

A Practical, Hybrid Approach to Faster-Than Real-Time Power System Analysis and

Control

Anthony S. Deese, Ph.D.*, C. O. Nwankpa, Ph.D.**, Stephen Coppi*, Tim Nugent*

* The College of New Jersey, ECE Department, Ewing, NJ 08628 USA (tel: 607-771-2779; e-mail: deesea@tcnj.edu).

**Drexel University, Philadelphia, PA 19104 USA (e-mail: con22@drexel.edu)

Abstract: This paper examines how custom computing hardware for fast power system analysis may be

adapted to improve the user experience as well as its commercial-viability. One prime example of such

custom hardware is the FPAA-based analog emulator developed previously by the authors. The authors

propose development of a USB-based actuation and data acquisition interface that allows analog compu-

tational tools to work seamlessly with one or more commercially-available power system analysis soft-

ware packages. A commercially-available software application will be tasked with user interaction and

post-processing, while custom hardware is tasked with faster-than real-time power system analysis.

Keywords: power system analysis, analog emulation, actuation and data acquisition, USB

I. INTRODUCTION

This work builds upon previous research in analog emulation

of power system dynamics via field-programmable analog ar-

ray (FPAA) technology [2009a, 2011b, 2011a, 2007, 2013].

The research has generated multiple electronic analog com-

puter prototypes and peer-reviewed publications [2009a]. In

this paper, the authors discuss how existing analog emulator

prototypes (like those shown in Fig. 1) may be adapted to

improve the user experience as well as its commercial-

viability. They propose development of a USB-based actua-

tion and data acquisition interface that allows analog compu-

tational tools to work seamlessly with one or more commer-

cially-available power system analysis software packages

(e.g. PSCAD). An overview of this technique is presented in

Fig. 3. The software facilitates user interaction and post-

processing, while analog hardware provides faster-than real-

time analysis capability.

Fig. 1. First (Left), Second (Middle), and Third (Right) Ana-

log Power System Emulator Prototypes Referred to in this

Paper

II. BACKGROUND

In engineering and the sciences, digital computers are often

utilized to predict the behavior of a non-linear system via

simulation, a software implementation of iterative numerical

techniques like the Newton-Raphson [2012a, 2011a]. This

technology, due to advances in personal computing, is easy to

operate and capable of producing precise results. Its speed,

in comparison to hand calculations, allows the practical im-

plementation of numerical methods that previously had none

[2009a]. However, one limitation of digital simulation is that

length of time required to simulate a solution is dependent on

the number and complexity of nonlinear expressions [2009a].

The complexity of a power system simulation grows with

third power of system size [2012a].

For the same purpose, analog computers use emulation. In it,

a non-linear system model is implemented as a set of recon-

figurable analog circuits referred to as the emulator [2011a].

This hardware is then actuated, initialized, and allowed to set-

tle to a constrained solution. The user acquires results

through observation of this hardware via voltage and current

measurement devices. One may ask: Is it worth the addition-

al effort associated with hardware design and construction to

perform such analyses via analog emulation that may be per-

formed digitally? The authors have shown in previous works

that the answer is “yes.” Because analog emulation abandons

the use of iterative numerical techniques, the length of time

required to yield a solution (this excludes the effects of actua-

tion and data acquisition) is fully controllable and independ-

ent of the dimension of the system model [2012a]. Analog

computation has potential to perform many types of non-

linear analyses significantly faster than is possible digitally;

however, digital simulation is still generally utilized over

analog alternatives for such studies. Several reasons exists,

including potential nonlinear behavior, high power consump-

tion, limited precision, lack of reconfigurability, and size of

analog technology. Given this, what motivation exists to

study analog emulation as an alternative to digital simulation

for nonlinear system analysis? One prime example is the

emergence of new analog tools like the field-programmable

analog array (FPAA).

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10790

The field-programmable analog array (FPAA) represents a

new frontier in analog technology, one which benefits from

the application of large scale integration (LSI) methods to a

reconfigurable, switched capacitor design. It is essentially a

blank canvas for the development of custom analog hard-

ware, composed of configurable analog blocks (CAB) which

may be actuated and interconnected digitally. The most basic

definition of the FPAA’s operation is a configuration file

which, when uploaded to hardware, configures and intercon-

nects all CAB’s. The method in which this configuration is

generated depends on model and manufacturer. Fig. 2

demonstrates the flow of information required to configure a

single FPAA chip. It is similar to that of the FPGA; howev-

er, logic blocks would take the place of CAB’s.

Anadigm
Designer
Software

FPAA
Configuration

File

CAB
#1

CAB
#2

CAB
#3

CAB
#4

integrator
(gain = -0.1)

amplifier
(gain = 2.5)

summer (gain1 = 0.5, gain2 = -0.25)

amplifier (gain 1.0)

FP
A

A

Fig. 2. Demonstration of Configuration File Upload to FPAA

Hardware

Although some FPGA’s provide limited analog capability, it

is most often implemented through utilization of high-

performance analog-to-digital and digital-to-analog convert-

ers. Such hardware does not provide the full capability of an

analog circuit and cannot be successfully employed for ana-

log emulation.

III. MOTIVATION

The authors realize that users, particularly in industry, prefer

tools similar to those they have used previously. As such, the

authors of this work employ a solution that incorporates

commercially-available software and hides any evidence of

the tool’s experimental nature from the user, providing an

experience identical to that of applications like Siemens’

PSS/E, Mathworks SimPower, Manitoba HVDC PSCAD,

and PSerc Matpower. The prototype will utilize a digital

computer (PC) running one of the aforementioned applica-

tions to facilitate user interaction but rely on an FPAA-based

analog hardware accelerator to improve computation speed

and overall performance.

The work discussed in this paper exploits the complementary

strengths and weaknesses of digital simulation and analog

emulation, as applied to nonlinear system analysis and opti-

mization. In grossly simplified terms, it may be described as

follows. Digital simulation is generally precise but slow; an-

alog emulation exhibits opposite characteristics. It is for this

reason that the authors employ a mixed-signal computing so-

lution, one that employs digital as well as analog devices and

draws upon the strengths of both. One of the most innovative

aspects of this work is the utilization of FPAA technology in

the place of traditional analog components.

IV. PROBLEM STATEMENT

Although a number of published works examine the applica-

tion of analog and FPAA-based computation technologies to

load flow analysis, adoption by industry and academia is lim-

ited. How can researchers adapt existing analog emulator

prototypes (like that shown in Fig. 1) to improve the user ex-

perience as well as its commercial-viability?

V. PROPOSED SOLUTION

The authors propose development of a USB-based actuation

and data acquisition interface that allows analog computation

tools to work seamlessly with one or more commercially-

available power system analysis software packages (e.g.

PSCAD). Software facilitates user interaction and post-

processing, while analog hardware provides faster-than real-

time analysis capability. This paper focuses predominantly

on static load flow analyses.

VI. METHOD OVERVIEW

6.1 System Components

Fig. 3 provides an overview of the proposed mixed-signal

computing tool. It is composed of three primary pieces:

 Power System Simulation Tool – a commercially-

available software application that allows users to per-

form a variety of power system studies including stabil-

ity, contingency, and optimal power flow.

 Analog Power System Emulator – is an analog computa-

tional tool designed to mimic the behavior of a power

system and, in turn, perform various static as well as dy-

namic power system analyses. It may be actuated, ini-

tialized, and allowed to settle to a constrained solution.

Results are acquired through observation of the voltages

and currents it generates. Several examples are shown in

Fig. 1.

 USB-Based DAQ System – is hardware designed to link

the simulation and emulation tools, performing analog

hardware actuation and data acquisition as needed.

6.2 Management Algorithm

For this proposed solution, the user interacts with the power

system simulation tool normally. A graphical user interface

allows she / he to define the parameters of the study () as

well as acquire simulated results (). Normally, a man-

agement algorithm embedded within the simulation tool will

perform several tasks:

 Interpret Study Parameters – The management algorithm

interprets study parameters () and generates the config-

urations () associated with individual load flow anal-

yses. For example, a single-contingency study must be

broken down to multiple power system configurations,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10791

each corresponding to the failure of a single component.

Note that represents the input/configuration employed

by an i
th

 load flow analysis.

 Define Initial Conditions – The management algorithm

generates an initial condition () for each load flow

analysis. Often a flat start is employed. Note that
represents the initial condition employed by an i

th
 load

flow analysis.

 Interpret Load Flow Solutions – The management algo-

rithm interprets load flow solutions () and generates

the comprehensive study result () associated with .

For example, the results of a single-contingency analysis

must be extracted from multiple load flow solutions.

Those that violate nominal operating limits are high-

lighted to the user. Note that represents the simu-

lated solution of an i
th

 load flow analysis, as defined by

the configuration and initial condition .

Each variable in this paper is underlined according to its di-

mension. For example, the two-dimensional matrix is

composed of multiple one-dimensional arrays.

 {
 } (1)

In the authors’ proposed method, the management algorithm

performs an additional task. It utilizes external analog emu-

lation hardware to pre-process load flow results. For an i
th

load flow analysis, the management algorithm supplies an

appropriate configuration to the analog emulator, acquires

the emulated load flow solution it generates, and uti-

lizes this solution to generate a better estimate of

Fig. 3. Overview of Proposed Hybrid Computing Solution

For hardware actuation, the information contained within
is routed to the PC’s USB Host Controller (USB-HC) [2001,

2009b, 2012b] The USB-HC communicates with a USB De-

vice Controller (USB-DC) embedded within the external

hardware and transmits along a standard USB message

pipe. These controllers work together to ensure that no data

is changed or lost. The device controller interfaces directly

with DAQ hardware that generates and routes analog control

signals to the emulator as defined by .

Once emulation is complete, the management algorithm re-

quests that data acquisition begin. It instructs DAQ hardware

to observe, perform A/D conversion on, and store the analog

output signals that compose the emulated load flow solution

().

VII. DAQ HARDWARE

USB 2.0 communication will be utilized to actuate as well as

acquire data from analog emulation hardware. This custom

DAQ hardware will be classified as a class FFh device, indi-

cating that vendor-defined drivers are required for proper op-

eration. USB 2.0 hardware allows transfer of data with a

maximum rate of 480MBit per second as well as provides

devices with a 5.0V, 1.5A-rated power supply. These rating

dictate the speed of the actuation and data acquisition hard-

ware as explained below [2001, 2009b, 2012b].

7.1 Actuation

For hardware actuation, configuration data is transmitted

along a USB message pipe. Unlike faster stream-based alter-

natives, it facilitates bi-directional communication between

host and device for acknowledgement of data transfer well as

error correction. Information is transmitted as a set of USB

transactions, each consisting of one or more packets [2001,

2009b, 2012b]:

 Token Packet (32-bit) – defines the direction of data

flow, type of data to be transmitted, and destination of all

subsequent packets. It is composed of six fields: 1) the

8-bit SYNC field is used to synchronize the clock of the

device to that of the host, 2) the 8-bit PID field identifies

the type of packet being transmitted, 3) the 7-bit ADDR

field provides address of intended packet recipient de-

vice, 4) the 4-bit ENDP field facilitates routing of a

packet within the recipient device, 5) the 5-bit CRC or

Cyclic Redundancy Check field ensures proper data

transmission, and 6) the 3-bit EOP or End of Packet field

indicates that a packet is complete.

 Data Packet (variable) – is capable of transmitting up to

1024 bytes of data per packet within its DATA field.

Like the token packet, it also contains SYNC, PID, CRC,

and EOP fields.

 Handshake Packet (< 32-bit) – completes a transaction

and ensures proper transmission of data. It is composed

of SYNC, PID, and EOP fields.

The three-stage process shown in Fig. 4 is employed to

transmit via USB the information required for actuation of a

single variable within the emulator. It is referred to as a

u ysim

ui

ui ysim,ix0,iyemu,i

yemu,i

ui yemu,i

ui

yemu,i

u

ysim

POWER SYSTEM SIMULATION TOOL

User
tasks: 1) supply system
configuration and study

parameters, 2) analyze results

Graphical User Interface (GUI)
tasks: 1) accept input from, 2)

displays output to user

Analog Emulator
tasks: 1) accept input, 2)
emulate system transient

response, 3) generate solution

Management Algorithm
tasks: 1) interpret study parameters, 2) generate

initial condition, 3) interpret load flow solutions, 4)
facilitate interaction with external hardware

Load Flow Analysis Simulator
tasks: 1) accept input, 2)

generate load flow solution via
numerical simulation

MCU-Based Device Controller
tasks: 1) communicates with
USB host as dictated by USB

driver, 2) ensure com success

DAQ Hardware
tasks: 1) performs ADC/DAC, 2)

routes analog input/output
signals, 3) samples input/output

USB Host Controller (USB-HC)
tasks: 1) communicates with

USB device as dictated by USB
driver, 2) ensure com success

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10792

3s1vUTAc (three-stage, single-variable, USB-based trans-

mission for actuation) process. Each process communicated

several pieces of information including [2001, 2012b]:

 MODE – This 4-bit data field defines the current mode

of the DAQ system and analog emulator hardware.

o MODE = 0 – denotes that the DAQ system is per-

forming actuation. All actuation-related hardware

should be active. Meanwhile, the emulator should

accept new as well as maintain existing user-

define initial condition values. Transition from

this mode to MODE = 1 occurs once analog

input signals are successfully applied and trans-

mitted.

o MODE = 1 – denotes that actuation is complete

and analog emulation has begun. All actuation-

related hardware should be inactive, except for the

sample-and-hold circuits that generate required

analog control signals. The analog emulator

should release its user-defined initial condition

and monitor for solution convergence. Transition

from this mode occurs once the analog emulator

achieves steady-state.

o MODE = 2 – denotes that analog emulation is

complete and data acquisition has begun. All data

acquisition-related hardware should be active.

Meanwhile, the emulator should maintain the

steady-state solution to which it has settled. Tran-

sition from this mode to MODE = 0 occurs once

 analog input signals are successfully ac-

quired and transmitted.

 varNAME – This 20-bit data field defines the name of a

control variable to be actuated as well as, in turn, the

destination of an analog control signal within the emula-

tor itself. This field allows the user to address more than

1 million distinct variables.

 varDATA – This 12-bit data field defines the value of a

control variable.

The setup stage is composed of three packets, the second of

which provides the DAQ hardware with MODE as well as

varNAME. Similarly, the data stage is composed of three

packets, the second of which contains varDATA. The third

stage employs a handshake packet to report on the status of

this transmission. A single 3s1vUTAc process requires

transmission of (less than) 32.5 bytes. Assuming a data

transfer rate of 480 MBit/s, USB 2.0 is capable of performing

over 1,935,832 3s1vUTAc processes per second. A single

3s1vUTAc process will require approximately 0.5us

().

An overview of the USB-based actuation system for the ana-

log emulator is shown in Fig. 5. An Atmel

AT91SAM/AT3X8E microcontroller unit (MCU) is utilized

to: 1) interpret the device-side USB drivers, 2) manage com-

munication between USB host and device, 3) perform analog-

to-digital (DAC) conversion, as well as 4) appropriately route

information to actuation hardware. The 20-bit varNAME pa-

rameter is stored in memory and supplied to external hard-

ware via Parallel I/O Controller A; the 12-bit varDATA pa-

rameter is stored in memory, converted to an analog signal,

and supplied to external hardware via output DAC0. Because

the number of analog control inputs () required by the

emulator far exceeds the number of DAC’s () provided

by any commercially-available microcontroller, these signals

must be generated serially and routed to the appropriate port

via 1: multiplexer (or equivalent constructed as set of se-

ries multiplexing devices). A series of sample-and-hold

circuits are utilized to “save” each analog control signal for

later use.

Fig. 4. Three-Stage, Single-Variable, USB-Based Transmis-

sion for Actuation Process (3s1vUTAc).

Fig. 5. Overview of USB-Based DAQ Hardware in Actuation

Mode.

TOKEN:
SETUP

DATA:
MODE,

varNAME

HAND:
ACK

TOKEN:
OUT

DATA:
varDATA

HAND:
ACK

TOKEN:
OUT

DATA:
ZERO

HAND:
ACK

HAND:
STALL

HAND:
NAK

Setup Stage Data Stage

Status Stage

note: host defines defines both MODE and

varNAME above.

note: host defines

direction of flow above.

note: host defines 12-

bit varDATA above.

if normal

if error

if still processing

host packet device packetkey

note: device reports to host regarding status

of transmission below.

32-bit 24-bit < 32-bit 32-bit 12-bit < 32-bit

32-bit < 32-bit

< 32-bit

note: total data

transmission is less

than 260 bits, or 32.5

bytes.

USB

AT91SAM Microconrtoller Unit (MCU)

USB port onboard RAM

stores varDATA

12-bit DAC
25cc/conversion

DAC0 Output
generates varDATA

Sample & Hold (0)

Sample & Hold (1)

Sample & Hold (2)

Sample & Hold (…)

Sample & Hold (NIn)

FPAA-Based Analog
Emulator

onboard RAM

stores varNAME

1cc per
bit

2cc per
bit

1
cc p

er
b

it

2cc per
bit Parallel IO

Controller A

1
cc p

er sign
al

note: it is assumed that both
multiplexer and sample /

hold circuits will complete
operation within one clock

cycle of microcontroller.

1:NIn

Multiplexer
routes data by

valNAME

b
it0

0
b

it0
1

b
it0

2
b

it0
3

b
it0

4
b

it0
5

b
it0

6
b

it0
7

b
it0

8
b

it0
9

b
it1

0
b

it1
1

b
it1

2
b

it1
3

b
it1

4
b

it1
5

b
it1

6
b

it1
7

b
it1

8
b

it1
9

approx 2cc per
20 bit

parallel output

digital signal analog signal

input / control signals

output signals / solution

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10793

The Atmel MCU operates with a master clock frequency of

84MHz () and provides the user with mul-

tiple 12-bit analog-to-digital converters, 12-bit digital-to-

analog converters, as well as 32-bit parallel I/O controllers

[1]. Documentation provided by Atmel describes the pro-

cessing time required for certain relevant operations. This

MCU requires 1 clock cycle (cc’s) to transfer a 32-bit signal

from any peripheral to memory and 2 clock cycles to retrieve

this information [2009a, 2012b]. Digital-to-analog conver-

sion requires 25 clock cycles for completion [2012b]. Ana-

log-to-digital conversion requires 1us for completion

[2012b]. The parallel I/O controller requires approximately 2

clock cycles for completion, because it employs a separate

45MHz clock (approximately half speed of master). Obvi-

ously, these represent best-case-scenario times. In future

works, the authors intend to use physical experimentation to

more accurately characterize additional overhead.

The time required to properly actuate a single emulator input

() is dependent on that required to perform the

3s1vUTAc process (), move varNAME from

memory to parallel I/O controller (), generate the ap-

propriate 20-bit digital control signal (), move varDATA

from memory to the DAC (), and generate the appro-

priate analog control signal (). It is assumed that both

multiplexer as well as sample-and-hold circuits are able to

complete their tasks is less than one MCU clock cycle. Equa-

tions (2) and (3) illustrate that the , allowing

approximately 1,100,000 actuations per second [2012b].

 ⏟

 ⏟

 ⏟

 ⏟

 ⏟

 (2)

 () ()
 () ()

(3)

7.2 Data Acquisition

Data acquisition employs a process and hardware very simi-

lar to that discussed in Section 7.1 above. The three-stage

process shown in Fig. 6 is employed to request data acquisi-

tion and transmit relevant information via USB. There are

several key differences between the 3s1vUTDa (three-stage,

single-variable, USB-based transmission for data acquisition)

and 3s1vUTAc processes. Unlike actuation, the data packet

in the setup stage defines MODE = 2. This indicates that da-

ta acquisition has begun. Within this same packet, the 20-bit

varNAME defines the name of the output variable to be ac-

quired as well as, in turn, the origin of this output signal with-

in the emulator itself. Unlike actuation, the token packets

within the data as well as status stages indicate that infor-

mation will flow IN from device to host (not OUT from host

to device). The 12-bit varDATA defines the value of this

output variable [2001, 2009b].

Since there is a significantly greater chance of communica-

tion failure on the device side, the status stage of 3s1vUTDa

is still initiated by the host. This allows this device to indi-

cate if one or more components within the DAQ system have

failed or require additional time to complete their tasks. Like

the 3s1vUTAc, the 3s1vUTDa process requires transmission

of (less than) 32.5 bytes. Making similar assumption as

above, a single 3s1vUTDa process will require approximately

0.5us ().

Fig. 6. Three-Stage, Single-Variable, USB-Based Transmis-

sion for Data Acquisition Process (3s1vUTDa).

Fig. 7. Overview of USB-Based DAQ Hardware in Data Ac-

quisition Mode.

An overview of the USB-based data acquisition system for

the analog emulator is shown in Fig. 7. It employs a structure

that is similar to actuation system shown in Fig. 5. A set of

sample-and-hold circuits are used to save the analog emula-

TOKEN:
SETUP

DATA:
MODE,

varNAME

HAND:
ACK

TOKEN:
IN

DATA:
varDATA

HAND:
ACK

TOKEN:
IN

DATA:
ZERO

HAND:
ACK

HAND:
STALL

HAND:
NAK

Setup Stage Data Stage

Status Stage

note: host defines defines both MODE and

varNAME above.

note: host defines

direction of flow above.

note: device defines 12-

bit varDATA above.

if normal

if error

if still processing

host packet device packetkey

note: host reports to device regarding status

of transmission below.

32-bit 24-bit < 32-bit 32-bit 12-bit < 32-bit

32-bit < 32-bit

< 32-bit

USB

AT91SAM Microconrtoller Unit (MCU)

USB port onboard RAM

stores varDATA

12-bit ADC
1us/conversion

AD0 Input
accepts varDATA

onboard RAM

stores varNAME

1cc per
bit

2cc per
bit

1
cc p

er
b

it

2cc per
bit Parallel IO

Controller A

1
cc p

er sign
al

note: it is assumed that both
multiplexer and sample /

hold circuits will complete
operation within one clock

cycle of microcontroller.

b
it0

0
b

it0
1

b
it0

2
b

it0
3

b
it0

4
b

it0
5

b
it0

6
b

it0
7

b
it0

8
b

it0
9

b
it1

0
b

it1
1

b
it1

2
b

it1
3

b
it1

4
b

it1
5

b
it1

6
b

it1
7

b
it1

8
b

it1
9

approx 2cc per
20 bit

parallel output

digital signal analog signal

Sample & Hold (0)

Sample & Hold (1)

Sample & Hold (2)

Sample & Hold (…)

Sample & Hold (NOut)

FPAA-Based Analog
Emulator

1:NOut

Multiplexer
routes data by

valNAME

input / control signals

output signals / solution

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10794

tor’s output. A multiplexer is then user to route one of these

output signals, as dictated by varNAME, to the device con-

troller for analog-to-digital conversion. The number of out-

put signals to be acquired is referred to as .

The time required to properly acquire a single output from

the emulator () is dependent on that required to perform

the 3s1vUTDa process (), move varNAME from

memory to the parallel I/O controller (), generate the

appropriate 20-bit digital control signal (), move varDA-

TA from the DAC to memory (), and perform analog-

to-digital conversion (). Again, it is assumed that both

multiplexer as well as sample-and-hold circuits are able to

complete their tasks is less than one MCU clock cycle. Equa-

tions (4) and (5) illustrate that the , allowing

approximately 600,000 data acquisition operations per sec-

ond.

 ⏟

 ⏟

 ⏟

 ⏟

 ⏟

 (4)

 () ()
 ()

(5)

VIII. COMPUTATION TIME

The length of time required to complete a load flow study

() is dependent on several factors including: number of

load flow analyses required for study (), number of system

configuration / emulator input variables (), time required

to actuate a single emulator input (), time required for

emulation (), number of states / emulator output variables

(), time required to acquire single emulator output

(), time required or simulation (), and overhead time

for pre/post-processing (). Equation (6) defines computa-

tion time if the emulator is employed only as a pre-processor,

yielding a solution () that is later supplied to simulation

engine as an initial condition. Equation (7) defines computa-

tion time if simulation is not used, and the emulated solution

is used directly to generate study results.

 ()
(6)

 () (7)

In either case, the authors hypothesize that the mixed-signal

computation engine described in Fig. 3 will generate results

faster than simulation alone. Previous works have demon-

strated the speed of emulation-based load flow analysis.

IX. REFERENCES

M. R. Dadash-Zadeh, T. S. Sidhu, and A. Klimek, (2009a)

"Field-Programmable Analog Array-Based Distance Relay,"

IEEE Transactions on Power Delivery, vol. 24, p. 10.

V. Salehi, A. Mohamed, and A. Mazloomzadeh, (2012a)

"Laboratory-Based Smart Power System, Part I: Design and

System Development," IEEE Transactions on Smart Grid,

vol. 3, p. 10.

J. R. Arribas, C. Veganzones, F. Blazquez, and C. A. Platero,

(2011a) "Computer-Based Simulation and Scaled Laboratory

Bench System for the Teaching and Training of Engineers on

the Control of Doubly Fed Induction Wind Generators,"

IEEE Transactions on Power Systems, vol. 26, p. 9.

M. Kayal, R. Cherkaoui, I. Nagel, and L. Fabre, (2007) "To-

ward a Power System Emulator Using Analog Microelectron-

ic Solid-State Circuits," in IEEE Powertech Conference Lau-

sanne, Switzerland

I. Nagel, R. Cherkaoui, and M. Kayal, (2013) "Analog Mi-

croelectronic Emulation for Dynamic Power System Compu-

tation," in Department of Electrical and Computer Engineer-

ing. vol. Ph.D. Lausanne, Switzerland: Ecole Polytechnique

Federale De Lausanne.

A. S. Deese and C. O. Nwankpa, (2011b) "Utilization of

FPAA Technology for Emulation of Multiscale Power Sys-

tem Dynamics in Smart Grids," IEEE Transactions on Smart

Grid, vol. 2, pp. 606-614.

J. J. Grainger and W. D. Stevenson, (1994) Power System

Analysis: Mc-Graw Hill Publishing.

Z. Odibata and S. Momani, (2006a) "Numerical Methods for

Nonlinear Partial Differential Equations of Fractional Order,"

Science Direct Journal of Applied Mathematical Modeling,

vol. 32, pp. 28-39.

A. Wood and B. Wollenburg, (1996) Power Generation, Op-

eration, and Control, 2nd ed.: Wiley Publishing.

S. P. Carullo, M. Olaleye, and C. O. Nwankpa, (2004) "VLSI

Based Analog Power System Emulator for Fast Contingency

Analysis," in Proceedings of 37th Hawaii International Con-

ference on System Sciences (HICSS), Hawaii.

L. Torok and A. Zarandy, (2006b) "Analog-VLSI, Array-

Processor-Based, Bayesian, Multi-Scale Optical Flow Esti-

mation," International Journal of Circuit Theory and Applica-

tions, vol. 34, pp. 47-75.

R. Fried, R. S. Cherkaoui, C. C. Enz, A. Germond, (1999)

and E. A. Vittoz, "Approaches for Analog VLSI Simulation

of the Transient Stability of Large Power Networks," IEEE

Transactions of Circuits and Systems I, Volume 46, pp. 1249

- 1263.

Atmel Engineering Team, (2012b) "Datasheet for Atmel

AT91SAM ARM-Based Flash MCU for SAM3X and SAM

3A Series." Volume 1 United States: Atmel Corporation.

C. Young, M. Devaney, S. Wang, (2001) "Universal Serial

Bus Enhances Virtual Instrument-Based Distributed Power

Monitoring," IEEE Transactions on Instrumentation and

Measurement, Volume 50, Issue 6.

J. Axelson, (2009b) "USB Complete: The Developer's

Guide," The Developer's Guide Series, New York City, USA.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10795

