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Abstract: Model-based fault detection and isolation is nowadays a well established and mature
field. It starts to become part of the curricula of graduate or post-graduate students. However,
the lack of good teaching materials makes difficult the teaching/learning process to students
and professors. This paper shows how project-based learning methodology has been used to
organise the labs of the fault diagnosis course using a real set-up based on a three-tank system.
Observer based methods for fault detection and structured residuals for fault isolation will be
introduced to the students from a practical point of view by means of a set of exercises that
intend students achieve a set of learning objectives.
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1. INTRODUCTION

Control and system theory is nowadays a common sub-
ject in many engineering curricula. Students learn from
the very basics of system modeling to the most recent
advanced control algorithms. Unfortunately, although the
field is mature and very important it is not as common
as control and system theory topics. This is due to the
fact that still nowadays there is a gap between academia
and industry that make that automatic fault diagnosis
systems are not so widespread as expected according to the
development of the field. In part, this can be explained why
engineering students are not aware about the existence of
fault diagnosis methodologies.

Among the different fault diagnosis methodologies, model-
based fault diagnosis is the most well theoretical developed
and closely related to the students with the usual back-
ground on systems and control theory. For this reason,
model-based diagnosis is the core of the course Diagnosis
and Fault Tolerant Control in the Automatic Control and
Robotics Master at Universitat Politecnica de Catalunya

(UPC).

Model-based Fault Detection and Isolation (FDI) of dy-
namic systems is based on the use of models to check the
consistency of observed behaviors. This consistency check
is based on computing the difference between the predicted
value from the model and the real value measured by
the sensors. Then, this difference, known as residual, will
be compared with a threshold value (zero in the ideal
case). When the residual is bigger than the threshold, it is
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determined that there is a fault in the system. Otherwise,
it is considered that the system is working properly. Fault
detection is followed by the fault isolation procedure which
will distinguish a particular fault from others. Whilst a sin-
gle residual is sufficient to detect faults, a set (or a vector)
of residuals is required for fault isolation [Gertler, 1998].
If a fault is distinguishable from other faults using one
residual set, then it can be said that this fault is isolable.
Methods that conform the FDI basis are: parity methods
[Gertler, 1998], observer methods [Chen and Patton, 1999
and parameter estimation methods [Isermann, 2006]. In
the proposed exercises, parity and observer based methods
will be applied and compared in the proposed case study.

In this course, in parallel with the theoretical materials,
students get a more practical engineering point of view of
fault diagnosis field by means of a small project based on a
real set-up (a three-tank system) following a Project-Based
Learning (PBL) methodology. The learning activities com-
bine conceptual developments, simulation and experimen-
tal works. This paper presents some of the materials and
proposed learning lab activities regarding fault diagnosis
part of the course.

The structure of the paper is the following: in Section
2 the proposed case study used to present the model-
based fault diagnosis teaching material is introduced. In
Section 3, fault detection is presented, while fault isolation
is presented in Section 4. Then, the learning exercises, the
results obtained in simulation and in the real lab set-up
and supporting material are presented in Section 5, and
6, respectively. Finally, in Section 7, conclusions close the

paper.
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2. THE EXPERIMENTAL SETUP
2.1 Set-up description

The learning activities will be proposed using a three-
tank system as testbed. Tanks systems, both in three or
four-tanks versions, have been widely used for teaching an
research purposes [Johansson, 2000, Dormido et al., 2008]
due to its interesting dynamic behaviors and relatively
simple structure. An scheme of the concrete plant that
is used in this work is shown Figure 1.
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Figure 1. Three tank plant schematic
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This plant is used both in simulation and real experiments.
The real plant can be easily changed in both parametric
and structural manner as follows:

e The connection between the different tanks consists of
various pipes that can be connected or disconnected
easily.

e Some of the pipes can modify their section.

e The level sensors may be moved slightly.

e Finally, one of the tanks can be moved vertically.

All these changes allow to create different types of fault
scenarios that the students should address in the different
learning exercises proposed.

2.2 Mathematical model

The model of the three tank system can be written down
as:

. 1
hyj=— (—k‘lbs (hl — hb) — ki S (hl — hm) =+ klul) (1)

a

P = ai (Ktms (hy = han) — K8 (B — hy)) (2)
}.lr = i (kmrs (hm - hr) — ks (hT - hb) + krur) (3)
by, = aib (ks (g — hy) + kpps (hy — hy)) (4)

where h;, h,,, h,. and h; correspond to the liquid level
of the left, middle, right and bottom tanks respectively
(measured as shown in Figure 1), a;, @, a, and ap
correspond to the cross section area of left, middle, right

and bottom tanks respectively, u; and u, are the voltages
applied to left and right pumps respectively, k; and k,
are the left and the right pumps gain respectively, kip,kim,
kmr, kip and k. are the different pipe coefficients; and
s(z) = sign(z)+/|z]. The nominal parameters values,
experimentally obtained, are presented in Table 1. This
parameter set corresponds to the nominal case, so the fault
detection and isolation schemes will be designed according
to these parameters.

ki (cm? /s) kip(cm? /s) kmr(cm2/s) | kpp(cm?/s)
15.86 7.04 10.48 6.93
Epp(cm?/s) | kj(em®/s- V) | kr(cm3/s- V) a;(cm?)
0.00 6.04 6.04 64.00
am(cm?) ar(cm?) ap(cm?) vol(cm3)
64.00 64.00 1044.00 15990.00

Table 1. Model Parameters

The system (1)-(4) is a fourth order non-linear model
which can be reduced to a third order one in x =
[hiy hom,y he] and w = [uy,u,] by using the fact the liquid
volume is preserved:

vol = aphy + ajhy + am by + arhr, (5)

S0, the system can be written as:

x =1 (x,u) (6)
y =h(x,u) (7)

As most mature techniques for fault detection and iso-
lation for dynamical system has been developed for lin-
ear systems [Gertler, 1998, Blanke et al., 2006], and the
course is centered in these techniques, a linear model for
this system should be obtained. When working around
an equilibrium point (x,,u,) the system behavior can be
linearized following [Roubal et al., 2010] as follows:

X =Ax+Bp (8)
v =Cx+Dp (9)

: of of dh
with A = &‘(Xu,uo)v B = %|(xo,uo)’ C = &|(xo)uo)and

D = %‘(xo,uo) so that: x .z Xo + X ¥ ~ Yo + Y
and u =~ u, + p. Most experiments during the learning
activities presented in this paper will be performed around
the equilibrium point defined by x, = (ho1, hor, Pom) =
(41,39,40.39)cm and u, = (Uo,1, Uo,r) = (4.35,8.76)V.

For this particular point of interest, a discrete-time system
with T, = 1s is obtained as follows

x(k+1) = Ax(k) + Bu(k) (10)
where x = [Xi, Xm, Xr]s & = [p1, f4r]. Since all the tank

levels (states) are measured matrix C is the identity.

Note that this system can equivalently be written down in
input/ouput form as: !

My (q) M, (q)
[Mml (Q) Mmr <Q)
Mrl (q) Mrr (Q)

v (k) = w (k) (11)

-1

1 where ¢~ ! stands for the delay operator.
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3. MODEL-BASED FAULT DETECTION
3.1 Model-based fault detection

In order to present basic model-based fault detection
theory, let us consider a linear dynamic system in discrete-
time that can be described by the following input-output
relationship without considering faults, disturbances and

noise:
V(g)

y (k) =M (q)u (k)= Wu(k)

where: u(k) is the input, y(k) is the output, M(q) is the
transfer function with numerator V(q) and denominator
W (q) in terms of the classical g-operator.

(12)

As discussed in the introduction, the principle of model-
based fault detection is to test whether the measured
inputs and outputs from the system are consistent with
the model of the faultless system. If the measurements
are inconsistent with the model of the faultless system,
the existence of a fault is proved. The residual usually
describes the consistency check between the predicted,
9(k) and the real behavior, y(k), as:

r(k) = Q(aq)(y(k) — 4(k)) (13)
where Q(q) is a filter that could be included to improve
fault detection (for example, to decouple model uncer-
tainty and noise) and/or isolation properties of the resid-
ual vector (for example, to decouple residuals from some
faults).

The fault detection task consists in deciding if a residual
given by Eq. (13) is violated at a given instant or not
generating a fault signal s; according to:
~_J0,if [riy(k)| <7 (no fault)
SET 1, if (k)| > 7 (fault)

where 7; is the threshold associated to the i-th residual.

(14)

3.2 Parity and observer based methods

According to Gertler [1998], given a system described by
Eq. (12), a general form of the predicted behavior is

§(k) = Gu(q)u(k) + Gy(q)y(k) (15)
including as special cases Meseguer et al. [2010]: ARMA
form (simulation: G,(q) = M(q), Gy(g) = 0) and the
MA form (prediction: G (q) =V (q), Gy(q) =1-W(q)).
Then, using Eq. (13) the following parity equation forms
can be introduced:

r(k) =y (k) = Gu(q) u (k) — Gy(q)y(k)

ARMA residuals are based on the simulation of the system
behavior expecting to be zero in the absence of noise,
disturbances and faults. However, in general this is not
true, because the actual system and its modelled behavior
are not initialized identically and since there are non
modeled (or unstable) dynamics. It is generally possible
to force the convergence of the model simulation adding a
Luenberger observer scheme
F(k+1)= Az (k)+ Bu(k)+ L(y (k) —g (k)
(k) =Cz (k)
where L is the observer gain, designed to stabilize the
matrix A — LC and guarantee desired performance.

(16)

(17)

The predicted output of the observer given by Eq. (17),
expressed in observer canonical form, is generated using
the model given by Eq. (15) considering that

- V()
Gu(q)=C(qgl —A+LC)""'B=
=t S P W+ @
- H (q)
Gy(q)=C(qI—A+LC) 'L = 18
where
H(q) =Y lLq™ (19)
i=1
and [;,4 = 1,--- ,n are the observer gains.

Looking at the observer expression (17), it possible to see
that the two parity equation forms (ARMA and MA) can
be obtained as special cases through appropriate selection
of the observer gain Meseguer et al. [2010]. Taking observer
gain equal to zero, L =0 (or H (¢) =0 ), no correction is
introduced, then the observer residual expression given by
Eq. (18) will transform into the ARMA parity equation
form. On the other hand, assuming that all states are
measured and taking the observer gain satisfying: LC = A
(or W (q) + H (q) = 1), the MA parity equation form is
obtained.

4. MODEL-BASED ISOLATION
4.1 Background

In the literature, two different approaches to constructing
residual sets with the desired isolability properties can
be found. One approach is based on designing a vector
of structured residuals [Gertler, 1998]. Each residual is
designed to be sensitive to a subset of faults, whilst re-
maining insensitive to the remaining faults. An alternative
way of achieving the isolability of faults is to design a
vector of directional residuals [Gertler, 1998], which lies
in a fixed and fault-specified direction in the residual
space, in response to a particular fault. The fault isolation
problem consists in determining which of the known fault
directions, called fault signatures, the generated residual
vector lies the closest to. This is done as follows:

The actual fault signature of the system s(k) = [s1(k),
s2(k), ...sn(k)], obtained as a result of the fault detec-
tion phase (see (14)) is provided to the fault isolation
module which will try to isolate the fault and give a
diagnosis. The actual fault signature is compared against
the theoretical Fault Signature Matrix FSM that binary
codifies the influence of a fault in a set of considered faults
J1, f2, .- fa, on every residual in the a set of considered
residuals r1,79,...7,,. This matrix has as many rows as
residuals and as many columns as considered faults. An
element F'SM;; of this matrix being equal to 1 means that
the j** fault appears in the expression of the " residual.
Otherwise it is equal to 0. Assuming classical FDI fault
hypotheses, i.e, single faults and no-compensation (exon-
eration), fault isolation will consist in looking for a column
of the FF'SM that matches the actual fault signature s(k).
Therefore, this classic approach in the FDI-community is
also known as Column Reasoning Gertler [1998].

9028



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Table 2. List of components of case-study sys-

tem
Component EAR
Tank 1 c1: hy = a% (qub — Qb — QLm)
Tank m c2: hpm = i (@tm — gmr)
Tank r c3: hy = i (Qprb —qrb + ‘Im?")
Pipe 1b ca: qu = kips (b — hy)
Pipe Im cs5: Qum = Kkims (hy — hm)
Pipe mr C6 : dmr = km'rs (hm - hr)
Pipe rb crt qrp = krps (hr — hy)
Pump 1b c8 : qpip = kg
Pump rb €9 Gprb = kruy
Level sensor 1 clo: Y1 =h
Level sensor m c11: Ym = hm
Level sensor r c12: Yr = hy

4.2 Structural analysis

Structural analysis is the analysis of the structural prop-
erties of models, i.e., properties which are independent of
the actual values of the parameters Blanke et al. [2006].
It only represents the links between the variables and the
parameters which result from the model and are thus inde-
pendent of the form under which this model is expressed
(quantitative or qualitative). The links are presented by
a graph upon which the analysis of the structure will be
performed.

From the structural analysis point of view, the model of the
system is considered as a set of constraints which apply to
a set of variables among which a subset have known values:

e the sensors which are present in the process together
with the control variables, give the subset of those
variables whose values are known.

e the set of constraints is given by models of the
components which constitute the system. The term
constraint refer to the fact that components impose
elementary analytical relations (EAR) between the
values of variables according to their corresponding
physical laws.

The system proposed as a case study for this paper
in Section 2 consists of the components enumerated in
Table 2. The structural graph associated to this set of
components is presented in Fig 2.

From the set of constraints and the set of known variables,
the basic tool of structural analysis is to apply a matching
algorithm that associates unknown system variables with
the system constraint from which they can be calculated.
Unknown variables that can not be matched, can not
be calculated. A complete matching over the unknown
variables identifies the computations to be done in order
to express each of them as a function of the known
variables. Applying the matching algorithm to the set of
constraints presented in Table 2, proposed by Blanke et al.
[2006], generates a set of structured residuals. The F.SM
corresponding to these residuals when considering faults in
level sensors (fy,, fy,. and f,.) and pumps (f,, and f,,)
is presented in Table 3. It can be noticed from this table
that sensor faults are not isolable. In order to isolate sensor
fault, the set of structured residuals can be transformed as
described in next section.

Table 3. Fault signature-matrix of case-study
system

[ Residual H fu [ Fym [ fyr [ Juy [ Sur l

r1 1 1 1 1 0

T 1 1 1 0 0

T3 1 1 1 0 1
[T T

apb gpb Wl gim

Figure 2. Structural analysis graph.

4.8 Designing a structured set of residuals

A set of structured residuals can be designed using the
method proposed by Gertler [1998], where each individual
residual is designed to be sensitive to a single fault whilst
remaining insensitive to the rest of faults.

For this purpose, let us consider the residuals obtained
using structural analysis approach presented in Section 4.2
expressed in computational form as in (16). Assuming ad-
ditive faults f(k) affecting those residuals and the transfer
function S(g) describing the residual fault sensitivity to
each f(k), residuals (16) can be rewritten in internal form
as Gertler [1998]

r(k) = S(q)f(k) (20)
Then, structured residuals can be transformed using the
filter Q(q) leading to a set of transformed residuals

(k) = Q(g)r(k) = Q(q)S(q) f (k)

that present the desired fault response. The filter Q(q) is
designed by imposing the transformed residuals present
the desired fault response as

(21)

ri(k) = Z(q)f (k) (22)
where Z(q) is desired fault transfer-function matrix. Com-
paring Equation (21) and (22), the design equation for the
filter Q(q) can be derived:

Q(q)S(q) = Z(q)

Assuming that the number of residuals n,. is equal to the
number of considered faults ny (i.e., S(q) is a square fault
transfer matrix), the solution of design equation (23) can
be found by direct inversion:

(23)

(24)
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Table 4. Structured fault signature-matrix of
case-study system

[ Residual H fu [ Sfrm [ fyr [ Juy [ Jur l

™ 1 0 0 1 1
m 0 1 0 1 1
- 0 0 1 1 1

what requires that rank(S(q)) = n, = ny.

By imposing that Z(q) is a diagonal fault transfer func-
tion matrix, the transformed set of structured residuals
obtained in Section 4.2 leads to a bank of dedicated ob-
servers. That scheme uses a separate observer for each
monitored sensor being only sensitive to a sensor fault
while insensitive to the rest.

5. PROPOSED EXERCISES AND SUPPORTING
MATERIAL

5.1 Exercices

Ezxercise 1: Fault Detection using Observer and Parity
Equations  Students will obtain a set of primary residuals
directly from the input/output model (11) obtained from
the linearised state-space representation of the system
by using the parity equation and observer approaches
introduced in Section 3. Residuals will be evaluated in
different fault scenarios (leaks, sensor and actuator faults)
in order to see the different sensitivities to the fault of the
different approaches. In particular, the observer gain will
be changed from L = 0 (ARMA parity equation) to L = A
(MA parity equations). Section 6 presents the results in
case of sensor faults.

Exercise 2: Structural Analysis  The system is composed
of the components presented in Table 2. The equation
that describes the dynamics of each component is also
presented. From this set of equations and using the tool
SaTool [Blanke and Lorentz, 2006], students will perform
the structural analysis of the system. As a result of this
analysis, the structure of the system presented in Figure 2
will be obtained. Using the matching algorithm available
in SaTool, the set of structured residuals will be obtained
as well as the fault signature matrix regarding the set of
considered faults. Finally, fault detectability and isolability
analysis will be carried out.

Ezxercise 3: Fault Isolation using Structured Residuals
Analysing the set of residuals obtained in Exercise 2, the
fault signature matrix presented in Table 3 will be vali-
dated in simulation. The students should notice that not
all the faults are isolable with the residuals obtained using
the structural analysis approach. But transforming this set
of residuals by means of the appropriate transformation
as described in Section 4.3, a new set of residuals able to
isolate the desired set of faults can be derived. This new
set of residuals will result in a set of residuals that can be
implemented as a bank of observers, each one dedicated to
monitor a particular sensor fault.

5.2 Supporting material

Since the seminal book of Patton et al. [1989], that was the
only reference for many years, several books have appeared

[Gertler, 1998, Chen et al., 1998, Blanke et al., 2006,
Isermann, 2006, 2011, Ding, 2008]. From these books,
maybe the book of Isermann [Isermann, 2006] is the only
one that offers the widest perspective since presents a wide
range of fault diagnosis methods ranging from model-based
to signal and knowledge-based methods.

6. RESULTS USING SIMULATED AND REAL
SET-UP

The FDI methods designed in the proposed exercises are
tested either in simulation using MATLAB/SIMULINK
as well as in the real set-up presented in Section 2. The
simulator is based on the non-linear equations (4) with
nominal parameters in Table 1 in order to represent, as
close as possible, the real behaviour of the three tank
system proposed as case study.

Figure 3 presents the fault detection results when a fault
of 3cm in the sensor measuring the level of the third tank
is introduced. This figure shows how the fault detection
performance varies when changing the observer gain. It
can be noticed that the simulation approach is the most
persistently sensitive independently of time. However, in
the case of the two other approaches (prediction (MA)
and observation (ARMA)) sensitivity evolves with time
(dynamic response depending of residual poles) being the
maximum value at the fault apparition time but decreases
as time elapses. This produces that the predicted output
tends to follow the faulty system output (“fault following
effect”) and the fault indication could not persistently
indicate the fault presence Meseguer et al. [2010]. This
can cause problems in the fault isolation module if several
residuals should be activated at the same time in order to
isolate a fault.

Residual tank 3

Level (cm)

1 'L=0 (ARMA)
—L=0001A
[ L=A (MA)

1 1
950 1000 1050 1100 1150 1200
e

Figure 3. Effect of observer gain in Residual 3.

Figures 4-5 present fault detection results in the real set-up
and in simulation using the simulator presented above for
the same fault obtained with the set of residuals provided
by the bank observers described in Section 4.3 when a off-
set fault of —4cm appears in the third sensor. These figures
show that only the third residual is activated. This is in
concordance with what is described in Section 4.3 where
each residual generated to be sensitive to a single sensor
fault according to the FSM matrix presented in Table 4.
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Residual tank 1
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Figure 4. Real Residual 1.

Residual tank 2
25 T T

= Experimental
- Simulated

Detection threshold

_05 | | | . |
' 800 900 1000

Level (cm)

Figure 5. Real Residual 2.

Residual tank 3
7 T T

= Experimental
' Simulated
6L

Level (cm)
(%)
T

Detection threshold

I I I
200 300 400 500 600 700 800
Time (s)

Figure 6. Real Residual 3.
7. CONCLUSIONS

In this paper, an introduction to model-based FDI learning
activities based on PBL has been proposed using a three
tank system in simulation and using a real set-up. Classical
fault detection methods observers and parity methods are

9031

recalled and applied to the three tanks system. Relation
between the two methods is also discussed from the analyt-
ical and performance point of view. Fault isolation is ad-
dressed using structural analysis and structured residuals
are used to generate a set of residuals that allow fault iso-
lation. Finally, a set of exercises proposed to the students
are described as well as some of the results obtained using
the three tank system in simulation and experimentally.
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