce Gaussian 

noise with 0 expectation and 1 unit standard deviation when 

“measuring” the above processed 1nm
2
/pixel data. The 

parameters of the proposed non-raster scan were set to ω = 

0.2, A = Amax = 30nm, Amin = 5nm, α = 0.6, and λ = 0.99 for 

successful contour scans. To achieve the scanning accuracies 

of ~(5nm)
2
/pixel, ~(10nm)

2
/pixel, and ~(20nm)

2
/pixel, the 

scanning step size for the scan height were 5 units, 10 units, 

and 20 units. Clearly, in the x-y plane, the scanned contour 

defines the scanned image. Thus, a scan with a high, targeted 

pixel accuracy may not be completely dense, covering every 

single pixel of the targeted scan area. For the simulation, it is 

assumed that the linear scan speed with respect to time t is 

constant, i.e. ||dr/dt|| = const. = 500μm/s. 

 
          (a)              (b) 

Fig. 4. The original data (a) from AFM raster scan (Dazzi, 

2013); the processed, smoothened data (b)  

Simulations showed that the proposed non-raster scanning 

algorithm requires about only 60% of the time of the raster 

scanning algorithm (see Table 1). Fig. 5. b includes one 

illustration of a (10nm)
2
/pixel imaging experiment. The white 

trace is the tip trajectory at 155unit height, recorded within a 

period of 0.016s. In contrast, we applied Andersson’s 

approach (Chang and Andersson, 2008; Chang et. al., 2011) 

for a simulated contour scan (see Fig. 5. a). Using the same ω 

= 0.2, both approaches can successfully scan the sample 

contour with almost the same accuracy, i.e. both scanning 

algorithms scan the same number of points on the target 

contour (158 points in Fig. 5. a and 164 points in Fig. 5. b). 

However, Andersson’s approach required 0.024s to produce 

the contour scan. Moreover, our proposed algorithm avoids 

damaging the specimen as it does not cross the higher part of 

the sample surface during the high-speed scan.  

Using the proposed non-raster scanning algorithm, the image 

can be reconstructed from the original non-raster scanned 

data successfully in, e.g. reconstruction of (10nm)
2
/pixel 

image as in Fig. 5. c. Note also the small ‘empty’ patches, 

which the scan contours have not covered. This is certainly 

only a problem if the gradients in the sample are high. 

Nevertheless, the non-raster scanning generically avoids 

‘jump’ effects in raster scans which result from a low 

bandwidth in the height control, i.e. z-control. 

Table 1. A comparison of raster and non-raster scanning time  

Scanning 

resolution 

Time for raster 

scanning 

Time for non-raster 

scanning 

(20nm)
2
/pixel 0.256 s 0.172 s 

(10nm)
2
/pixel 0.512 s 0.299 s 

(5nm)
2
/pixel 1.024 s 0.614 s 
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Fig. 5. Examples of contour scans at 155unit height with 10unit step-size using Andersson’s approach (a) (Chang et. al., 2011) 

and the proposed method (b); reconstructed image (c) using the proposed non-raster scan (10unit step-size). 

In the simulations, we found that the proposed imaging 

quality of the non-raster scanning algorithm is influenced by 

the detection frequency ω, and the height step size. The 

“blank” segments in the reconstructed data can be resolved 

by interpolation algorithms (e.g. Huang and Andersson, 2011) 

or by scanning with a larger ω. Moreover, the step size of the 

scanning height z determines the imaging quality. Here we 

only focus on the novel scanning algorithm; the influence of 

these parameters will be investigated in the future. 

5. CONCLUSIONS 

In this paper, we have proposed a novel non-raster scanning 

algorithm, which achieves high speed scanning for simple 

object samples compared with raster scans. A new scanning 

trajectory is introduced to avoid damage to the specimen, as 

the trajectory will not cross into the specimen. Moreover, the 

trajectory permits a dynamically adjusted amplitude, while a 

prediction algorithm fuses information from the currently 

scanned and the most recently scanned contour. Practically 

relevant simulations show that overall this provides faster 

non-raster scanning than recent contour scanning approaches 

and raster scanning approaches. Practical experiments on 

Bristol’s probe microscopes are being planned.  
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