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Abstract: Extended Kalman Filtering (EKF) based GPS-INS has poor performance when
there are strong nonlinearities and the measurements are corrupted by noise or outliers. This
paper proposes a Contemplative Realtime (CRT) framework for tightly coupled Differential
GPS aided inertial navigation. This method guarantees low latency for real-time application and
meanwhile enhances the accuracy and reliability of navigation. To realize these improvements,
a Bayesian optimization based smoothing is combined with conventional filtering in an efficient
way. For demonstration purpose, this CRT framework is implemented on an automotive vehicle
with differential pseudorange and IMU measurements. The implementation result shows that
compared to standard EKF method, the proposed approach could provide accurate vehicle

navigation with robustness.
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1. INTRODUCTION

Global Positioning System aided Inertial Navigation Sys-
tem (GPS-INS) is widely applied for navigation purpose
on aircrafts, land vehicles, marine surface vehicles and
other platforms (see Diesel (1991); Farrell et al. (2000);
Bevly et al. (2006); Elkaim et al. (2008)). Due to the com-
plimentary sensor properties, this GPS-INS integration
has proven its efficiency under the framework of standard
Extended Kalman Filter (EKF) (see Farrell (2008)). Es-
pecially, when carrier phase measurements and differential
sources are available, the centimeter level accuracy can
be achieved by applying Real Time Kinematic (RTK)
technique (see Farrell et al. (2000)). However, conventional
GPS-INS still has limitations, among which is that the per-
formance of the EKF significantly depends on initial con-
ditions and nonlinearities (see Dellaert and Kaess (2006)).
This is due to the fact that previous improper EKF lin-
earization points cannot be corrected at later times.

To overcome this inconsistence problem of the EKF
method, a smoothing approach has attracted consider-
able attention in the Simultaneous Localization and Map-
ping (SLAM) research community (see Dellaert and Kaess
(2006); Kaess et al. (2008)). A key point of smoothing in
the SLAM context is keeping the complete robot trajec-
tory in the estimation, so all the useful information over
the time window can be considered to reach statistically
optimality. By exploring the sparsity of the involved ma-
trices and introducing incremental solution, the smoothing
approach is claimed to be fast and efficient (see Kaess et al.
(2008)). However, for real-time inertial vehicle navigation
and control applications, where temporal latency can cause
severe issues, the computational cost is still fairly consid-
erable.

In this paper, a novel tightly coupled GPS-INS framework
is proposed for accurate and reliable vehicle navigation.

Copyright © 2014 IFAC

The proposed approach, which is referred as a Contem-
plative Realtime (CRT) method, guarantees not only real-
time performance, but also precision and robustness, by
combining filtering, smoothing and outlier rejection in an
efficient way. In the smoothing, a Mazimum-a-Posteriori
(MAP) optimization is formed by considering all the in-
formation over an extended duration window. Statistical
testing procedures are introduced to detect, identify and
remove erroneous GPS measurements during the smooth-
ing process. The measurement redundancy in the outlier
detection is improved, since a whole window of measure-
ments are included. For demonstration, this CRT GPS-
INS is implemented with differential compensated pseudo-
range and IMU measurements on an automotive vehicle.

In the literature, the most related work is Indelman et al.
(2013) in which the GPS measurements are used in a
loosely coupled way. In contrast, this paper evaluated
the performance of the tightly coupled GPS/INS in a
smoothing framework which has not been reported in
the literature. The implementation result shows that the
proposed framework enhances navigation accuracy and
reliability significantly.

The overall GPS-INS positioning accuracy will be deter-
mined by the GPS performance. However, faulty GPS
measurements can be caused by many factors. For ex-
ample, drastic atmospheric variations or multipath effects
could delay the signal. Receiver Autonomous Integrity
Monitoring (RAIM, see Hewitson et al. (2004); Bhatti
(2007)) is a set of techniques to check the consistency of
measurements relying on measurement redundancy. Con-
ventional RAIM only uses measurements from one epoch,
which cannot always guarantee enough available satellites.
One way to fix this RAIM ‘hole’ is to integrate external
aiding like INS. Several papers have considered such ex-
tended RAIM (eRAIM, see Hewitson and Wang (2010))
using linearized propagation methods over two measure-
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ment times. The methods herein extend these ideas over
K > 1 epochs while addressing the full nonlinear solution.

This paper is organized as follows. Section 2 presents
the problem statement. Section 3 introduces the CRT
approach. Section 4 presents the details of the Mazimum-
a-Posteriori problem. Section 5 gives a brief discussion
of reliable removal of faulty data in the CRT framework.
Section 6 shows the experimental results with vehicle data.

2. PROBLEM STATEMENT

This section introduces the background and notation of
differential GPS aided inertial navigation. The main INS
and GPS references for this presentation are Farrell (2008)
and Misra and Enge (2001), respectively, which should be
consulted for additional information.

2.1 Aided Inertial Navigation

Let x € R™ denote the 6-DOF rover state vector:
T
T = [Gp? Gyl LaT Ibz IbaT (1)

where “p; and “v; are the rover position and velocity
represented in the global frame, é(j is the quaternion that
represents the rotation from the global frame to the IMU
body frame, and ! by, and b, are the IMU gyro and
accelerometer biases represented in the IMU frame.

The kinematic equations for the rover state are

w(t) = f(x(t), u(t)), (2)
where f : R® x R™ — R" and u € R™ is the vector

of accelerations and angular rates. The function f is
accurately known (see Chapter 11 in Farrell (2008)).

Given a distribution for the state vector initial condition
x(0) ~ N(x(0),P(0)) and measurements @ of u, an
Inertial Navigation System (INS) propagates an estimate
of the vehicle state between aiding measurement times as
a solution of .

x(t) = f(2(t), u(t)), 3)

where &(t) denotes the estimate of ().

Due to initial condition errors, system calibration errors,
and measurement noise, the state estimation error dx(t) =
x(t) — &(t) develops over time. The dynamics and stochas-
tic properties of this estimation error are well understood.

When aiding measurements

Z(t) = h(z(t)) + n.(t) (4)
are available, various methods are available to use the ini-
tial state, inertial measurements, and aiding measurement

information to estimate the vehicle state vector (Farrell
(2008); Kay (1993)). The n,(t) is the measurement noise.

2.2 DGPS Pseudorange Measurements

Throughout this article, double differenced GPS mea-
surements are considered. For simplicity of notation, it
is assumed that DGPS approach completely removes all
common-mode errors (e.g., ionosphere, troposphere, satel-
lite clock and ephemeris errors). The code (pseudorange)

measurements for the i—th satellite at time ¢ can be
modeled as S _

p' =R +cdt, +nl, (5)
where R’ = ||p — p’||2 is the geometric distance between
the vehicle position p € R? and p* € R3 is the i—th
satellite position, ¢dt, € R is the receiver clock bias,
ﬁfo is the measurement noise. Subtracting all satellite’s
measurements by a common satellite’s measurement will
remove the clock bias ¢dt,. The new measurement model
after double difference is:

i _ pi i

p - R + np7 (6)
where R' = R* — R, p' = p' — p¢ and nz = ﬁ:; —n,.
Thus, the code measurement in eqn. (6) conforms with the
standard measurement model represented in eqn. (4).

2.8 Technical Problem Statement

This paper considers vehicle state estimation problem us-
ing inertial and DGPS pseudorange measurements. With-
out loss of generality, we consider the problem on the time
interval [to, tx], which contains K’ GPS measurement time
instants, where K can be designer specified, time varying,
or data dependent. The technical problem can be stated
as follows.

For a system described by eqn. (2), we have

e an initial distribution for the state x(¢p),

e IMU measurements U = {a(73)}i_,

e DGPS code measurements Y = {Y(tj)}]K:l,

V(1) = {6 (1)}

where to, t; € (10, 7] and m; = m(t;) is the total number
of available satellites at t;. For convenience of notation
later, let {tx}r_o = {to} U{t;}1<, C [to, tx], such that the
set of times is ordered and non-repeating. This interval of
time will be referred to as the CRT window.

where

Then, we have the objective: Estimate the optimal state

trajectory X = {x(tk)}szo with the given sensor measure-
ments U, Y and the prior state density p(x(to)).

3. CONTEMPLATIVE REALTIME APPROACH

This paper develops a Contemplative RealTime (CRT)
approach proposed in Ramanandan et al. (2011); Chen
et al. (2013) for the GPS INS data scenario described
in Section 2.3. The CRT approach has both real-time
and contemplative aspects. The real-time state estimate
is required for control and planning purposes, without la-
tency. The contemplative aspects are intended to enhance
accuracy and reliability and are inspired by recent research
in the field robotics literature, see e.g.: Dellaert and Kaess
(2006); Kaess et al. (2008); Indelman et al. (2013); Li and
Mourikis (2013).

A typical measurement scenario over the CRT window
is depicted in Fig. 1. The contemplative process starts
when t = tg. At tg, all IMU, GPS, and other mea-
surements are available for the time interval [to,tx]. A
prior trajectory @(\) for A € [to,tx] is also available.
Starting from this prior trajectory, the CRT algorithm
will contemplate the available information to reliably and
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Fig. 1. Measurement timeline for one CRT cycle.

accurately compute the state trajectory over the CRT
window using optimization shown in Dellaert and Kaess
(2006); Kuemmerle et al. (2011) and statistical hypothesis
testing methods discussed in Baarda (1968); Hewitson
et al. (2004). This contemplative process ends at a time
t* > tg, ideally providing an optimal trajectory estimate
T*(A) for A\ € [to, tx] from which the effects of sensor faults
have been removed. For the computation time interval
t € [tk,t*], the real-time estimate of the realtime state
estimate (t) is maintained by the INS using the IMU data
and starting from the prior estimate of x(tx). At t = t*,
Z(tx) is corrected to the result of the CRT contemplative
process and propagated through time using the IMU data
and eqn. (3) to provide an improved estimate of x(t) at
the present time. At some time ¢ > t*, the CRT window
can be redefined and the process can repeat indefinitely.

Fig. 1 depicts a typical CRT window. The dots on the
time-line indicate IMU measurement times 7. The state
transition between these times is constrained by the kine-
matic model of eqn. (3) and the IMU data U. Additional
constraints are imposed by the initial state estimate, and
GPS measurements Y. The initial condition (x¢, Pg) con-
straints are shown above the time-line. The GPS mea-
surement constraints (p) are depicted below the time-line.
Each of these constraints is quantified by a probability den-
sity that enables a Bayesian problem formulation. While
Fig. 1 depicts all GPS measurements occurring at the
IMU measurement time, unaligned measurements can be
addressed by interpolation, and unknown latencies can be
calibrated by the methods in Li and Mourikis (2014, to
appear).

The main contribution of this article is the derivation and
implementation of this Bayesian approach, particularly for
the tightly coupled DGPS/INS application.

4. MAP ESTIMATION

Given the sensor measurements U, Y and the prior state
density px(x(tg)), our objective is to compute the state
trajectory X = {m(tk)}fzo that maximizes the joint
probability density p(X,Y,U). Due to the use of the
prior density at ¢, this is a Mazimum-A-Posteriori (MAP)
estimation problem.

The algorithm below builds upon the methods and no-
tation standard for INS implementations, see e.g., Farrell
(2008). For convenience, a very brief review of the method
and notation are presented in the appendix .

4.1 Theoretical Solution

For the derivation, we make the reasonable and standard
assumptions that w, ~ AN (0,Q) is the IMU measurement
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noise, n, ~ N(0,R,) and z(ty) ~ N(xzo,Po). With
various modifications, the derivation goes through for
other distributions.

Using standard methods (see Chapters 10-11 in Kay
(1993)) and assuming that x(tp), w, and m, are all in-
dependent, the MAP estimate of X is

X = arg;nax (péa:g (l’(to) - 5"'0)

Pw., (X+ - ¢(X7 U))pn,, (Y - h(X)>)7 (7)

where X} = {@(t) for t =ty,... tx}, dxo = (x(to) —
xy) ~ N(0,Pg) and the operator ¢ is defined in eqn.
(15) in the appendix.

Direct maximization of eqn. (7) is complicated by various
factors. First, each x(tx) € R™ where in most applications
n > 15. Second, both the kinematic model f and the
measurement model h are nonlinear.

With the Gaussian noise assumptions, maximization of
eqn. (7) is equivalent to minimization of

IVIRy = ll(to) — xoll,

+ZH¢ x(tr), Ur) — (tri1)]lQ,

+ZZ|\h; x(t;))

where |[v||3y = v'W~lv is the squared Mahalanobis
distance with the matrix W and the operator ¢ is defined
in the appendix, and h%(-) denotes the measurement
equation for the i-th Satefhte at time j. The vector v is
the concatenation of each of the vectors summed in the
right-hand side of eqn. (8) and W is the postive definite
block diagonal matrix formed by the positive definite
submatrices ’:Rp, Py and Q.

—p'(t))

B

Let ¥y be the square root of W—1: W1 ET Yw. We
can write ||v||lw = [|r[|2 where 7 £ Sy v. Use the same
notation for 'R, Py and Qi we got:

[ Zp, (z (750) - ﬁﬂo) ]

2Qo ((b(

Uo) — ﬂj(tl))

21R 0"1( ) —Pl(tl)

EQ;; 1(¢($(tK—1)aUK—1£€C(tK)) . (9)

| Sen, (R (@(tx)) — o ()
The 7(X) is composed of the prior, the IMU and the GPS
information which are separated by dash lines. With this
notation, the minimization problem of eqn. (8) reduces to
a nonlinear least square optimization

I (X)13-

Standard iterative methods (e.g. Gauss-Newton, gradient
descent, Levenberg-Marquardt) are applicable.

min

XeRn(E+1) (10)

The Gauss-Newton method is used in this paper and at
each iteration we solve the following equation:

Jox =—-b (11)
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where b 2 r(X) and J is the Jacobian matrix of (X)

evaluated at X. The inverse covariance weighted Jacobian
matrices in J can be demonstrated well-defined.

When solving for dz in eqn. (11), to save the computation
as shown in Kuemmerle et al. (2011), we form the equa-
tion: Adx = n, where A =J'J, n = —J "b. This equation
can be solved efficiently by the Cholesky factorization as
discussed in Dellaert and Kaess (2006).

4.2 Marginalization

Due to the computational resource constraints, we cannot
save the entire past history of states in the CRT window.
The Schur complement is employed to marginalize out the
oldest states from the CRT window and generate a new
prior state density, see Dong-Si and Mourikis (2011).

5. RELIABLE REMOVAL OF FAULTY DATA

Receiver Autonomous Integrity Monitoring (RAIM, He-
witson et al. (2004)) is a set of techniques to detect,
identify and remove GNSS receiver outlier measurements.
Traditionally, in the navigation community, RAIM is de-
signed assuming only one outlier occurs and that there is
enough measurement redundancy to detect and identify
the source. The proposed CRT approach, which enhances
the redundancy by incorporating a window of IMU and
GPS data, can be expected to enable multiple outlier de-
tection, identification, and removal. This outlier rejection
scheme, which enhances the robustness of vehicle GPS-INS
significantly, could make critical contributions as necessary
for life-safety applications. The key technique in standard
RAIM is outlier detection and identification. This section
considers the detection and identification, removal proce-
dures within the CRT framework. Interested readers may
find more details in Hewitson et al. (2004).

Suppose that the MAP optimization in eqn. (10) finally
converges to a optimal estimate X*. The generalized a-
posteriori variance factor test evaluated as
o (X3
" M-N’
can be used to detect outlier. In this expression, M =
n(l+ K)+ Z;il(mj —1) is the total number of residuals
(constraints) and N = n(K + 1) is the dimension of X.
Note that Z;il(mj — 1) is the total number of double-
differenced GPS measurements. The degrees-of-freedom
(M — N) can be considered as the index of the mea-
surement redundancy. For conventional GNSS-only RAIM
which uses one epoch measurements, the redundancy is
(m; —4), which requires at least five satellites to be avail-
able. For the proposed CRT framework, the measurement
redundancy is M — N = Zj-il(mj — 1), which indicates
that it has enhanced detectability against faulty data.

(12)

The final step of outlier detection is to test the above
variance factor against the two-tailed Chi-square test
limits with respect to a significance level «,

X%—a/lM—N Xi/2,M—N

M- N M- N
If the test succeeds, X* is finalized as the smoothing result
and the real-time part will use it to reinitialize. If not,

<6< (13)

Fig. 2. Vehicle trajectory (red). The yellow and blue
markers show the start and end points, respectively.

outlier identification executes by testing each residual with
the w-test. Once the source of the outlier is identified, the
corresponding measurement will be removed and the pro-
cedure continues until no additional outliers are identified.

When outlier identification completes, the outliers are
removed and the MAP optimization is formed with the
cleaned-up measurement set, then the detect-identify-
remove procedure repeats.

6. EXPERIMENTAL RESULTS

This section uses 200Hz MEMS IMU and 1Hz Differential
GPS data collected on a vehicle. The navigation system
is implemented in C++ with multi-threading and reports
the vehicle state in realtime at the IMU sampling rate. The
CRT window is chosen to be 10 sec. In this experiment,
the vehicle stays stationary while pointing north at the
beginning. After about 20 seconds the vehicle accelerated
north. The trajectory of vehicle is illustrated in Fig. 2.

This section compares the following real-time estimators:

(1) CRT using double-differenced code measurements;

(2) EKF using double-differenced code measurements;

(3) EKF using integer-resolved double-differenced carrier
phase measurements.

The definition of the state vector is the same for all
cases. In addition, we post-process the data through an
off-line batch smoother for the entire trajectory using
integer-resolved double-differenced carrier phase and code
measurements. This post-processed trajectory will be con-
sidered as the ground truth to which the other three
estimators are compared to determine error statistics.

Firstly, we demonstrate the capability of the proposed es-
timator to initialize yaw, without a compass. For a station-
ary vehicle, yaw is unobservable from GPS measurements.
When the vehicle accelerates, yaw becomes observable. For
the EKF, the yaw needs to be initialized close to the true
value to satisfy the EKF small error assumption; otherwise
the EKF may diverge. For EKF implementations, yaw may
be initialized via magnetometer, or other means. The CRT
estimator optimally initialize the yaw using the data in
the CRT window. Everything is done naturally within the
smoothing framework and it is also optimal with respect
to the pre-defined noise model. To demonstrate this, the
initial yaw is set to have an error of 180 degrees. Fig. 3
shows that, when the vehicle accelerates (near ¢ = 20s),
the yaw rapidly converges toward the correct value.

8962



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1501 : : : ——CRT i
= = = Ground true

100} : : : B

yaw, deg

0 5 10 15 20 25 30 35 40
time, sec

Fig. 3. Yaw estimated by the CRT at the beginning of
the trajectory. The yaw is initialized naturally as the
vehicle starts to accelerate at around 20 sec.

Secondly, the proposed estimator significantly improves
the state estimate accuracy. Fig. 4 and Fig. 5 compare
the estimated trajectory error from the three estimators
mentioned above. Fig. 4 shows a segment of the estimated
trajectories. The trajectory of the CRT approach using
double-differenced code is very near the trajectory of the
EKF using double-differenced integer-resolved phase. The
EKF using double-differenced code has significantly larger
errors. The distribution of the norm of the position error
in the horizontal plane (north-east) is shown in Fig. 5.
The Fig. 5 use the state estimate data at 1 Hz (324 data
points in total for this trajectory). The error statistics
clearly show that the proposed estimator has the position
estimate error in the decimeter level, while the EKF
using the same code measurements has the error in the
meter level. This large accuracy improvement is gain by
leveraging a window of measurements. The performance
of the proposed estimator is already very close to that
of the EKF using phase measurement (centimeter level).
However, to achieve the centimeter accuracy, the integer
ambiguity needs to be resolved in realtime.

The performance of the CRT and EKF approaches have
also been evaluated on the following two testing trajecto-
ries:

e Test2: 600 sec driving in mostly open sky environ-
ment.

e Test3: 500 sec driving in an area where a portion of
the trajectory has partial GPS signal blockage due to
trees and buildings along the road.

The statistical comparison of the position error in the
north and east directions over the entire trajectory for
three testing trajectories is given in Table. 1. The Test1
trajectory is the one shown in Fig. 2. It is clear to see from
the table that the CRT approach consistently outperforms
the EKF approach by keeping the position error at the
decimeter level while the EKF tends to have position errors
in meters.

The proposed CRT method also improves the estimate
of the other variables in the 6DOF state vector (eqn.
(1)). Fig. 6 shows the estimated accelerometer bias from
the EKF and CRT method for the test2 trajectory. It
is obvious that the accelerometer bias estimate converges
significantly faster in the CRT approach. The fast conver-
gence of the IMU bias estimate is the key to maintaining
high precision navigation performance.
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Fig. 4. EKF and CRT position accuracy comparison for
one segment of the trajectory.
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Fig. 5. Distribution of horizontal position error.
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Fig. 6. The comparison of the estimated accelerometer bias
with the +10 bound. The unit of bias is m/s2.

7. DISCUSSION AND FUTURE WORK

This paper has presented a novel GPS-INS framework
which is referred as a CRT estimator. Using the proposed
framework, we demonstrated that yaw initialization can be
done naturally and correctly without a magnetometer or
ad-hoc methods as may be required for EKF approaches.
In addition, the state estimate accuracy is enhanced signif-
icantly with respect to an EKF that uses exactly the same
measurements. In addition, we envision that the proposed
framework has the potential to allowing enhanced outlier
rejection to ensure the robustness of the estimator. Inter-
esting future work directions include development, imple-
mentation, and test of the outlier rejection approach, and
incorporation of carrier phase and doppler measurements.
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Table 1. Comparison of position error statistics. Mean and standard deviation are denoted as p
and o (unit is in meter). Double differenced code measurements are used in both estimators.

Test1 Test2 Test3
North: CRT: = -0.016, 0 =0.18 pu=-0.174, 0 =0.27 1 =0.003, o =0.31
EKF: p= 0.162, c =169 p=-0.097, c =1.08 p =0.040, c =1.10
East: CRT: upu= 0.164, 0 =021 p=-0.081, c=0.19 p©=0.220, c =041
EKF: upu= 0326, c=1.08 pu= 0.034, 0 =0.67 p©=0.629, c =1.39
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APPENDIX I: INS REVIEW

For any initial state x(7), the solution to (2) for ¢ €
[Ty Tht1] 18

x(t) = x (k) —|—/ f(x(7),u(r))dr.

Tk

(14)

While nature solves (14) in continuous time, the INS
only has IMU and aiding measurements at discrete time
instants; therefore, the INS numerically solves

E(Thy1) = ¢<53(Tk)» ﬁ(Tk))

2(7) + / " b&(r), a(r))dr.

k

(15)

The result of the numeric integration of (15) is the INS
state estimate of &(7x41) given &(7) and (7). The nu-
meric integration repeats to propagate the state measure-
ments between the times of aiding measurements. The
aiding measurement times can be unequally spaced in time
without causing any complications.

Let U; = {a(r,), 7 € [tj,tj41]}, then eqn. (15) can be
called recursively to compute &(t;41) from &(¢;) and Uj,
denote this as

Bty 1) = (&(t5), Ty)). (16)
At the same time, nature is integrating eqn. (14) which it
denoted as

z(tjr1) = ¢(z(t;), Uj)). (17)

The linearized error growth model is
o (tj1) = P;0&(t;) + w; (18)
h .~ N(0,Q;) and ®; = 2¢@) . Th
e (0Q;) and &, % leepo)

symbol w, will be used to represent {w;}/<,. The INS
provides both Q; and ®;, see Section 7.2.5.2 in Farrell
(2008).

8964



