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Abstract: In this paper, we put forth distributed algorithms for solving loosely coupled
unconstrained and constrained optimization problems. Such problems are usually solved using
algorithms that are based on a combination of decomposition and first order methods. These
algorithms are commonly very slow and require many iterations to converge. In order to alleviate
this issue, we propose algorithms that combine the Newton and interior-point methods with
proximal splitting methods for solving such problems. Particularly, the algorithm for solving
unconstrained loosely coupled problems, is based on Newton’s method and utilizes proximal
splitting to distribute the computations for calculating the Newton step at each iteration.
A combination of this algorithm and the interior-point method is then used to introduce
a distributed algorithm for solving constrained loosely coupled problems. We also provide
guidelines on how to implement the proposed methods efficiently, and briefly discuss the
properties of the resulting solutions.

1. INTRODUCTION

Distributed optimization methods are specially crucial in
the absence of a centralized computational unit or when
this unit lacks the necessary computational power for
solving the problem at all or in a timely manner. In
either case, distributed algorithms enable us to solve the
problem without the need for a central computational unit
and through collaboration of a number of computational
agents. Such methods also allow us to solve the problem
by solving subproblems that are easier and possibly faster
to solve. Distributed methods for solving optimization
problems have been studied for many years and there
are different approaches for devising such algorithms, see
e.g., Bertsekas and Tsitsiklis (1997); Eckstein (1989); Boyd
et al. (2011); Nedic and Ozdaglar (2009); Nedic et al.
(2010).

One of the most commonly used approaches for devising
distributed optimization algorithms is based on applying
gradient/subgradient methods directly to the problem, see
e.g., Nedic and Ozdaglar (2009); Nedic et al. (2010). The
resulting algorithms from such approaches are usually sim-
ple and easy to implement, however, they are very sensitive
to the scaling of the problem and suffer from very slow
convergence, Bertsekas and Tsitsiklis (1997). Another ap-
proach for constructing distributed algorithms is based on
decomposition techniques and proximal splitting methods.
To this end, the optimization problem is first decomposed
and then a splitting method of choice, e.g., the alternating
direction method of multipliers (ADMM), is applied to the
decomposed problem. This will define the computational
routines that each agent should perform locally and also
⋆ This work has been supported by the Swedish Department of
Education within the ELLIIT project.

will set the communication/collaboration protocol among
the agents, e.g., see Bertsekas and Tsitsiklis (1997); Eck-
stein (1989); Boyd et al. (2011); Combettes and Pesquet
(2011). Even though the resulting algorithms using this
approach tend to be more complicated than the previous
type of algorithms, they enjoy a faster rate of convergence
for certain classes of optimization problems, e.g., when
the objective function of the equivalent unconstrained
reformulation of the problem, has two terms and/or is
strongly convex, Goldfarb et al. (2012); Goldstein et al.
(2012). For more general classes of problems, however,
for instance when the objective function has more than
two terms of which several are non-smooth, e.g., indicator
functions, they can perform very poorly or may even fail to
converge, e.g., see Chen et al. (2013). Although there exist
modifications to splitting methods that allow us to apply
them to more general classes of optimization problems,
the resulting algorithms can become overly complicated
to implement (particularly distributedly), Goldfarb et al.
(2012); Han and Yuan (2012); Hong and Luo (2012), or
the local computations can still be considerable, e.g., they
may require each agent to solve an equality/inequality con-
strained problem at each iteration, Summers and Lygeros
(2012); Ohlsson et al. (2013).

In order to allay the aforementioned issues, there has been
a recent interest in studying the possibility of using sec-
ond order methods for designing distributed optimization
algorithms, e.g., see Chu et al. (2011); Wei et al. (2013);
Necoara and Suykens (2009). For instance, in Wei et al.
(2013), the authors propose a distributed Newton method
for solving a network utility maximization problem. The
cost function for such problems comprise of a summation of
several terms where each term depends on a single scalar
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variable. This structure allows the authors to employ a
matrix splitting method which in turn enables them to
compute the Newton directions distributedly. However,
this method relies on the special structure in the consid-
ered problem and hence can only be used for problems
with such structure. In Necoara and Suykens (2009) the
authors propose a distributed optimization method based
on an interior-point method. The introduced algorithm is
obtained by first performing a Lagrangian decomposition
of the problem and then solving the subproblems using
interior-point methods, efficiently. However, in the pro-
posed algorithm, the computational cost for solving the
subproblems can still be considerable. The authors in Chu
et al. (2011) propose a distributed Newton method for
solving coupled unconstrained quadratic problems, which
is used for anomaly detection in large populations. This
distributed method is only applicable to unconstrained
quadratic problems.

In this paper, we investigate the possibility of utilizing
Newton’s and interior-point methods for designing dis-
tributed algorithms for solving loosely coupled optimiza-
tion problems. Notice that this type of problems constitute
a more general class of problems than the ones in the above
mentioned papers. For this purpose, we first exploit the
coupling in the problem using consistency constraints and
use proximal splitting methods to compute the Newton
directions in a distributed manner. This then enables us
to propose distributed implementations of the Newton
method, which can be used for solving unconstrained
loosely coupled problems. In order to solve constrained
loosely coupled problems, we also put forth a distributed
interior-point method which relies on the proposed dis-
tributed Newton method. Furthermore, in contrast to the
methods proposed in Nedic and Ozdaglar (2009), in all the
proposed algorithms each of the agents is only required to
solve an unconstrained or equality constrained quadratic
program at each iteration.

Notation

We denote by R the set of real scalars and by R
n×m the

set of real n × m matrices. The transpose of a matrix A
is denoted by AT and the column and null space of this
matrix is denoted by C(A) and N (A), respectively. We
denote the set of positive integers {1, 2, . . . , p} with Np.

Given a set J ⊂ {1, 2, . . . , n}, the matrix EJ ∈ R
|J|×n

is the 0-1 matrix that is obtained by deleting the rows
indexed by Nn\J from an identity matrix of order n, where
|J | denotes the number of elements in set J . This means
that EJx is a |J |- dimensional vector with the components
of x that correspond to the elements in J , and we denote

this vector with xJ . With x
i,(k)
l we denote the lth element

of vector xi at the kth iteration. Also given vectors xi for
i = 1, . . . , N , the column vector (x1, . . . , xN ) is all of the
given vectors stacked.

2. NEWTON’S METHOD FOR SOLVING EQUALITY
CONSTRAINT PROBLEMS

Consider the following equality-constrained optimization
problem

minimize
x

F (x) (1a)

subj. to Ax = b, (1b)

Algorithm 1 Newton’s Method

1: Given l = 0, ǫnt > 0 and x(0) such that Ax(0) = b
2: repeat

3: Compute ∆x
(l)
nt by solving (2)

4: Compute λ(l)

5: if (λ(l))2/2 ≤ ǫnt then

6: x∗ = x(l)

7: Terminate the iterations
8: end if

9: Compute the step size α(l) using line search

10: x(l+1) = x(l) + α(l)∆x
(l)
nt

11: l = l+ 1

12: until iterations are terminated

where F : R
n → R is convex and twice differentiable,

and A ∈ R
p×n with rank(A) = p < n. This problem can

be solved iteratively using Newton’s method, (Boyd and
Vandenberghe, 2004, Ch. 10), where at each iteration the

variables are updated as x(l+1) = x(l) + α(l)∆x
(l)
nt , with

∆x
(l)
nt and α(l) denoting the so-called Newton direction

and its corresponding step size, respectively. The Newton

direction ∆x
(l)
nt is defined as the solution of

minimize
∆x

F (x(l)) +∇F (x(l))T∆x+
1

2
∆xT∇2F (x(l))∆x (2a)

subj. to A(x(l) +∆x) = b, (2b)

which constitutes a quadratic approximation of (1) at x(l),
(Boyd and Vandenberghe, 2004, Ch. 10). Notice that if we
assume that Ax(l) = b for all l ≥ 0, then the constraint
in (2b) would be A∆x = 0. The corresponding step size
α(l) is commonly computed using either exact or back-
tracking line search methods. The stopping/termination
criterion for this iterative algorithm is based on the so-
called Newton decrement which is defined as

λ(l) =

√

(∆x
(l)
nt )

T∇2F (x(l))∆x
(l)
nt , (3)

and it provides an estimate of the sub-optimality of the
iterates. Hence, Newton’s method terminates when the
Newton decrement falls below a given threshold ǫ. This
iterative scheme is summarized in Algorithm 1.

3. INTERIOR-POINT METHOD

The optimization problem in (1) can be extended to
include inequality constraints as

minimize
x

F (x) (4a)

subj. to Ax = b (4b)

gi(x) ≤ 0 i = 1, . . . ,m, (4c)

where gi : R
n → R are all convex and twice differentiable.

Also assume that the problem admits a strictly feasible
solution, i.e., there exists x such that Ax = b and gi(x) < 0
for all i = 1, . . . ,m. This allows us to solve (4) using an
interior-point method which requires solving a sequence of
equality-constraint problems, defined as

minimize
x

tF (x) +

m∑

i=1

φi(x) (5a)

subj. to Ax = b, (5b)

for increasing values of t > 0. The functions φi(x) :=
− log(−gi(x)) are so-called logarithmic barrier functions

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9588



Algorithm 2 Interior-point Method

1: Given q = 0, t(0) > 0, µ > 1, ǫp > 0 and feasible x(0)

2: repeat

3: Compute x∗(tq) by solving (5) using Alg. 1 starting at x(q)

4: x(q+1) = x∗(tq)
5: if m/t(q) < ǫp then

6: x∗ = x(q+1)

7: Terminate the iterations
8: end if

9: t(q+1) = µt(q)

10: q = q + 1

11: until iterations are terminated

which (since φ(x) → ∞ as gi(x) → 0) virtually create
barriers that prevent x from violating any of the inequality
constraints in (4c). Notice that for every fixed value of t
the problem in (5) is precisely in the form of (1), and it
can be solved using Newton’s method, as is described in
Algorithm 1. After the Newton method has converged to a
solution for a given t, x∗(t), then within the interior-point
method procedure, we gradually increase t and perform
the same procedure again. This is done until m/t is
below a certain threshold. This procedure is summarized
in Algorithm 2. Next, we define loosely coupled problems
and describe how we can take advantage of distributed
computations for solving such problems using algorithms 1
and 2.

4. UNCONSTRAINED LOOSELY COUPLED
OPTIMIZATION PROBLEMS

4.1 A Definition

Consider the following unconstrained optimization prob-
lem

minimize F1(x) + · · ·+ FN (x), (6)

where the convex and twice differentiable functions Fi for
i = 1, . . . , N , only depend on a small subset of the elements
of the variable x. Particularly, let us denote the ordered
set of indices of variables that appear in Fi by Ji. We
also denote the ordered set of indices of terms in the cost
function that depend on xi by Ii, i.e., Ii = {k | i ∈ Jk}. We
call an optimization problem loosely coupled if |Ii| ≪ N
for all i = 1, . . . , n. This problem can be rewritten as the
following equality-constrained optimization problem

minimize
S,x

f1(s
1) + · · ·+ fN(sN ) (7a)

subj. to Ēx = S, (7b)

where S = (s1, . . . , sN ) and Ē =
[
ET

J1
· · · ET

JN

]T
, with

EJi
a 0-1 matrix that is obtained from an identity matrix

of order n by deleting the rows indexed by Nn \ J . We
refer to the constraints in (7b) as consistency constraints.
Also fis are lower dimensional descriptions of Fis such
that Fi(x) = fi(EJi

x) for all x ∈ R
n and i = 1, . . . , N .

Notice that if we define F (S, x) = f1(s
1) + · · · + fN(sN )

and A =
[
−I Ē

]
, the problem in (7) is in the same form

as the problem in (1). We can now form the quadratic
approximation in (2) for this problem, as below

minimize
∆s1,...∆s1,∆x

N∑

i=1

fi(s
i,(l)) +∇fi(s

i,(l))T∆si+

1

2
(∆si)T∇2fi(s

i,(l))∆si (8a)

subj. to Ē(x(l) +∆x) = S(l) +∆S, (8b)

Algorithm 3 ADMM

1: Given k = 0, ρ > 0, ǫpri, ǫdual > 0, y(0) and v(0) = 0
2: repeat

3: x(k+1) = prox 1
ρ
T1

(y(k) + v(k))

4: y(k+1) = prox 1
ρ
T2

(x(k+1) − v(k))

5: v(k+1) = v(k) + (y(k+1) − x(k+1))
6: if ‖y(k+1) − x(k+1)‖2 < ǫpri && ‖y(k+1) − y(k)‖2 < ǫdual

then

7: Terminate the algorithm
8: end if

9: k = k + 1

10: until algorithm is terminated

where ∆S = (∆s1,∆s2, . . . ,∆sN ). Assuming that S(l) ∈
C(Ē), (8b) only requires ∆S ∈ C(Ē). This problem can
then be rewritten as the following unconstrained non-
smooth optimization problem

minimize
∆s1,...∆s1

N∑

i=1

fi(s
i,(l)) +∇fi(s

i,(l))T∆si+

1

2
(∆si)T∇2fi(s

i,(l))∆si + IC(∆S), (9)

where IC is the indicator function for the column space of
Ē. Considering the imposed structure in the cost function
of the problem in (9), it can be solved distributedly
using so-called proximal splitting, Combettes and Pesquet
(2011); Boyd et al. (2011); Eckstein (1989), which is the
subject of the next section.

4.2 Proximal Splitting Methods

In many applications we are faced with convex problems
of the form

minimize T1(x) + T2(x) (10)

where minimizing the joint problem is much harder than
solving problems including only individual terms of the
cost function, Combettes and Pesquet (2011); Boyd et al.
(2011); Khoshfetrat Pakazad et al. (2013). Proximal split-
ting algorithms enable us to solve the problem in (10) by
solving minimization problems that are based on individ-
ual terms in the cost function. This is done through the use
of the so-called proximity operators of these terms which
are defined as follows. Given a closed convex function T ,
the proximity operator for this function, proxT : Rn → R,
is defined as the unique minimizer of

minimize
y

T (y) +
1

2
‖x− y‖2.

There are different classes of proximal splitting methods,
Eckstein (1989). In this paper we, however, only consider
the Alternating Direction Method of Multipliers (ADMM)
which has been extensively used recently for design of
distributed algorithms in many applications, e.g., see Boyd
et al. (2011); Bertsekas and Tsitsiklis (1997). A general
description of ADMM for the optimization problem in (10)
is given in Algorithm 3. This algorithm can also accom-
modate a varying penalty parameter, ρ. This has shown
to improve the convergence properties of the algorithm,
and depending on the specifications of the problem there
are different approaches for updating this parameter at
each iteration, Boyd et al. (2011); Ghadimi et al. (2013).
Also there exist several alternatives for the termination
of the algorithm (the 6th step of Algorithm 3), see e.g.,
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Boyd et al. (2011); Bertsekas and Tsitsiklis (1997). Proxi-
mal splitting algorithms and particularly ADMM can per-
form very well when applied to quadratic problems, Boley
(2012), and as we will see later they can be implemented
very efficiently. Next, we describe how ADMM enables us
to distribute the computations for solving (7).

4.3 Distributed Computation of the Newton Direction

As was discussed in Section 4.1, the problems in (1) and (7)
have the same structure, and hence we can solve (7) using
the Newton method as described in Algorithm 1. Recall
that in the Newton method, in order to compute the
Newton direction at each iteration, we need to solve the
corresponding quadratic approximation of the problem. As
was also shown in Section 4.1, the quadratic approximation
for the problem in (7), can be equivalently rewritten as
in (9). Notice that (9) is in the same format as (10), where
T1 involves a summation of N decoupled terms and T2

corresponds to IC . With these definitions for T1 and T2

we now apply ADMM to (9). The 3rd and 4th steps of
Algorithm 3 can then be written as

∆S(k+1) = prox 1
ρ
T1

(∆Y (k) + v(k))

= arg min
∆s1,...,∆sN

N∑

i=1

f̄i(∆si) +
ρ

2
‖∆yi,(k) + vi,(k) −∆si‖2

(11a)

∆Y (k+1) = prox 1
ρ
IC

(∆Y (k) + v(k)) = PC(∆S(k+1) − v(k))

= Ē(ĒT Ē)−1ĒT (∆S(k+1) − v(k)) = Ē(ĒT Ē)−1ĒT∆S(k+1)

(11b)

where
f̄i(∆si) = fi(s

i,(l)) +∇fi(s
i,(l))T∆si +

1

2
(∆si)T∇2fi(s

i,(l))∆si

∆Y k = (∆y1,(k), . . . ,∆yN,(k))

vk = (v1,(k), . . . , vN,(k))

and vi,(k) = vi,(k−1) + (∆yi,(k) − ∆xi,(k)), which is given
by the 5th step of Algorithm 3. Notice that the last
equality in (11b) holds since if v(0) = 0, then v(k) ∈
N (Ē(ĒT Ē)−1ĒT ) for all k ≥ 1. As we see from (11a),
the update for ∆S(k+1) can be computed in a decentralized
manner using N computing agents, where at each iteration
every agent i calculates

∆si,(k+1) = arg min
∆si

f̄i(∆si) +
ρ

2
‖∆yi,(k) + vi,(k) −∆si‖2

=
(
∇2fi(s

i,(l)) + ρI
)−1 (

ρ(∆y(k) + vi,(k))−∇fi(s
i,(l))

)

(12)

where ∆yi,(k) and vi,(k) are locally available to each
agent. The update in (11b) can also be performed dis-
tributedly, which is explained as follows. Let ∆z(k+1) =
(ĒT Ē)−1Ē∆S(k+1). The update rule in (11b) can then be
rewritten as

∆Y (k+1) = (∆y1,(k+1), . . . ,∆yN,(k+1))

= Ē∆z(k+1) = (∆z
(k+1)
J1

, . . . ,∆z
(k+1)
JN

).
(13)

Notice that ĒT Ē = diag(|I1|, . . . , |IN |), and hence the
update for each component, j, of ∆x can be expressed as

∆z
(k+1)
j

=
1

|Ij |

∑

q∈Ij

(
ET

Jq
∆sq,(k+1)

)

j
. (14)

As a result, for each agent i to compute ∆yi,(k+1) =

∆z
(k+1)
Ji

, it needs to communicate to all agents in Ne(i) =
{j | Ji ∩ Jj 6= ∅} which are referred to as the neighbors of

agent i. The ADMM-based Newton direction computation
can then be summarized as in Algorithm 4.

Algorithm 4 ADMM-Based Newton Direction Compu-
tation
1: Given k = 0, ρ > 0, ǫpri, ǫdual > 0, ∆Y 0 ∈ C(Ē) and v(0) = 0
2: repeat

3: for i = 1, 2, . . . , N do

4: ∆si,(k+1) =
(
∇2fi(s

i,(l)) + ρI
)−1

(
ρ(∆yi,(k) + vi,(k))−∇fi(s

i,(l))
)

5: Communicate with all agents r belonging to Ne(i)
6: for all j ∈ Ji do

7: ∆z
(k+1)
j

= 1
|Ij |

∑

q∈Ij

(

ET
Jq

∆sq,(k+1)

)

j

8: end for

9: ∆yi,(k+1) = ∆z
(k+1)
Ji

10: vi,(k+1) = vi,(k) +
(
∆yi,(k+1) −∆si,(k+1)

)

11: Check whether ‖∆yi,(k+1) − ∆yi,(k)‖2 ≤ ǫdual/N and
‖∆si,(k+1) −∆yi,(k+1)‖2 ≤ ǫpri/N

12: end for

13: if condition in step (10) satisfied for all i = 1, . . . , N then

14: ∆xnt = ∆z(k+1)

15: ∆Snt = ∆Y (k+1)

16: Terminate the algorithm
17: end if

18: k = k + 1

19: until algorithm is terminated

Notice that the termination condition of Algorithm 4
(based on the 11th and 13th steps of the algorithm) can be
established distributedly, provided that all agents declare
their status of convergence (step 11). Also observe that the
satisfaction of this termination condition implies the satis-
faction of the termination condition in Algorithm 3. There
are other ways of establishing convergence of Algorithm 4
to a solution (and possibly more efficient, e.g., based on
Iutzeler et al. (2012)). However, for the sake of brevity we
abstain from discussing such methods in this paper.

Remark 1. In Algorithm 4, the computational effort at
each iteration for each agent is dominated by the up-
date of ∆si,(k+1) which requires factorizing the matrix
∇2fi(s

i,(l)) + ρI. Notice that in case ρ is chosen to be
constant for all k, this matrix will also be constant for
all k. This means that each agent would only need to
compute this factorization once at the first iteration of
the algorithm and use the precomputed factorization in
the remaining iterations. This pre-caching of the factoriza-
tion significantly reduces the overall computational cost of
computing the Newton direction using Algorithm 4. Notice
that even if the penalty parameter is not chosen to be
constant, it is still possible to utilize the method presented
in (Liu et al., 2013, sec. 4.2), to use pre-caching of factor-
izations to achieve similar computational efficiency.

5. NEWTON’S METHOD WITH DISTRIBUTED
STEP COMPUTATION

We can now combine Algorithm 4 with the Newton
method expressed in Algorithm 1, to provide a distributed
computational scheme for the problem in (6). This is
presented in Algorithm 5. Similar to Algorithm 4, the
termination condition for the Newton iterations in Algo-
rithm 5 can also be checked in a distributed manner with
limited communications among the agents. To this end,
each agent needs to compute its local Newton decrement,
λi,(l), and declare its local convergence status based on this

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9590



Algorithm 5 ADMM-based Newton Method

1: Given l = 0, ǫnt > 0, S(0),∆S
(−1)
nt ∈ C(Ē)

2: repeat

3: Compute ∆S
(l)
nt using Algorithm 4 with starting point

∆Y (0) = ∆S
(l−1)
nt

4: for i = 1, 2, . . . , N do

5: Compute (λi,(l))2 = (∆s
i,(l)
nt )T∇2fi(s

i,(l))∆s
i,(l)
nt

6: Check whether (λi,(l))2/2 ≤ ǫnt/N
7: end for

8: if condition in step (6) satisfied for all i = 1, . . . , N then

9: S∗ = S(l)

10: Terminate the algorithm
11: end if

12: Compute the step size α(l) using line search
13: for i = 1, 2, . . . , N do

14: si,(l+1) = si,(l) + α(l)∆s
i,(l)
nt

15: end for

16: l = l + 1

17: until algorithm is terminated

quantity (condition in step (6)). Although not explained
in Algorithm 5, the step size computation in step (11) of
the algorithm can also be performed distributedly. For this
purpose, each agent would firstly need to perform a back
tracking line search based on its local objective function,
f̄i(∆si), and compute a suitable local step size. The step
size α(l) will then be chosen as the smallest of the local
step sizes, which can be derived using max/min consensus
algorithms, Iutzeler et al. (2012). A similar approach has
also been used in Wei et al. (2013).
Remark 2. Having defined Algorithm 5, some comments
are in order. Firstly, notice that in the 3rd step of Algo-
rithm 5, the ADMM iterations for computing the Newton
direction, are warm-started using the computed Newton
direction from the previous Newton iteration. In case the
line search is not done too aggressively this can potentially
reduce the number of required ADMM iterations for find-
ing the next Newton direction. Secondly, observe that the

computed Newton directions ∆S
(l)
nt ∈ C(Ē) for all l ≥ 0

and hence, S(l) ∈ C(Ē) for all l ≥ 0. This means that the
consistency constraints in (7b) are always satisfied.

So far we have proposed a distributed scheme for solving
unconstrained loosely coupled problems. In the upcoming
section, we extend the definition of loosely coupled prob-
lems to that of constrained ones and show how we can
derive similar algorithms to solve such problems.

6. CONSTRAINED LOOSELY COUPLED
OPTIMIZATION PROBLEMS

We now extend the definition of loosely coupled problems
(provided in Section 4.1) by first adding convex inequality
constraints as

minimize F1(x) + · · ·+ FN (x)

subj. to Gi(x) ≤ 0 i = 1, . . . , N
(15)

where we assume that the function pairs Fi, Gi for i =
1, . . . , N , are only dependent on a small subset of the
elements of the variable x. Also let the description of the
coupling among the function pairs be described as was for
the problem in (6). Then this problem can be written as

minimize
S,x

f1(s
1) + · · ·+ fN (sN ) (16a)

subj. to gi(s
i) ≤ 0, i = 1, . . . , N (16b)

Ēx = S (16c)

Algorithm 6 ADMM-based Interior-point Method

1: Given q = 0, t(0) > 0, µ > 1, ǫp > 0 and feasible S(0)

2: repeat

3: Compute S∗(t(q)) by solving (5) using Alg. 5 starting at S(q)

4: S(q+1) = S∗(t(q))
5: if m/t(q) < ǫp then

6: S∗ = S(q+1)

7: Terminate the iterations
8: end if

9: t(q+1) = µt(q)

10: q = q + 1

11: until iterations are terminated

where the functions fi and gi are defined similarly as in
Section 4.1 for the problem in (7). Notice that this problem
is in the same format as (4) and can be solved using the
interior-point method, which accordingly requires solving
minimize tf1(s

1)− log(−g1(s
1))

︸ ︷︷ ︸

h1(s1)

+ · · ·+ tfN (sN )− log(−gN (sN ))
︸ ︷︷ ︸

hN (sN )

subj. to Ēx = S

(17)
for a sequence of increasing t. For every given t then the
problem in (17) can be solved using Algorithm 5, with
a modification to step 3 of the algorithm. Particularly,
the 4th step of Algorithm 4 (that is used in step 3 of
Algorithm 5) needs to be modified as

∆si,(k+1) =
(
∇2hi(s

i,(l)) + ρI
)−1

(
ρ(∆yi,(k) + vi,(k))−∇hi(s

i,(l))
)

where
∇2hi(s

i,(l)) = ∇2fi(s
i,(l)) +

1

gi(si,(l))2
∇gi(s

i,(l))∇gi(s
i,(l))T−

1

gi(si,(l))
∇2gi(s

i,(l))

and ∇hi(s
i,(l)) = ∇fi(s

i,(l)) − 1
gi(si,(l))

∇gi(s
i,(l)). Notice

that after this modification remarks 1 and 2 still apply. The
distributed scheme for solving (15) can then be obtained
by combining the modified Algorithm 5 with Algorithm 2.
This is summarized in Algorithm 6. The problem in (15)
can be further extended by adding equality constraints.
Assuming that the equality constraints also enjoy similar
type of coupling as above, the problem can be written as

minimize
S,x

f1(s
1) + · · ·+ fN (sN ) (18a)

subj. to gi(s
i) ≤ 0, i = 1, . . . , N (18b)

Aisi = bi i = 1, . . . , N (18c)

Ēx = S (18d)

where Ai ∈ R
pi×|Ji| and rank(Ai) = pi < |Ji|. This

problem can also be solved using Algorithm 6 where in
its 3rd step, Algorithm 5 is applied to

minimize tf1(s
1)− log(−g1(s

1))
︸ ︷︷ ︸

h1(s1)

+ · · ·+ tfN (sN )− log(−gN (sN ))
︸ ︷︷ ︸

hN (sN )

subj. to Aisi = bi i = 1, . . . , N

Ēx = S
This in turn requires another modification to Algorithm 4,
that is used in the 3rd step of Algorithm 5. Specifically,
the 4th step of Algorithm 4 should be changed to

∆si,(k+1) = arg min
Ai∆si=0

{

∇hi(s
i,(l))T∆si +

1

2
(∆si)T∇2hi(s

i,(l))∆si

+
ρ

2

∥
∥∆yi,(k) + vi,(k) −∆si

∥
∥
2
}

(19)

Solving this problem is equivalent to solving the following
linear system of equations
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[

∇2hi(s
i,(l)) + ρI (Ai)T

Ai 0

][
∆si

u

]

=

[

ρ(∆yi,(k) + vi,(k))−∇hi(s
i,(l))

0

]

. (20)

The computational cost for this is dominated by the cost
for calculating the factorization of the coefficient matrix.
Notice that, similar to (12), this coefficient matrix is also
constant within the ADMM iterations and hence, the
comments made in Remark 1 still apply. Even if ρ is
varying similar techniques as in Liu et al. (2013) can be
applied.

Remark 3. Notice that the resulting solution from Algo-
rithm 6, S∗, satisfies the local constraints, i.e., gi(s

i,∗) ≤ 0
and Aisi,∗ = bi for all i = 1, . . . , N . However, S∗ does
not necessarily satisfy the consistency constraints. In fact
it is possible to upper-bound the consistency error in
S∗ as follows. Assume that S(0) is both locally feasible
and consistent. Then the consistency error of S(1) can be
computed as

ec(1) =
∥
∥S(1) − Ē(ĒT Ē)−1ĒTS(1)

∥
∥
2

=

lmax(1)∑

j=0

(α(j,1))2
∥
∥∆Sj,1 − Ē(ĒT Ē)−1ĒT∆S(j,1)

∥
∥
2

≤

lmax(1)∑

j=0

(α(j,1))2ǫpri,

(21)

where ∆S(j,1) and α(j,1) denote the Newton direction
the step size used in the jth Newton iteration in
the 1st iteration of the interior-point method, respec-
tively. Also lmax(1) denotes the number of required New-
ton iterations to converge to S(1). Now assuming that
Algorithm 6 requires qmax iterations to converge, we
can bound the consistency error of S∗ as ec(qmax) ≤
∑qmax

q=1

∑lmax(q)
j=0 (α(j,q))2ǫpri.

Remark 4. The proposed methods in this paper are closely
related to inexact Newton methods, where the Newton
direction is computed in a distributed manner. This in-
dicates that the methods described in this paper, can
potentially suffer from slow convergence when the iterates
are very close to the optimal solution. The similarities
between the two classes of methods can also give us insight
on the convergence properties of the proposed methods
and how to avoid slow convergence near optimal solution.

7. CONCLUSIONS

In this paper, we proposed distributed optimization algo-
rithms for solving unconstrained and constrained loosely
coupled optimization problems. These algorithms are
based on the Newton and interior-point methods where
we used the inherent structure in the problem to distribute
the required computations within these methods. Particu-
larly, by exploiting the coupling in the problem and using
proximal splitting methods we showed how the Newton
direction can be computed in a distributed manner.
Notice that the proposed methods in this paper, all require
a feasible starting point. As a future research directions,
we intend to extend the proposed algorithms to also ac-
commodate infeasible starting points. Also we intend to
investigate primal-dual interior-point methods.
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