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Abstract: This paper examines how custom computing hardware for fast power system analysis may be 

adapted to improve the user experience as well as its commercial-viability.  One prime example of such 

custom hardware is the FPAA-based analog emulator developed previously by the authors.  The authors 

propose development of a USB-based actuation and data acquisition interface that allows analog compu-

tational tools to work seamlessly with one or more commercially-available power system analysis soft-

ware packages.  A commercially-available software application will be tasked with user interaction and 

post-processing, while custom hardware is tasked with faster-than real-time power system analysis. 
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I. INTRODUCTION 

This work builds upon previous research in analog emulation 

of power system dynamics via field-programmable analog ar-

ray (FPAA) technology [2009a, 2011b, 2011a, 2007, 2013].  

The research has generated multiple electronic analog com-

puter prototypes and peer-reviewed publications [2009a].  In 

this paper, the authors discuss how existing analog emulator 

prototypes (like those shown in Fig. 1) may be adapted to 

improve the user experience as well as its commercial-

viability.  They propose development of a USB-based actua-

tion and data acquisition interface that allows analog compu-

tational tools to work seamlessly with one or more commer-

cially-available power system analysis software packages 

(e.g. PSCAD).  An overview of this technique is presented in 

Fig. 3.  The software facilitates user interaction and post-

processing, while analog hardware provides faster-than real-

time analysis capability. 

   

Fig. 1. First (Left), Second (Middle), and Third (Right) Ana-

log Power System Emulator Prototypes Referred to in this 

Paper 

II. BACKGROUND 

In engineering and the sciences, digital computers are often 

utilized to predict the behavior of a non-linear system via 

simulation, a software implementation of iterative numerical 

techniques like the Newton-Raphson  [2012a, 2011a].  This 

technology, due to advances in personal computing, is easy to 

operate and capable of producing precise results.  Its speed, 

in comparison to hand calculations, allows the practical im-

plementation of numerical methods that previously had none 

[2009a].  However, one limitation of digital simulation is that 

length of time required to simulate a solution is dependent on 

the number and complexity of nonlinear expressions [2009a].  

The complexity of a power system simulation grows with 

third power of system size [2012a]. 

For the same purpose, analog computers use emulation.  In it, 

a non-linear system model is implemented as a set of recon-

figurable analog circuits referred to as the emulator [2011a].  

This hardware is then actuated, initialized, and allowed to set-

tle to a constrained solution.  The user acquires results 

through observation of this hardware via voltage and current 

measurement devices.  One may ask: Is it worth the addition-

al effort associated with hardware design and construction to 

perform such analyses via analog emulation that may be per-

formed digitally?  The authors have shown in previous works 

that the answer is “yes.”  Because analog emulation abandons 

the use of iterative numerical techniques, the length of time 

required to yield a solution (this excludes the effects of actua-

tion and data acquisition) is fully controllable and independ-

ent of the dimension of the system model [2012a].  Analog 

computation has potential to perform many types of non-

linear analyses significantly faster than is possible digitally; 

however, digital simulation is still generally utilized over 

analog alternatives for such studies.  Several reasons exists, 

including potential nonlinear behavior, high power consump-

tion, limited precision, lack of reconfigurability, and size of 

analog technology.  Given this, what motivation exists to 

study analog emulation as an alternative to digital simulation 

for nonlinear system analysis?  One prime example is the 

emergence of new analog tools like the field-programmable 

analog array (FPAA). 
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The field-programmable analog array (FPAA) represents a 

new frontier in analog technology, one which benefits from 

the application of large scale integration (LSI) methods to a 

reconfigurable, switched capacitor design.  It is essentially a 

blank canvas for the development of custom analog hard-

ware, composed of configurable analog blocks (CAB) which 

may be actuated and interconnected digitally.  The most basic 

definition of the FPAA’s operation is a configuration file 

which, when uploaded to hardware, configures and intercon-

nects all CAB’s.  The method in which this configuration is 

generated depends on model and manufacturer.  Fig. 2 

demonstrates the flow of information required to configure a 

single FPAA chip.  It is similar to that of the FPGA; howev-

er, logic blocks would take the place of CAB’s. 
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Fig. 2. Demonstration of Configuration File Upload to FPAA 

Hardware 

Although some FPGA’s provide limited analog capability, it 

is most often implemented through utilization of high-

performance analog-to-digital and digital-to-analog convert-

ers.  Such hardware does not provide the full capability of an 

analog circuit and cannot be successfully employed for ana-

log emulation. 

III. MOTIVATION 

The authors realize that users, particularly in industry, prefer 

tools similar to those they have used previously.  As such, the 

authors of this work employ a solution that incorporates 

commercially-available software and hides any evidence of 

the tool’s experimental nature from the user, providing an 

experience identical to that of applications like Siemens’ 

PSS/E, Mathworks SimPower, Manitoba HVDC PSCAD, 

and PSerc Matpower.  The prototype will utilize a digital 

computer (PC) running one of the aforementioned applica-

tions to facilitate user interaction but rely on an FPAA-based 

analog hardware accelerator to improve computation speed 

and overall performance. 

The work discussed in this paper exploits the complementary 

strengths and weaknesses of digital simulation and analog 

emulation, as applied to nonlinear system analysis and opti-

mization.  In grossly simplified terms, it may be described as 

follows.  Digital simulation is generally precise but slow; an-

alog emulation exhibits opposite characteristics.  It is for this 

reason that the authors employ a mixed-signal computing so-

lution, one that employs digital as well as analog devices and 

draws upon the strengths of both.  One of the most innovative 

aspects of this work is the utilization of FPAA technology in 

the place of traditional analog components. 

IV. PROBLEM STATEMENT 

Although a number of published works examine the applica-

tion of analog and FPAA-based computation technologies to 

load flow analysis, adoption by industry and academia is lim-

ited.  How can researchers adapt existing analog emulator 

prototypes (like that shown in Fig. 1) to improve the user ex-

perience as well as its commercial-viability? 

V. PROPOSED SOLUTION 

The authors propose development of a USB-based actuation 

and data acquisition interface that allows analog computation 

tools to work seamlessly with one or more commercially-

available power system analysis software packages (e.g. 

PSCAD).  Software facilitates user interaction and post-

processing, while analog hardware provides faster-than real-

time analysis capability.  This paper focuses predominantly 

on static load flow analyses. 

VI. METHOD OVERVIEW 

6.1 System Components 

Fig. 3 provides an overview of the proposed mixed-signal 

computing tool.  It is composed of three primary pieces: 

 Power System Simulation Tool – a commercially-

available software application that allows users to per-

form a variety of power system studies including stabil-

ity, contingency, and optimal power flow. 

 Analog Power System Emulator – is an analog computa-

tional tool designed to mimic the behavior of a power 

system and, in turn, perform various static as well as dy-

namic power system analyses.  It may be actuated, ini-

tialized, and allowed to settle to a constrained solution.  

Results are acquired through observation of the voltages 

and currents it generates.  Several examples are shown in 

Fig. 1. 

 USB-Based DAQ System – is hardware designed to link 

the simulation and emulation tools, performing analog 

hardware actuation and data acquisition as needed. 

6.2 Management Algorithm 

For this proposed solution, the user interacts with the power 

system simulation tool normally.  A graphical user interface 

allows she / he to define the parameters of the study ( ) as 

well as acquire simulated results (    ).  Normally, a man-

agement algorithm embedded within the simulation tool will 

perform several tasks: 

 Interpret Study Parameters – The management algorithm 

interprets study parameters ( ) and generates the config-

urations (  ) associated with individual load flow anal-

yses.  For example, a single-contingency study must be 

broken down to multiple power system configurations, 
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each corresponding to the failure of a single component.  

Note that    represents the input/configuration employed 

by an i
th

 load flow analysis. 

 Define Initial Conditions – The management algorithm 

generates an initial condition (    ) for each load flow 

analysis.  Often a flat start is employed.  Note that      
represents the initial condition employed by an i

th
 load 

flow analysis. 

 Interpret Load Flow Solutions – The management algo-

rithm interprets load flow solutions (      ) and generates 

the comprehensive study result (    ) associated with  .  

For example, the results of a single-contingency analysis 

must be extracted from multiple load flow solutions.  

Those that violate nominal operating limits are high-

lighted to the user.  Note that        represents the simu-

lated solution of an i
th

 load flow analysis, as defined by 

the configuration    and initial condition     . 

Each variable in this paper is underlined according to its di-

mension.  For example, the two-dimensional      matrix is 

composed of multiple one-dimensional        arrays. 

      {
               } (1) 

In the authors’ proposed method, the management algorithm 

performs an additional task.  It utilizes external analog emu-

lation hardware to pre-process load flow results.  For an i
th

 

load flow analysis, the management algorithm supplies an 

appropriate configuration    to the analog emulator, acquires 

the emulated load flow solution        it generates, and uti-

lizes this solution to generate a better estimate of       

 

Fig. 3. Overview of Proposed Hybrid Computing Solution 

For hardware actuation, the information contained within    
is routed to the PC’s USB Host Controller (USB-HC) [2001, 

2009b, 2012b]  The USB-HC communicates with a USB De-

vice Controller (USB-DC) embedded within the external 

hardware and transmits    along a standard USB message 

pipe.  These controllers work together to ensure that no data 

is changed or lost.  The device controller interfaces directly 

with DAQ hardware that generates and routes analog control 

signals to the emulator as defined by   . 

Once emulation is complete, the management algorithm re-

quests that data acquisition begin.  It instructs DAQ hardware 

to observe, perform A/D conversion on, and store the analog 

output signals that compose the emulated load flow solution 

(      ). 

VII. DAQ HARDWARE 

USB 2.0 communication will be utilized to actuate as well as 

acquire data from analog emulation hardware.  This custom 

DAQ hardware will be classified as a class FFh device, indi-

cating that vendor-defined drivers are required for proper op-

eration.  USB 2.0 hardware allows transfer of data with a 

maximum rate of 480MBit per second as well as provides 

devices with a 5.0V, 1.5A-rated power supply.  These rating 

dictate the speed of the actuation and data acquisition hard-

ware as explained below [2001, 2009b, 2012b].   

7.1 Actuation 

For hardware actuation, configuration data is transmitted 

along a USB message pipe.  Unlike faster stream-based alter-

natives, it facilitates bi-directional communication between 

host and device for acknowledgement of data transfer well as 

error correction.  Information is transmitted as a set of USB 

transactions, each consisting of one or more packets [2001, 

2009b, 2012b]:  

 Token Packet (32-bit) – defines the direction of data 

flow, type of data to be transmitted, and destination of all 

subsequent packets.  It is composed of six fields: 1) the 

8-bit SYNC field is used to synchronize the clock of the 

device to that of the host, 2) the 8-bit PID field identifies 

the type of packet being transmitted, 3) the 7-bit ADDR 

field provides address of intended packet recipient de-

vice, 4) the 4-bit ENDP field facilitates routing of a 

packet within the recipient device, 5) the 5-bit CRC or 

Cyclic Redundancy Check field ensures proper data 

transmission, and 6) the 3-bit EOP or End of Packet field 

indicates that a packet is complete. 

 Data Packet (variable) – is capable of transmitting up to 

1024 bytes of data per packet within its DATA field.  

Like the token packet, it also contains SYNC, PID, CRC, 

and EOP fields. 

 Handshake Packet (< 32-bit) – completes a transaction 

and ensures proper transmission of data.  It is composed 

of SYNC, PID, and EOP fields. 

The three-stage process shown in Fig. 4 is employed to 

transmit via USB the information required for actuation of a 

single variable within the emulator.  It is referred to as a 

u ysim
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ui ysim,ix0,iyemu,i

yemu,i

ui yemu,i

ui

yemu,i

u

ysim

POWER SYSTEM SIMULATION TOOL

User
tasks: 1) supply system 
configuration and study 

parameters, 2) analyze results

Graphical User Interface (GUI)
tasks: 1) accept input from, 2) 

displays output to user

Analog Emulator
tasks: 1) accept input, 2) 
emulate system transient 

response, 3) generate solution

Management Algorithm
tasks: 1) interpret study parameters, 2) generate 

initial condition, 3) interpret load flow solutions, 4) 
facilitate interaction with external hardware

Load Flow Analysis Simulator
tasks: 1) accept input, 2) 

generate load flow solution via 
numerical simulation

MCU-Based Device Controller
tasks: 1) communicates with 
USB host as dictated by USB 

driver, 2) ensure com success

DAQ Hardware
tasks: 1) performs ADC/DAC, 2) 

routes analog input/output 
signals, 3) samples input/output

USB Host Controller (USB-HC)
tasks: 1) communicates with 

USB device as dictated by USB 
driver, 2) ensure com success
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3s1vUTAc (three-stage, single-variable, USB-based trans-

mission for actuation) process.  Each process communicated 

several pieces of information including [2001, 2012b]:  

 MODE – This 4-bit data field defines the current mode 

of the DAQ system and analog emulator hardware. 

o MODE = 0 – denotes that the DAQ system is per-

forming actuation.  All actuation-related hardware 

should be active.  Meanwhile, the emulator should 

accept new as well as maintain existing user-

define initial condition values.  Transition from 

this mode to MODE = 1 occurs once     analog 

input signals are successfully applied and trans-

mitted. 

o MODE = 1 – denotes that actuation is complete 

and analog emulation has begun.  All actuation-

related hardware should be inactive, except for the 

sample-and-hold circuits that generate required 

analog control signals.  The analog emulator 

should release its user-defined initial condition 

and monitor for solution convergence.  Transition 

from this mode occurs once the analog emulator 

achieves steady-state. 

o MODE = 2 – denotes that analog emulation is 

complete and data acquisition has begun.  All data 

acquisition-related hardware should be active.  

Meanwhile, the emulator should maintain the 

steady-state solution to which it has settled.  Tran-

sition from this mode to MODE = 0 occurs once 

     analog input signals are successfully ac-

quired and transmitted.  

 varNAME – This 20-bit data field defines the name of a 

control variable to be actuated as well as, in turn, the 

destination of an analog control signal within the emula-

tor itself.  This field allows the user to address more than 

1 million distinct variables. 

 varDATA – This 12-bit data field defines the value of a 

control variable.   

The setup stage is composed of three packets, the second of 

which provides the DAQ hardware with MODE as well as 

varNAME.  Similarly, the data stage is composed of three 

packets, the second of which contains varDATA.  The third 

stage employs a handshake packet to report on the status of 

this transmission.  A single 3s1vUTAc process requires 

transmission of (less than) 32.5 bytes.  Assuming a data 

transfer rate of 480 MBit/s, USB 2.0 is capable of performing 

over 1,935,832 3s1vUTAc processes per second.  A single 

3s1vUTAc process will require approximately 0.5us 

(               ). 

An overview of the USB-based actuation system for the ana-

log emulator is shown in Fig. 5.  An Atmel 

AT91SAM/AT3X8E microcontroller unit (MCU) is utilized 

to: 1) interpret the device-side USB drivers, 2) manage com-

munication between USB host and device, 3) perform analog-

to-digital (DAC) conversion, as well as 4) appropriately route 

information to actuation hardware.  The 20-bit varNAME pa-

rameter is stored in memory and supplied to external hard-

ware via Parallel I/O Controller A; the 12-bit varDATA pa-

rameter is stored in memory, converted to an analog signal, 

and supplied to external hardware via output DAC0.  Because 

the number of analog control inputs (   ) required by the 

emulator far exceeds the number of DAC’s (    ) provided 

by any commercially-available microcontroller, these signals 

must be generated serially and routed to the appropriate port 

via 1:    multiplexer (or equivalent constructed as set of se-

ries multiplexing devices).  A series of     sample-and-hold 

circuits are utilized to “save” each analog control signal for 

later use. 

 

Fig. 4. Three-Stage, Single-Variable, USB-Based Transmis-

sion for Actuation Process (3s1vUTAc). 

 

Fig. 5. Overview of USB-Based DAQ Hardware in Actuation 

Mode. 
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The Atmel MCU operates with a master clock frequency of 

84MHz (              ) and provides the user with mul-

tiple 12-bit analog-to-digital converters, 12-bit digital-to-

analog converters, as well as 32-bit parallel I/O controllers 

[1].  Documentation provided by Atmel describes the pro-

cessing time required for certain relevant operations.  This 

MCU requires 1 clock cycle (cc’s) to transfer a 32-bit signal 

from any peripheral to memory and 2 clock cycles to retrieve 

this information [2009a, 2012b].  Digital-to-analog conver-

sion requires 25 clock cycles for completion [2012b].  Ana-

log-to-digital conversion requires 1us for completion 

[2012b].  The parallel I/O controller requires approximately 2 

clock cycles for completion, because it employs a separate 

45MHz clock (approximately half speed of master).  Obvi-

ously, these represent best-case-scenario times.  In future 

works, the authors intend to use physical experimentation to 

more accurately characterize additional overhead. 

The time required to properly actuate a single emulator input 

(      ) is dependent on that required to perform the 

3s1vUTAc process (         ), move varNAME from 

memory to parallel I/O controller (      ), generate the ap-

propriate 20-bit digital control signal (    ), move varDATA 

from memory to the DAC (      ), and generate the appro-

priate analog control signal (    ).  It is assumed that both 

multiplexer as well as sample-and-hold circuits are able to 

complete their tasks is less than one MCU clock cycle.  Equa-

tions (2) and (3) illustrate that the             , allowing 

approximately 1,100,000 actuations per second [2012b]. 

 

      
          ⏟      

     

       ⏟  
       
      

       ⏟  
       
      

     ⏟
       
      

     ⏟
        
      

 (2) 

 

      
        (         )   (         )
  (         )    (         )        

(3) 

7.2 Data Acquisition 

Data acquisition employs a process and hardware very simi-

lar to that discussed in Section 7.1 above.  The three-stage 

process shown in Fig. 6 is employed to request data acquisi-

tion and transmit relevant information via USB.  There are 

several key differences between the 3s1vUTDa (three-stage, 

single-variable, USB-based transmission for data acquisition) 

and 3s1vUTAc processes.  Unlike actuation, the data packet 

in the setup stage defines MODE = 2.  This indicates that da-

ta acquisition has begun.  Within this same packet, the 20-bit 

varNAME defines the name of the output variable to be ac-

quired as well as, in turn, the origin of this output signal with-

in the emulator itself.  Unlike actuation, the token packets 

within the data as well as status stages indicate that infor-

mation will flow IN from device to host (not OUT from host 

to device).  The 12-bit varDATA defines the value of this 

output variable [2001, 2009b].   

Since there is a significantly greater chance of communica-

tion failure on the device side, the status stage of 3s1vUTDa 

is still initiated by the host.  This allows this device to indi-

cate if one or more components within the DAQ system have 

failed or require additional time to complete their tasks.  Like 

the 3s1vUTAc, the 3s1vUTDa process requires transmission 

of (less than) 32.5 bytes.  Making similar assumption as 

above, a single 3s1vUTDa process will require approximately 

0.5us (               ). 

 

Fig. 6. Three-Stage, Single-Variable, USB-Based Transmis-

sion for Data Acquisition Process (3s1vUTDa). 

 

Fig. 7. Overview of USB-Based DAQ Hardware in Data Ac-

quisition Mode. 
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tor’s output.  A multiplexer is then user to route one of these 

output signals, as dictated by varNAME, to the device con-

troller for analog-to-digital conversion.  The number of out-

put signals to be acquired is referred to as     . 

The time required to properly acquire a single output from 

the emulator (      ) is dependent on that required to perform 

the 3s1vUTDa process (         ), move varNAME from 

memory to the parallel I/O controller (      ), generate the 

appropriate 20-bit digital control signal (    ), move varDA-

TA from the DAC to memory (      ), and perform analog-

to-digital conversion (    ).  Again, it is assumed that both 

multiplexer as well as sample-and-hold circuits are able to 

complete their tasks is less than one MCU clock cycle.  Equa-

tions (4) and (5) illustrate that the              , allowing 

approximately 600,000 data acquisition operations per sec-

ond. 

 

      
          ⏟      

     

       ⏟  
       
      

        ⏟    
       
      

     ⏟
       
      

     ⏟
   

 (4) 

 

      
        (         )   (         )
  (         )                

(5) 

VIII. COMPUTATION TIME 

The length of time required to complete a load flow study 

(      ) is dependent on several factors including: number of 

load flow analyses required for study (  ), number of system 

configuration / emulator input variables (   ), time required 

to actuate a single emulator input (      ), time required for 

emulation (   ), number of states / emulator output variables 

(    ), time required to acquire single emulator output 

(      ), time required or simulation (    ), and overhead time 

for pre/post-processing (   ).  Equation (6) defines computa-

tion time if the emulator is employed only as a pre-processor, 

yielding a solution (     ) that is later supplied to simulation 

engine as an initial condition.  Equation (7) defines computa-

tion time if simulation is not used, and the emulated solution 

is used directly to generate study results. 

 
      

       (                            ) 
(6) 

              (                       ) (7) 

In either case, the authors hypothesize that the mixed-signal 

computation engine described in Fig. 3 will generate results 

faster than simulation alone.  Previous works have demon-

strated the speed of emulation-based load flow analysis. 
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