
Building Temperature Control by Simple

MPC-like Feedback Laws Learned from

Closed-Loop Data

Martin Klaučo ∗, Ján Drgoňa ∗, Michal Kvasnica ∗,
Stefano Di Cairano ∗∗

∗ Slovak University of Technology in Bratislava, Slovakia (e-mail:
{martin.klauco, jan.drgona, michal.kvasnica}@stuba.sk).

∗∗ Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
(e-mail:dicairano@ieee.org).

Abstract: We show how to synthesize simple, yet well-performing feedback strategies that
mimic the behavior of optimization-based controllers, such as those based on model predictive
control (MPC). The approach is based on employing regression trees to derive dependence
of real-valued control inputs on measurements. Quality of classical regression policies is
improved by finding, simultaneously, optimal affine splits and optimal local affine regressors. We
furthermore illustrate how to refine the local regressors such that the overal feedback strategy
guarantees satisfaction of input constraints. The main advantage of the proposed regression-
based control strategy stems from its fast implementation even on very simple hardware. The
approach is demonstrated on a case study that assumes control of temperature in a one-zone
building. Here, the data used in the learning process are generated by MPC. We show that
the simple feedback law attains almost the same level of performance as the complex MPC
controller.

Keywords: Predictive control for linear systems, Energy systems, Regression.

1. INTRODUCTION

According to the survey conducted by (Parry et al., 2007),
the total energy consumed in heating, cooling, ventilation
and air-conditions (HVAC) in commercial and residential
buildings nowadays accounts for 40% of global energy
consumption. Thus energy-efficient approaches to HVAC
control can significantly reduce overall level of pollution
and mitigate emissions of greenhouse gases.

One of the control methodologies which can explicitly
account for minimization of consumed energy is model
predictive control, MPC. In MPC, control inputs that min-
imize a certain objective function (which accounts for con-
sumption of energy and maximization of thermal comfort)
are computed by solving a suitable optimization problem
at each sampling instant. MPC approaches have been
successfully applied to control of buildings with significant
energy savings being reported, see, e.g., Oldewurtel et al.
(2012); Cigler et al. (2013). Although several approches
for a fast implementation of MPC have been suggested
previously (Ma et al., 2012), the task is very challenging es-
pecially when the control algorithm has to be implemented
on existing control hardware, such as on programmable
logic controllers (PLC), which are predominant in building
automation systems.

Therefore we aim at constructing a control policy that
performs almost as good as one based on MPC, but offers
a much simpler implementation. One way of achieving
this goal is to calculate the explicit representation of
the MPC feedback law (Bemporad et al., 2002; Borrelli,

2003). For a rich class of MPC problems the explicit MPC
feedback takes a form of a piecewise affine (PWA) function
defined over a polyhedral domain of the state space.
Obtaining the optimal control input then reduces to a mere
evaluation of the PWA function. Such a task can be easily
performed even on very simple hardware. The crucial
limitation of explicit MPC, however, is that the complexity
of the optimal PWA feedback grows exponentially with the
prediction horizon. Therefore it can only be applied if the
control hardware offers enough storage to accommodate
the function. This, however, is not always a realistic
assumption, since the size of explicit MPC solutions can
easily exceed several megabytes. To reduce the complexity,
various approximation techniques have been proposed in
the literature, see, e.g., Domahidi et al. (2011, 2012).

In this paper we propose to construct a simple MPC-like
feedback strategy by approximating a finite set of training
data by a PWA function, encoded as a binary tree. The
training data are generated by an implicit MPC policy.
The advantage over explicit MPC is that we can control
the complexity of the function, hence meeting the limi-
tations of the control hardware. We suggest to construct
the PWA feedback by applying regression trees (Breiman,
1993). Here, the regressor is constructed by splitting the
training data into cells organized as a binary tree. How-
ever, standard regression trees are limited to splitting
functions that are orthogonal hyperplanes, and the local
regressors inside each cell are assumed to be constant. In
this paper we show how to split the nodes optimally by
general hyperplanes. Simultaneously, we construct affine

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 581

local regressors that provide better approximation of the
training data. As a consequence, our regression-based feed-
back policy can be described as a PWA function defined
over a polyhedral domain, akin to explicit MPC solutions.
The added benefit is that the regression function is directly
encoded as a binary tree, which offers a fast implementa-
tion even on simple hardware.

2. MODEL PREDICTIVE CONTROL

We consider control of a building whose dynamical behav-
ior is captured by the state-update equation

ξ(t+∆) = g(ξ(t), u(t), d(t)), (1)

where ξ(t) ∈ R
nξ , u(t) ∈ R

nu , d(t) ∈ R
nd denote the

vector of states, the vector of control inputs and the
vector of disturbances at time t, respectively. In MPC the
objective is to obtain an open-loop optimal sequence of
control inputs UN = {u0, . . . , uN−1} over some prediction
horizon N by solving an optimization problem, initialized
by the current measurements of the state ξ(t) and current
disturbances d(t):

min
u0,...,uN−1

N−1
∑

k=0

ℓ(ξk, uk, d0) (2a)

s.t. ξk+1 = g(ξk, uk, dk), k = 0, . . . , N − 1, (2b)

ξk+1 ∈ Ξ, uk ∈ U , k = 0, . . . , N − 1, (2c)

ξ0 = ξ(t), d0 = d(t), (2d)

where ξk, uk, dk denote predictions of the respective vari-
ables at the k-th step of the prediction horizon. The fitness
of particular choice of control inputs is determined by the
stage cost function ℓ : Rnξ × R

nu × R
nd → R. Typically,

ℓ(·, ·, ·) penalizes the control effort and the tracking error
Alternatively, the stage cost can account for temperature
range control, or for optimization of the Predicted Mean
Vote (PMV) index for maintaining optimal thermal com-
fort (Fanger, 1970). Finally, the optimal solution to (2)
must respect state and input constraints in (2c), where
Ξ ⊆ R

nξ and U ⊆ R
nu are non-empty sets.

Denote by x the vector which encapsulates all time-varying
parameters of (2), i.e. the current building state ξ(t),
current and/or future disturbances d(t), . . . , d(t + N∆),
as well as any reference signals.Then the receding horizon
feedback law is then given by

u(x(t)) = [I 0 · · · 0]UN , (3)

where I and 0 represent, respectively, identity and zero
matrices of appropriate dimensions. Note that the optimal
open-loop sequence UN in (3) is defined as the optimal
solution of (2), formulated for a particular value of the
initialization parameters x(t). Therefore to obtain the op-
timal control action for a particular value of x(t) from (3),
one needs to solve (2) at each sampling instant. Such a
procedure, however, requires significant computational ef-
fort and must be implemented on a hardware platform that
allows to run optimization algorithms. Such a requirement
is in contrast to our objective of implementing the control
strategy on very simple hardware with severely limited
computational and storage resources.

3. REGRESSION-BASED MPC-LIKE POLICY

In a regression a set of p training data 1 {(x1, u1), . . . ,
(xp, up)} is given with xi ∈ R

nx and ui ∈ R
nu . The

objective is to devise a regression function freg : Rnx →
R

nu which predicts the values of u (often called the
response variable) that correspond to future measurements
x as accurately as possible.

The central idea of the paper is to replace the implicitly
defined feedback policy (3) by an explicit representation of
the feedback law u = freg(x), constructed by regression on
a set of training data. The main advantage over the explicit
MPC approach is that in regression we can control the
complexity of freg(·) directly. In other words, we can devise
the regression-based feedback strategy while considering
limitations of the control hardware. The implied limitation
of the approach is that the regression-based control policy
is suboptimal with respect to the MPC cost function (2a).
However, our objective in Section 5 will be to devise
the regressor freg(·) that minimizes the deterioration of
performance.

We propose to construct the regression-based feedback
policy as follows:

1. Fix the number of training data p and select the set
{x1, . . . , xp} of initial values of parameters for the
MPC problem (2).

2. For each xi, obtain the corresponding optimal control
move ui from (3) by solving (2).

3. Collect xi and ui into the training data set {(x1, u1),
. . . , (xp, up)} and devise a regressor freg(·) that
predicts the value of the control move for an arbitrary
vector of parameters x by u = freg(x).

The selection of training parameters xi in the first step of
the proposed procedure can be performed in two ways.
The first option is to grid the region of parameters of
interest P ⊆ R

nx into x1, . . . , xp. While doing so provides
representative samples xi for the whole range of parame-
ters, such an approach is only applicable if the dimension
of the parametric space, i.e., n, is low. If n is large, an
alternative way is to extract the pairs (xi, ui) from closed-
loop profiles. Here, we propose to control the building
by an MPC strategy of Section 2 for a limited amount
of time. While doing so, we record values of x(t) and
the corresponding optimal control moves u(t) at a fixed
sampling rate. The training dataset is then composed of
the tuples (x(i∆), u(i∆)) for i = 0, . . . , imax, where ∆ is
the collection period and imax is the number of samples to
be collected. However, computing u(t) on-line via (2)−(3)
is costly.

To address the issue of large computational load induced
by using the implicit MPC strategy, represented by (2),
we propose to run the optimization on a remote machine.
Here, a distant server takes over all computation for a
limited amount of time, say for a week. During this time
the remote machine communicates with the building over
the Internet. After collecting enough closed-loop data, the
regressor freg(·) is constructed on the remote machine,
and is subsequently uploaded to the local (simple) control
hardware that resides directly in the building. From this

1 Here, xi ∈ R
nx denotes the i-the realization of a vector x.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

582

moment, the control commands are generated by the
regressor locally and the remote server is no longer needed.

We are interested in finding an optimal regressor freg(·)
which partitions the training data into M cells, denoted
by P1, . . . ,PM , such that freg(·) is well posed (Bemporad
et al., 2002). Once the optimal cells Pi and the associated
local regression functions freg,i(·) are constructed, the
overall regression-based control policy is given by

u = freg(x) := freg,i(x) if x ∈ Pi. (4)

In the following two sections we show how to construct
freg(·) of (4) using binary regression trees where the
individual cells Pi are polyhedra, as opposed to standardly
used hyperboxes.

4. CONSTRUCTION OF REGRESSION TREES

A standard approach to generate regressors freg(·) that are
well posed is to employ binary regression trees (Breiman,
1993). Such trees consist of a finite number of nodes,
each of which may contain pointers to two child nodes.
Nodes without any children are called leaf nodes. Each
leaf node contains a local expression of the regressor, i.e.,
freg,i(·). All non-leaf nodes, on the other hand, contain
an expression of a splitting function σ : R

nx → R and
pointers to a maximum of two child nodes. The left child
node is visited if σ(x) ≤ 0, while the right node is explored
if σ(x) > 0.

The regression tree can be constructed by a recursive
procedure, summarized as Algorithm 1. In particular, ex-
ecuting T = treeNode({x1, . . . , xp}, {u1, . . . , up}) gener-
ates the root node of the tree and starts its recursive
exploration. In particular, in Step 1 of Alg. 1 we need
to determine the optimal splitting function σ : Rnx → R,
along with optimal local regressors fL : Rnx → R

nu and
fR : R

nx → R
nu that solve the following optimization

problem:

min
σ,fL,fR





∑

xi∈PL

‖ui − fL(xi)‖+
∑

xj∈PR

‖uj − fR(xj)‖



 , (5)

where

PL = {x | σ(x) ≤ 0}, PR = {x | σ(x) > 0}, (6)

are the cells generated by the split σ(·). Note that, since
PL and PR depend on σ, problem (5) is nonlinear in the
decision variables.

Once the optimal split and the optimal local regressors are
computed, we need to determine whether the currently
explored node needs to be subdivided. This decision is
based on two criteria: the number of points in each of the
split cells, and the regression error in each cell. The former
is computed in Step 2 and the latter is evaluated in Step 3.
If the number of points in the left cell (cf. (6)) drops below
a pre-defined threshold pmin, or when the local regression
error is smaller than emin, exploration of the left cell is
terminated and a leaf node containing the corresponding
local regressor fL(·) is returned in Step 5. Otherwise the
left cell is explored recursively in Step 7. The right cell is
treated similarly in Steps 9−13. Finally, the node, which
consists of the split σ(·) and the pointers to child nodes
NL, NR, is returned in Step 14.

The difficulty of constructing an optimal regression tree
stems from the nonlinearity of the optimization problem

Algorithm 1 Procedure treeNode

INPUT: Training data {x1, . . . , xp}, response data
{u1, . . . , up}.

OUTPUT: Node of the binary tree.
1: Compute optimal splitting function σ(·) and optimal

local regressors fL(·) and fR(·) from (5).
2: Split the set {1, . . . , p} into subsets L = {i | σ(xi) ≤

0} and R = {i | σ(xi) > 0}. Denote (xL, uL) =
{(xi, ui) | i ∈ L} and (xR, uR) = {(xi, ui) | i ∈ R}.

3: Evaluate the regression errors

eL =
∑

i∈L

‖ui − fL(xi)‖, eR =
∑

j∈R

‖uj − fR(xj)‖. (7)

4: if card(xL) < pmin or eL < emin then
5: NL = leafNode(fL).
6: else
7: NL = treeNode(xL, uL).
8: end if
9: if card(xR) < pmin or eR < emin then

10: NR = leafNode(fR).
11: else
12: NR = treeNode(xR, uR).
13: end if
14: return Tree node N = (σ,NL,NR).

in (5)−(6) for general types of the split function σ(·)
and of the local regressors fL(·), fR(·). To simplify the
computation, standard regression tree approaches restrict
splits to orthogonal hyperplanes of the form σ = eTx +
β, where the optimal vector e is selected from the fi-
nite set {[1, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , . . . , [0, . . . , 0, 1]T }.
Moreover, the local regressors are typically assumed to
be constant functions, i.e., fL(x) = gL and fR(x) = gR.
Then Algorithm 1 generates a binary tree that encodes
a piecewise constant regressor freg(·) where each cell Pi

is an axis-aligned hyperbox. Clearly, such simplifications
have adverse effect on quality of the regression. As a
consequence, high number of nodes is typically required
to achieve a desired regression error.

Therefore in the next section we show how to solve (5)
when σ(·), fL(·), fR(·) are allowed to be linear (in fact,
affine) functions. As a consequence, the cells Pi are allowed
to be polyhedra, and the regression error in each node
is decreased by employing linear regressors instead of
constant functions.

5. OPTIMAL NODE SPLITTING WITH AFFINE
SPLITS AND AFFINE REGRESSORS

First we show how to obtain optimal expressions of affine
functions

σ(x) := αTx− β, (8a)

fL(x) := FLx+ gL, (8b)

fR(x) := FRx+ gR (8c)

from (5)−(6) by solving a mixed-integer quadratic pro-
gram (MIQP). Here, α ∈ R

nx , β ∈ R, FL ∈ R
nu×nx ,

gL ∈ R
nu , FR ∈ R

nu×nx , gR ∈ R
nu .

Lemma 1. Given are p datapoints {(x1, u1), . . . , (xp, up)}.
The optimal split σ(·) and optimal local regressors fL(·),
fR(·) as in (8) that solve (5)−(6) are given as the optimal
solution to the mixed-integer quadratic program (MIQP)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

583

min

p
∑

i=1

(ui − zi)
T (ui − zi) (9a)

s.t. −M(1− δi) ≤ zi − (FLxi + gL) ≤ M(1− δi), (9b)

−Mδi ≤ zi − (FRxi + gR) ≤ Mδi, (9c)

αTxi ≤ β +M(1− δi), (9d)

αTx ≥ β + ǫ−Mδi, (9e)

‖α‖∞ = 1, (9f)

where the minimization is performed over continuous
decision variables α, β, FL, gL, FR, gR, zi ∈ R

nu , and
the binary variables δi ∈ {0, 1}, i = 1, . . . , p. Note that
constraints in (9b)−(9e) are enforced for i = 1, . . . , p with
a small positive numerical tolerance ǫ and a sufficiently
large constant M . �

Although MIQPs are still nonconvex optimization prob-
lems due to presence of binary variables δi, they can be
solved efficiently with state-of-the-art solvers.

Remark 2. The MIQP (8) is related to construction of so-
called hinging hyperplane (HH) regressors that are fre-
quently used to identify PWARX models of dynamical
systems. Compared to the HH formulation of Roll et al.
(2004), problem (8) has fewer binary optimization vari-
ables and is thus easier to solve as the number of data-
points increases. An another advantage is that construc-
tion of discontinuous regressors does not require additional
binary/continuous variables as in the case of HH formula-
tions. �

Remark 3. The reason for constraint (9f) is to rule out the
trivial solution α = β = 0 when all points are allocated
only to one side of the split. Note that (9f) normalizes the
largest value in α to ±1. �

Remark 4. If M is chosen sufficiently large, problem (9) is
always feasible. Rules of selecting a suitable constant M
are discussed e.g. in Bemporad and Morari (1999). Note
that finding a suitable M requires the decision variables
of (9) to be bounded. �

Employing (9) in Step 1 of Algorithm 1 generates a node
N that consists of an affine split σ(·). Such a split divides
the space of independent variables x into polyhedra PL, PR

per (6). These polyhedra are then subdivided further by
recursively invoking Algorithm 1 in Steps 7 and 12. Upon
termination, the algorithm returns local affine regressors
freg,i(x), along with the corresponding regions of validity
Pi.

The overall PWA regressor is given per (4). freg(x) can be
evaluated by searching sequentially through P1, . . . ,PM ,
stopping once x ∈ Pi. However, a more efficient way
to evaluate freg(·) is to directly traverse the binary tree
starting from its root node. Here, the associate splitting
function is evaluated and, based on its value,either the
left or the right branch is explored. Such a procedure is
repeated at each subsequent child node until a leaf node is
encountered, whereupon the evaluation is stopped and the
predicted value u = freg,i(x) is returned. It is well known
that the computational effort needed to evaluate freg(x)
via a binary tree is O(log2 M), where M is the number of
leaf nodes of the tree. The total memory storage is O(M).
The data that need to be stored are the splits associated

to each non-leaf node, pointers to child nodes, and local
regressors in each leaf node.

6. REFINEMENT OF LOCAL REGRESSORS

Although the regression-based control policy (4) synthe-
sized per Sections 4 and 5 provides an optimal regression
of the training data, it does not posses guarantees that
u = freg(x) satisfies input constraints u ∈ U . Therefore
in this section we show how to replace freg(·) in (4) by a
different function

f̃reg(x) := f̃reg,i(x) if x ∈ Pi, (10)

defined over the same cells P1, . . . ,PM , but with the local
regressors f̃reg,i(·) being such that u = f̃reg(x) ∈ U for all
x ∈ P.

The case in which satisfaction of input constraints is easily
obtained is when P is a polytope and U ⊆ R

nu is a
polyhedron. Consider the i-th terminal node of the binary
tree, which is composed of the local regressor freg,i(x) =
Fix + gi and the polytopic region of validity Pi. Then,
the optimal refinement f̃reg,i(x) = F̃ix+ g̃ of freg,i(·) such

that f̃reg,i(x) ∈ U for all x ∈ Pi is computed by solving
the following quadratic program:

min
F̃i,g̃i

∑

v∈Vi

(freg,i(v)− f̃reg,i(v))
T (freg,i(v)− f̃reg,i(v))

(11a)

s.t. f̃reg,i(v) ∈ U , ∀v ∈ Vi, (11b)

where Vi = {vi,1, . . . , vi,nv
} are the vertices of Pi.

Here, (11a) optimizes parameters of f̃reg,i(·) such that they
are as close as possible to freg,i(·). Since both functions
are assumed to be affine, minimizing the point-wise mis-
match at the vertices of Pi is equivalent to minimizing
the integrated squared error

∫

‖freg,i(x) − f̃reg,i(x)‖ dx,
evaluated over Pi. Moreover, it is trivial to prove that
if U is a convex set, Pi is a polytope, and f̃reg,i(·) is an

affine function, then f̃reg,i(v) ∈ U for each vertex of Pi

is necessary and sufficient for f̃reg,i(x) ∈ U for all points
x ∈ Pi. Finally, note that with U a polyhedron, constraints
in (11b) are linear in the decision variables F̃i, g̃i that

constitute f̃reg,i(x) = F̃ix+g̃i since the vertices are known.

Moreover, the objective function (11a) is quadratic in F̃i

and g̃i since freg,i(x) = Fix+ gi is known in each terminal
node. Notice that (11) is feasible in each terminal node for
an arbitrary non-empty polyhedron U .

Therefore the refined feedback policy u = f̃reg(x) which
provides u ∈ U for all x ∈ P can be easily obtained
by solving (11) in each terminal node of freg(·) in (4).
Notice that only parameters of the local regressors are
modified, while the splits stay the same. Clearly, there is no
guarantee that the refined local regressor f̃reg,i(x) = F̃ix+
g̃ is optimal w.r.t. (5). Unfortunately, since the refinement
in (11) depends on vertices of Pi, which in turn depend on
the split σ(·), it is not possible to include (11b) directly
into (9) and still be able to solve the regression problem
as a mixed-integer quadratic program. Also note that en-
forcing freg(xj) ∈ U for the training datapoints x1, . . . , xp

is merely necessary, but not sufficient, to guarantee that
freg(x) ∈ U for an arbitrary x ∈ P.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

584

7. PERFORMANCE EVALUATION

In this section we demonstrate performance of the pro-
posed regression-based control policy on simulation sce-
nario that involves control of a one-zone building whose
model was extracted from the ISE toolbox (van Schijndel,
2005). The particular building model is represented by a
linear time-invariant discrete-time system

ξ̇ = Aξ +Bu+ Ed, (12)

with

A = 10−3 ·





−0.020 0 0 0.020
0 −0.020 0.001 0.020
0 0.001 −0.056 0

1.234 2.987 0 −4.548





B = 10−3 ·





0
0
0

0.003



 , E = 10−3 ·





0 0 0
0 0 0

0.055 0 0
0.327 0.003 0.001



 .

The model contains 4 state variables: ξ1 represents tem-
perature of the floor, ξ2 is the internal facade temperature,
ξ3 denotes the external facade temperature, and ξ4 is
the temperature inside the building. All state variables
are expressed in ◦C. The model considers a single real-
valued control input u, which represents the amount of
heating/cooling injected to the zone, expressed in Watts.
Finally, the model accounts for 3 disturbances: d1 is the
external air temperature (in ◦C), d2 is the heat generated
inside in the zone due to occupancy (in W), and d3 is the
solar radiation (in W). Historical data over the period of
31 days is shown in Fig. 1.

The control objective is to manipulate the real-valued heat
flow u such that the internal temperature (represented by
ξ4) stays within a ±ζ tolerance of a prescribed reference
temperature Tref, i.e.,

Tref − ζ ≤ ξ4 ≤ Tref + ζ, (13)

while satisfying constraints on the control input

u ≤ u ≤ u, (14)

and minimizing the consumption of energy, expressed by
|u|. Here, a positive u represents heating, while a negative
u represents cooling.

We assume that the state vector ξ(t) and the vector of
disturbances d(t) can be measured at each time instant t,
but future evolution of disturbances is unknown. Therefore
we assume a constant dynamics for disturbances in the
prediction model. The MPC problem is posed as

min
u0,...,uN−1

∑N−1

k=0 (qssk + |uk|) (15a)

s.t. ξk+1 = Ãξk + B̃uk + Ẽd0, (15b)

u ≤ uk ≤ u, (15c)

Tref − ζ − sk ≤ Cξk ≤ Tref + ζ + sk, (15d)

sk ≥ 0, (15e)

ξ0 = ξ(t), d0 = d(t), (15f)

where sk are slack variables that soften the thermal com-
fort restrictions in (13). To limit the magnitude of viola-
tions of the optimal thermal zone, the non-negative slacks
are penalized by a large penalty qs in (15a). Moreover,

Ã, B̃, Ẽ in (15b) are the state-update matrices of (12)
discretized with sampling ∆ = 900 seconds, along with
C = [0 0 0 1]. The input constraints are u = −1000 W,

0 5 10 15 20 25 30

0

10

20

0 5 10 15 20 25 30

0

200

400

0 5 10 15 20 25 30

0

500

1000

d
1
(t
)
[◦
C
]

d
2
(t
)
[W

]
d
3
(t
)
[W

]

Time [days]

Fig. 1. Historical trends of the disturbance variables over
31 days: d1 is the external temperature, d2 stands for
heat due to occupancy, and d3 represents the solar
radiation.

u = 2000 W, and the width of the thermal comfort zone
range is ζ = 0.5◦C. Note that (15) is a linear program with
parameters x = [ξ(t)T , d(t)T , Tref] ∈ R

8.

To construct the regression-based control policy u =
freg(x) as in (4), we have first performed a closed-loop
simulation over the period of 5 days and collected the
closed-loop training data {(x1, u1), . . . , (xp, up)} with p =
486 (5 days sampled at 900 seconds). The loop was closed
by the receding horizon feedback (3) where the optimal
open-loop sequence was generated at each simulation step
by solving the MPC problem (15) with prediction horizon
N = 48 steps (12 hours sampled at 900 seconds), the
reference temperature set constantly to Tref = 20◦C, and
penalty on the slacks qs = 1 · 106. The same historical
profiles of disturbances as in Fig. 1 were employed in the
simulation. The initial state for the simulation was set to
ξ(0) = [20, 20, 20, 20]T . The training data generated by
the MPC controller are shown in the top plot in Fig. 2.
The same figure also depicts the performance of the MPC
controller on the remaining 24 days of simulation. The
accumulated heating/cooling cost under the optimal MPC
feedback policy was 592 kWh. Note that the violations of
the lower temperature range in the first 7 days are due to
the control action being saturated at u.

Then we have computed the regression-based feedback
policy u = freg(x) as in (4) by applying Algorithm 1 to
the training data. In Step 1 of the algorithm, optimal
splits and local regressors were calculated by solving the
MIQP problem (9). The final tree consisted of 5 non-
terminal, and 6 terminal nodes, along with 6 local affine
regressors. Subsequently, the local regressors were refined
per the procedure of Section 6 to guarantee that the
regression-based feedback always provides satisfaction of
input constraints.

To validate performance of the proposed regression-based
feedback strategy and to evaluate decrease in performance
with respect to MPC, we have performed a closed-loop
simulation under the same conditions of the MPC scenario
described above. The closed-loop profiles of the internal

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

585

0 5 10 15 20 25 30
19

19.5

20

20.5

21

0 5 10 15 20 25 30
−1000

0

1000

2000

H
ea
ti
n
g/
co
ol
in
g
[W

]
In
t.

te
m
p
er
at
u
re

[◦
C
]

Time [days]

Fig. 2. Closed-loop profiles under the MPC feedback.
The first 5 days were used as training data. The
top figure shows the internal building temperature
(solid red line), along with ±ζ range of the reference
temperature (black dashed lines). The bottom figure
depicts the associated optimal control actions.

0 5 10 15 20 25 30
19

19.5

20

20.5

21

0 5 10 15 20 25 30
−1000

0

1000

2000

H
ea
ti
n
g/
co
ol
in
g
[W

]
In
t.

te
m
p
er
at
u
re

[◦
C
]

Time [days]

Fig. 3. Closed-loop profiles under the regression-based
feedback policy in (4).

building temperature and of the control actions provided
by freg(·) are shown in Fig. 3. As can be clearly seen,
performance of freg(·) is close to the behavior of the MPC
policy in Fig. 2. The only notable differences are between
days 13 to 17, which correspond to hot days (cf. top part of
Fig. 1). Here, the MPC policy is able to exploit the thermal
zone to slightly reduce consumption of cooling energy by
allowing the internal temperature to hit the upper limit
of the thermal comfort zone. A similar phenomenon also
occurs in the final 3 days of the simulation.

Besides these difference, the regression-based feedback
matches the MPC controller appropriately. Although the
regressor was only trained on the first 5 days of MPC
profiles, the local affine regressors are able to reasonably
extrapolate the control actions also in situations that were
not present in the training data. The accumulated energy
consumption under freg(·) was 611 kWh, an increase of
mere 3% over the MPC strategy.

ACKNOWLEDGEMENTS

M. Klaučo, J. Drgoňa and M. Kvasnica gratefully ac-
knowledge the contribution of the Scientific Grant Agency
of the Slovak Republic under the grants 1/0095/11 and
1/0973/12. This research was supported by Mitsubishi
Electric Research Laboratories, under a Collaborative Re-
search Agreement.

REFERENCES

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Borrelli, F. (2003). Constrained Optimal Control of Linear
and Hybrid Systems, volume 290 of Lecture Notes in
Control and Information Sciences. Springer-Verlag.

Breiman, L. (1993). Classification and regression trees.
CRC press.

Cigler, J., Gyalistras, D., Širokỳ, J., Tiet, V., and Ferkl, L.
(2013). Beyond Theory: the Challenge of Implementing
Model Predictive Control in Buildings. In Proceedings
of 11th Rehva World Congress, Clima.

Domahidi, A., Ullmann, F., Morari, M., and Jones, C.
(2012). Learning near-optimal decision rules for energy
efficient building control. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on, 7571–
7576.

Domahidi, A., Zeilinger, M., Morari, M., and Jones, C.
(2011). Learning a feasible and stabilizing explicit
model predictive control law by robust optimization. In
Decision and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on, 513–519.

Fanger, P. (1970). Thermal comfort. analysis and appli-
cations in environmental engineering. Thermal comfort.
Analysis and applications in environmental engineering.

Ma, Y., Vichik, S., and Borrelli, F. (2012). Fast stochastic
MPC with optimal risk allocation applied to building
control systems. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, 7559–7564.

Oldewurtel, F., Parisio, A., Jones, C., Gyalistras, D.,
Gwerder, M., Stauch, V., Lehmann, B., and Morari, M.
(2012). Use of model predictive control and weather
forecasts for energy efficient building climate control.
Energy and Buildings, 45, 15–27.

Parry, M., Canziani, O., Palutikof, J., van der Linden, P.,
and Hanson, C. (2007). Climate change 2007: impacts,
adaptation and vulnerability. Intergovernmental Panel
on Climate Change.

Roll, J., Bemporad, A., and Ljung, L. (2004). Identi-
fication of piecewise affine systems via mixed-integer
programming. Automatica, 40, 37–50.

van Schijndel, A. (2005). Integrated heat, air and moisture
modeling and simulation in hamlab. In IEA Annex 41
working meeting, Montreal, May.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

586

