
Applying Gaussian Processes to
Reinforcement Learning for

Fixed-Structure Controller Synthesis

Hildo Bijl, Jan-Willem van Wingerden & Michel Verhaegen

Delft Center for Systems and Control, Delft University of Technology,
The Netherlands, {h.j.bijl,j.w.vanwingerden,m.verhaegen}@tudelft.nl

Gaussian processes; Continuous systems; Learning algorithms;
Learning control; Self-tuning control.

Abstract: In industrial applications, fixed-structure controllers are often desired. But for
systems with large uncertainties, or for systems with mostly unknown system dynamics, it
is often unclear as to how to choose the controller parameters. In this paper we propose an
algorithm that chooses the parameters of such a controller using only a limited amount of
system interaction data. The novel algorithm applies Gaussian process tools to a reinforcement
learning problem set-up to derive an approximation of the value function. This approximation is
expressed in the system state and in the controller parameters. Then, by assuming a distribution
of the initial state of the system, the value function approximation is expressed only as a function
of the controller parameters. By subsequently optimizing this value function approximation, the
optimal controller parameters with respect to the value function approximation can be found.
The effectiveness of the proposed methodology has been shown in a simulation study.

1. INTRODUCTION

In industrial applications one often encounters (possibly
nonlinear) continuous-time systems with continuous input
and action spaces and a fixed controller architecture. It is
assumed that the state can be measured. In this case the
system f can be written as

ẋ(t) = f(x(t),u(t)), with u(t) = C(x(t),θ), (1)

where x is the state vector, u is the input vector, C is
the (fixed) control law and θ is a constant vector of to-be-
determined controller parameters.

While it may be possible to exactly measure the state
x, the exact system f is not always known. It can be
approximated by a model ẋ ≈ f̄(x,u), but this model
f̄ generally differs from the unknown system f . This
can be due to inaccuracies in modelling, manufacturing
inaccuracies, external influences like temperature, ageing
effects like wear, or some other reason. In this paper
we propose an algorithm capable of dealing with such
uncertainties.

1.1 Methods to deal with uncertainties

A conventional way of dealing with uncertainties is
through robust control, as described by Skogestad and
Postlethwaite [2005]. In this case hard bounds on the
uncertainties are assumed to be known. Subsequently a
controller is designed that is guaranteed to have a certain
performance level for any possible system f within these
bounds. This works well if the uncertainties are relatively
small. However, if the possible differences between the
model f̄ and the system f become big, creating a controller
that has sufficient performance for all possible systems f̄
is not always possible.

A different way to tackle this problem is by using system
measurements. Subsequently, it is possible to apply System
Identification (SI) methods, as described by Verhaegen and
Verdult [2007], to develop a system model. This model is
then used to develop a controller. For linear systems, the
theory on system identification is very well developed. For
nonlinear systems, this is less so. In this case it generally
requires a lot of system data before a model with sufficient
accuracy is obtained. For industrial applications, obtaining
a lot of system data is not always possible mainly due to
financial reasons. Hence the amount of available system
data is usually strongly limited. As a result, the system
model will have relatively large uncertainties as well. Next
to this, applying SI with a small data set is likely to result
in model bias, as argued by Deisenroth and Rasmussen
[2011]. So in this case it may be beneficial to skip the SI
step altogether.

Not using a system model at all is something that is
often done in Reinforcement Learning (RL) applications.
(See the work by Sutton and Barto [1998] for background
theory on RL.) For instance, in Q-learning by Watkins
[1989] the RL algorithm directly learns the Q-value of
applying a certain input u (or action a) in a certain
state x (or s). From this, the optimal input u can be
obtained. The problem with the Q-learning algorithm and
most other reinforcement learning algorithms, is that they
are traditionally designed for discrete-time systems with
discrete state and action spaces.

There are many RL algorithms that expand on this. For in-
stance, Bertsekas and Tsitsiklis [1996] describe algorithms
that can be applied to systems with continuous state and
action spaces. They use various types of function approx-
imators to deal with the continuous states and actions in

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10391

the (discrete-time) systems. When the value function is
approximated by a linear combination of basis functions,
then the algorithm generally works well. Most such algo-
rithms have proven convergence and result in a reasonable
approximation of the value function, despite the limita-
tions of the linear function approximator. Vrabie et al.
[2013] describe an algorithm that expands these methods
to the continuous time domain, but this algorithm requires
the system dynamics to be affine in the input.

Another challenge is that RL often has the drawback of
being data-inefficient. That is, RL algorithms require a
large number of trials to learn a particular task. For many
industrial problems in which system data is expensive
to obtain, RL algorithms are therefore not suitable. An
exception to this rule occurs when the tools used to model
Gaussian Processes (GP) are implemented. (Rasmussen
and Williams [2006] give an introduction into such tools.)
These GP tools can be applied as function approximator,
and because they take into account the uncertainties
of their approximations and cleverly incorporate prior
knowledge, they are generally known for their efficient use
of input data.

1.2 Combinations of RL and GP in literature

Reinforcement learning and Gaussian processes have not
been combined often in literature. Richard et al. [1998]
did approximate a Q-function by using probability distri-
butions for the Q-values. However, their algorithm worked
for discrete state and action spaces, so no Gaussian process
tools had to be used.

The first significant instance of applying GP to RL prob-
lems was by Rasmussen and Kuss [2004]. Though promis-
ing, the proposed algorithm applies system identification
through GP, in which every state parameter is indepen-
dently modeled by a separate GP. This results in a highly
computationally intensive algorithm. Next to that, the
algorithm requires a significant number of maximizations
of a Gaussian process during each policy iteration, which
is also computationally problematic. This strongly limits
the practical applicability of the algorithm.

Another combination of GP and RL was by Engel et al.
[2005]. In their article the authors come up with a method
of determining the value function that is very similar to
the way that we will propose here. However, they have
not looked at an efficient method of selecting an action.
Their suggestion is maximizing the Gaussian process value
function with respect to the input u at each time step. This
comes down to solving a nonlinear optimization problem at
each time step, which is likely to be infeasible in practice.

Probably the most promising combination of GP and RL
is by Deisenroth and Rasmussen [2011]. Their PILCO
algorithm (Probabilistic Inference for Learning Control)
uses Gaussian processes to learn a system model, instead
of a value function. Because of this, PILCO is very
suitable for higher-dimensional problems, more so than
the algorithm presented in this paper. However, PILCO
only works for specific types of fixed-structure controllers,
which is a limitation. The algorithm presented in this
paper is able to tune controller parameters for any fixed-
structure state controller C(x,θ).

1.3 Set-up of this paper

This paper is structured as follows. Section 2 discusses the
theory behind the proposed algorithm. Once the theory
is in place, section 3 gives an overview of the algorithm.
In section 4 an application of the algorithm is described.
Section 5 closes off the paper with conclusions and a
discussion of the strengths and weaknesses of the novel
algorithm.

2. UNDERLYING THEORY

In this section we examine how to apply Gaussian pro-
cesses to reinforcement learning problems. In subsec-
tion 2.1 we present the problem from a reinforcement
learning perspective. We briefly introduce Gaussian pro-
cess tools in subsection 2.2 and apply them to our problem
set-up in subsection 2.3. Finally, in subsection 2.4, we
examine how we can use our data to select controller
parameters.

2.1 Reinforcement learning set-up

To be able to judge the effectiveness of certain controller
parameters θ, we need an optimality criterion. In reinforce-
ment learning applications, a common choice is the value
function V , describing the value of a certain state x(t)
with respect to a given control law. It does this according
to

V (x(t),θ) =

∫∞
t
γτ−tr(x(τ), C(x(τ),θ)) dτ∫∞

t
γτ−t dτ

= (− log(γ))

∫ ∞
t

γτ−tr(x(τ), C(x(τ),θ)) dτ,

(2)

where γ < 1 is a constant discount factor and r is
a reward function chosen to encourage certain types of
behavior. In the above relation, we have decided to divide
by the (constant) sum of the discount factors. This has
(among others) the benefit that it will shorten some of the
subsequent equations.

Suppose now that a trial time step is performed. This
experiment starts in state x(t), lasts T seconds (with T
usually small) and puts the system in state x(t+T). In this
case the expression for the value function can be rewritten
to

V (x(t), θ) = (− log(γ))

∫ t+T

t

γτ−tr(x(τ), C(x(τ),θ)) dτ

+ γTV (x(t+ T), θ).
(3)

Note that T in the term γT is not a transpose but an
exponent. After all, γ is a scalar.

The above integral is usually not analytically solvable. In
such a case it is often easier to approximate the (varying)
reward by a constant (mean) reward r̄ throughout the trial
time step T . Since T is often small, such an approximation
can be justified. The above equation then reduces to

V (x(t),θ) = (1− γT)r̄(x(t), C(x(t),θ))
+ γTV (x(t+ T),θ).

(4)

This recursive relation will prove to be useful when Gaus-
sian process tools will be implemented.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10392

2.2 A brief introduction into Gaussian process tools

In literature on reinforcement learning, it is customary
to use a function approximator to approximate the value
function. We will do something similar here. We will as-
sume that the value function V is a Gaussian process, and
consequentially approximate it using the tools developed
to describe Gaussian processes. An important advantage
of using Gaussian processes is that we do not only get an
estimate of the value function V , but also of the uncer-
tainty (i.e. the variance) of our approximation.

Let us briefly look at the underlying theory of Gaussian
processes. When we work with Gaussian processes, we
usually do measurements y of a function h(z), with z
the (vector) input and y the scalar output. We assume
that these measurements are corrupted by white noise with
intensity σ2

n. We can assemble all n sets of measurement
data (z, y) into a matrix Z and a vector y like

Z = [z1 · · · zn] and y = [y1 · · · yn]
T
. (5)

In the above definition, the indices indicate the measure-
ment number. Subsequently, we define a prior mean func-
tion m(z) and a prior covariance function k(z, z′) for the
function h, where z and z′ can be any function inputs to h.
Customary functions are the zero mean function m(z) = 0
and the squared exponential covariance function

k(z, z′) = σ2
f exp

(
−1

2
(z − z′)TΣ−1d (z − z′)

)
, (6)

with Σd a diagonal matrix of (squared) length scales.

Now examine a point z∗ for which we want to estimate
h(z∗), or alternatively the corresponding (noise-corrupted)
measurement y∗. From our assumptions it follows that[
y
y∗

]
∼ N

([
m(Z)
m(z∗)

]
,

[
k(Z,Z) k(Z, z∗)
k(z∗, Z) k(z∗, z∗).

]
+ σ2

nI

)
, (7)

with N (., .) denoting a multivariate Gaussian distribution.
If we use the fact that the measurements y are known, then
we can derive a distribution for y∗. Denoting k(Z,Z) = K,
k(Z, z∗) = K∗ and k(z∗, z∗) = K∗∗, we get

y∗|y ∼ N (m(z∗) +KT
∗ (K + σ2

nI)−1(y −m(Z)),
K∗∗ −KT

∗ (K + σ2
nI)−1K∗ + σ2

nI).
(8)

2.3 Applying Gaussian processes to reinforcement learning

Equation (8) is a familiar equation in Gaussian process
theory. However, it cannot be directly applied to rein-
forcement learning problems. This is because in RL we
do not get (noisy) measurements of the value function
V (x,θ). Instead, at every trial time step we find a relation
between points in the value function. We can rewrite such
a relation, equation (4), to[

1 −γT
] [V (xi, θ)
V (xf , θ)

]
=
[
(1− γT)r̄

]
, (9)

where, for the sake of compactness of notation, we have
shortened the initial state x(t) to xi, the final state x(t+
T) to xf , and we have dropped the brackets after r̄. If we
do an additional trial time step, then the above turns into

[
1 −γT1 0 0
0 0 1 −γT2

]
V (xi1,θ1)

V (xf1 ,θ1)
V (xi2,θ2)

V (xf2 ,θ2)

 =

[
(1− γT1)r̄1
(1− γT2)r̄2

]
, (10)

where the index denotes the trial number. In this way, we
can expand the above equation for any number of trial
time steps, even when these trials have different durations
T .

What we can do next is write the above relation as MV =
r̄, with M , V and r̄ defined accordingly. Subsequently,
given that MV = r̄, it can be derived (an outline of this
derivation is given in appendix A) that V is distributed
according to

V |(MV = r̄) ∼ N (KMT (MKMT + Σn)−1r̄,
K −KMT (MKMT + Σn)−1MK).

(11)

Note that, for compactness of notation, we have assumed
that the mean m(x,θ) = 0. If this is not the case, m(x,θ)
can still be incorporated in the above relation. The matrix
Σn is the covariance matrix of r̄. In this article we assume
that Σn = (1 − γT)2σ2

nI, where σ2
n is the variance of the

noise present when measuring the mean reward r̄.

The matrix K in the above equation is found through a
covariance function k(x,θ,x′,θ′). In the case where we
only have one trial time step, K equals

K =

[
k(xi1,θ1,x

i
1,θ1) k(xi1,θ1,x

f
1 ,θ1)

k(xf1 ,θ1,x
i
1,θ1) k(xf1 ,θ1,x

f
1 ,θ1)

]
. (12)

If we have performed n trial time steps, then K expands
accordingly to a 2n× 2n covariance matrix.

It is customary to decouple the covariance function
k(x,θ,x′,θ′) into kx(x,x′)kθ(θ,θ

′). Subsequently, we can
use a squared exponential function for both kx and kθ. This
would result in

k(x,θ,x′,θ′) = σ2
f exp

(
−1

2
(x− x′)TΣ−1d (x− x′)

−1

2
(θ − θ′)Σ−1t (θ − θ′)

)
.

(13)

Now the framework is in place to give us an estimate of
the value V (x∗,θ∗) for some state x∗ and set of controller
parameters θ∗. To get this estimate, we can add V (x∗,θ∗)
to the value vector V , add a corresponding column of zeros
to the constraint matrix M and add a column and row to
K. Next, we can apply relation (11) to derive the posterior
distribution of V and hence of V (x∗,θ∗). If we do this for
multiple points, we can plot E[V (x,θ)] with respect to x
and/or θ.

2.4 Determining the expected value of controller parameters

With the method described previously, it is possible to
approximate the value V (x,θ), as a function of the state
x and a set of controller parameters θ. By maximizing
V (x,θ) with respect to θ, for a constant x, it is possible
to find the optimal set of controller parameters for each
state. That is, as much as is allowed by the accuracy of
the approximation of V (x,θ).

However, for our problem we cannot let the controller pa-
rameters/gains vary with each state. Instead, a controller
with constant gains is required. Choosing the optimal θ
now takes place differently.

Suppose that, from experience, it is known that the prior
state x is distributed according to p(x). Then the set of

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10393

optimal controller parameters θopt, that (per definition)
maximizes the expected value, is found through

θopt ≡ arg max
θ

∫
X

V (x,θ)p(x) dx. (14)

Finding an analytic solution for this relation is generally
not possible. However, if we use a squared exponential
covariance function like in equation (13), and if p(x) also
has a Gaussian distribution – that is, x ∼ N (µx, S) – then
the integral in equation (14) can be solved analytically.
The mathematics behind this are explained by Girard
et al. [2003] and Candela et al. [2003]. Application results
in

V̄ (θ) ≡ E [V (x,θ)|x ∼ N (µx, S)] =

lTMT (MKMT + σ2
nI)−1r̄,

(15)

where the elements li of the column vector l depend both
on the current controller parameters θ and the respective
experiment input data (xi,θi). In fact, they are given by

li = kS(xi,θi,µx,θ) ≡

σ2
f exp

(
−1

2
(xi − µx)T (Σd + S)−1(xi − µx)

−1

2
(θi − θ)Σ−1t (θi − θ)

) √
|Σd|√
|Σd + S|

.

(16)

Note that the subscript i now is an index, indicating a

relation to the ith element of V and its corresponding
state xi and controller parameters θi. Also note that, for
reasons of notation, the conditioning on MV = r̄ has been
omitted.

The function V̄ (θ) is called the approximated controller
quality function. This quality function can subsequently
be plotted with respect to the controller parameters θ.
Such a plot can then be used to gain more understanding
of how the value of the system varies with respect to
the controller parameters. Additionally, it is possible to
use an optimization method to maximize this function,
automatically tuning the controller parameters.

3. THE GP CONTROLLER TUNING ALGORITHM

The ideas and theories of the previous section can be
assembled into a Gaussian process controller tuning al-
gorithm. To automatically tune the controller parameters,
the following steps need to be taken.

• Generate n measurements. Record the initial state xi,
the final state xf , the weighted average reward r̄, the
applied controller parameters θ and the experiment
duration T .

• Assemble M and r̄ as shown in equation (10) and the
matrix K as shown in equation (12).

• Optionally, tuning of hyperparameters like σf , Σd and
Σt can be done through evidence maximization (also
known as relevance determination) as described by
Rasmussen and Williams [2006] (chapter 5).

• Derive the approximated controller quality function
V̄ (θ) through (15).

• Optimize V̄ (θ) with respect to θ to find the controller
parameters.

The resulting algorithm has a relatively high computa-
tional complexity. This is because it requires inversion of

the matrix (MKMT + σ2
nI), which is of size n × n. The

run-time of the algorithm hence is O(n3). This makes the
algorithm unsuitable for systems in which a lot of data is
available. In such cases conventional system identification
algorithms can be applied. The algorithm presented here is
mainly suitable for nonlinear systems for which a limited
data set is available.

4. APPLICATION IN AN EXPERIMENT

To test the performance of the algorithm, we apply it to a
well-known problem: stabilizing an inverted pendulum.

4.1 The problem set-up

The equation of motion of an inverted pendulum is given
by

mr2α̈+ cα̇−mg sin(α) = u, (17)

where m is the mass (1 kg), r is the radius (1 m), α is
the angle (in radians) with respect to the vertical, c is
the friction coefficient (0.5 kg m/s), g is the graviational
constant (10 m/s2) and u is the input to the system (in
Nm).

The problem to be solved is the maximization of the value
function of equation (2). The parameter γ is set to 1/2,
and as reward function we will use

r(x,u) = −1

2

((α
ᾱ

)2
+

(
α̇
¯̇α

)2

+
1

10

(u
ū

)2)
. (18)

In this equation, ᾱ, ¯̇α and ū are normalizing constants.
We define ᾱ as 45 degrees. We then define ¯̇α = 140 deg/s,
which is (approximately) the angular velocity that the
pendulum gets at α = 45◦ when released from a stationary
position at α ≈ 0◦. Finally, we define ū = 5

√
2 Nm,

which is the input torque required to keep the pendulum
stationary at α = 45◦.

In the reward function above, the first term is present
to make the system move the pendulum to the upright
position, making α zero. The second term is to prevent
the system from making excessively violent movements,
which are likely to result in an overshoot. The third term
is present to prevent the system from applying excessively
large inputs.

For this problem, we assume that (due to external reasons)
we are restricted to a PD controller architecture u =
−Kpα−Kdα̇. If the proportional gain Kp is high enough
to overcome the gravitational force, and if the derivative
gain Kd is positive (adding some damping), the inverted
pendulum is already stabilized. But the question remains
which controller gains maximize the value function. Very
aggressive controllers give high velocities α̇ and inputs u,
while very cautious controllers are slow at reducing α.

4.2 Application of the controller tuning algorithm

To solve the problem, the algorithm of section 3 will be
applied.

First of all data is generated. For the given system, a total
of n = 200 trial time steps have been run. For every trial
time step, the system was given a random initialization

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10394

[
α0

α̇0

]
∼ N (µx, S) = N

([
0
0

]
,

[
(ᾱ/2)

2
0

0 (¯̇α/2)
2

])
. (19)

Next to this, the design choice was made to let log(Kp)
and log(Kd) be uniformly distributed, with log(Kp) ∈
[5/2, 9/2] and log(Kd) ∈ [3/2, 7/2]. Both Kp and Kd were
kept constant during a trial time step.

The duration of each trial time step was 0.1 seconds. For
each time step, the initial state xi and the final state
xf was recorded, as well as an estimate r̄ of the average
reward received during the time step. Also the controller

parameters θ = [Kp Kd]
T

were noted. Based on this, the
matrices M and K and the vector r̄ were set up.

The covariance function used was given in equation (13).
For this covariance function, we have applied evidence
maximization to tune the hyperparameters, using a gra-
dient descent method. Of course the exact results varied
per algorithm execution, because random inputs have been
used. However, the general trends were the same per test
run. What we will present here is a single test run that
can be seen as an ‘average’ run. The resulting matrices Σd
and Σt were

Σd =

[
0.68 0

0 35.9

]
and Σt =

[
3.8 0
0 5.0

]
. (20)

After tuning, σ2
f became 0.22 and σ2

n became 2.0 · 10−6.
Furthermore, it has been assumed that the prior mean
m(x) of the value function was a constant value µ. This
constant µ has also been tuned and was set to −0.86.

It is interesting to note that, should either Kp or Kd have
no influence on the value function, then the corresponding
length parameter in Σt would increase to infinity during
evidence maximization. Because of this, it is possible
to determine which controller parameters are useful and
which ones have less effect. In this case all elements of Σt
converged to a finite value, so all controller parameters
have a significant effect on the value.

Next, the approximated controller quality function V̄ (θ)
was derived through relation (15). When doing this, we
assumed that our prior distribution of x was N (µx, S),
with µx and S as defined in equation (19). The resulting
approximation is shown in figure 1.

Some interesting things can be derived from figure 1. First
of all, the optimal set of parameters within the ascribed
interval can be obtained. For this test run, V̄ (θ) was at
a maximum for log(Kp) = 3.61 and log(Kd) = 2.57. For
these two controller parameters the approximated value
was V (θ) = −0.0488. Other experiment runs gave log-gain
values that were on average 0.2 higher or lower, but the
estimated value stayed close to −0.0488.

Secondly, figure 1 also shows how well the controller
performs for other parameter combinations. If Kp and Kd

are both small, or are both big, then the system will have
a reasonable performance. However, if Kp is large and Kd

is small, then the system gets oscillations, resulting in a
low value. Similarly, if Kp is small and Kd is large, then
the system behaves sluggishly, again giving a low value.
This is confirmed by figure 2, which shows simulation runs
for various values of Kp and Kd.

Fig. 1. A plot of the approximated value with respect to
the controller gains Kp and Kd. The plot was made
based on 200 trial time steps.

Fig. 2. Simulation runs of the inverted pendulum for
various values of Kp and Kd. The system was put
in an initial state of α0 = 30 deg and α̇0 = 0 deg/s.

4.3 Comparison with analytic results

To find out more about the accuracy of the algorithm,
it is useful to compare it with analytic results. This is
complicated, because the system that we examined was
nonlinear. However, it can be linearized. (In equation (17)
replace sin(α) by α.) For this linear system, it is possible
to derive the value function V (x,θ) analytically. Also the
expected value

E[V (x,θ)|x ∼ N (µ, S)] (21)

can be derived analytically. Numerically optimizing this
with respect to θ gave us the true optimal parameters for
the linear system.

The results were very similar to what our approximation
predicted. The above quantity was at a maximum when
log(Kp) = 3.58 and log(Kd) = 2.46. The corresponding
value that was obtained was V (θ) = −0.0489. So, while
the exact gains giving the maximum value are slightly
different from what we got from our approximation, this
did not significantly affect the system value.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10395

But what causes the difference between the approximation
given by our algorithm and the analytical results for the
linear system? To find that out, the parameter tuning
algorithm can also be applied to the linear system. This
has been set up, and the results were not significantly
different. This shows that the deviation was mainly caused
by inaccuracies in the approximation, and was not due to
linearizing the system.

5. CONCLUSIONS AND DISCUSSION

In this paper an algorithm has been developed that can
tune the parameters of a fixed-structure controller, when
applied to a system. It can be used for any system type and
no model of the system is required. Only a set of system
experiment data is needed with varying states and varying
controller parameters. When applied to a test system, the
algorithm proved to be functional and to give accurate
results, even when little system data was available.

The algorithm is computationally quite intensive. The run-
time is O(n3), with n the number of trial time steps. It is
therefore not suitable for systems with lots of measurement
data. Instead, the algorithm was designed for systems for
which a limited amount of measurement data is available.
The algorithm uses this measurement data quite efficiently.
In a test case in which two controller gains needed to be
tuned, the gains were put close to the optimum using only
200 random trial time steps.

Other than the run-time, the main downside of the algo-
rithm is that it requires complete knowledge of the state
x. This data is required by the covariance function k when
setting up the covariance matrix K. Possibly, the system
may also have a reasonable performance when, instead
of the state x, some output vector y is passed to the
covariance function k. In this case the controller C would
of course also reduce from a state controller to an output
controller. How well such a set-up would work is a subject
for future research.

Another very interesting topic for future research would be
to enable the algorithm to apply online learning. Currently,
the algorithm takes a set of measurement data and uses it
to tune control parameters offline. When this can be done
online, during the operation of the system, then an extra
set of applications opens up. The algorithm may then for
instance be applied to tune controllers of time-varying or
parameter-varying systems.

Appendix A. OUTLINE OF A PROOF OF
EQUATION (11)

In this appendix, an outline for the proof of equation (11)
will be given. In fact, we will show that it follows from
equation (8).

The proof is based on a coordinate transformation of V .
We define [

V ′a
V ′b

]
= V ′ = TV =

[
M
N

]
V , (A.1)

with the square matrix T defined as shown above and with
N defined such that its rows span the null space of M . In
other words, N is defined such that T is invertible but
also MNT = 0. By applying V = T−1V ′, it can be shown

that the relation MV = r̄ reduces to V ′a = r̄. That is,
V ′a is known (given), just like in equation (8) the term y
was given. From this, the subsequent distribution of V ′b
can be derived. Next, by transforming the result back,
equation (11) is obtained.

It is interesting to note that equation (11) is actually a
generalization of equation (8). (That is, apart from the
assumption that m(x,θ) = 0.) If M = [I 0], then
equation (11) reduces back to equation (8).

ACKNOWLEDGEMENTS

This research is supported by the Dutch Technology Foun-
dation STW, which is part of the Netherlands Organisa-
tion for Scientific Research (NWO), and which is partly
funded by the Ministry of Economic Affairs.

REFERENCES

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-
Dynamic Programming. Athena Scientific, 1996.

Joaquin Q. Candela, Agathe Girard, Jan Larsen, and
Carl E. Rasmussen. Propagation of uncertainty in
bayesian kernel models - application to multiple-step
ahead forecasting. In Advances in Neural Information
Processing Systems, pages 701–704. MIT Press, 2003.

March P. Deisenroth and Carl E. Rasmussen. PILCO:
A model-based and data-efficient approach to policy
search. In Proceedings of the International Conference
on Machine Learning, pages 465–472. ACM Press, 2011.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement
learning with gaussian processes. In Proceedings of the
22nd International Converfence on Machine Learning,
pages 201–208. ACM Press, 2005.

Agathe Girard, Carl E. Rasmussen, Joaquin Q. Candela,
and Roderick Murray-Smith. Gaussian process priors
with uncertain inputs - application to multiple-step
ahead time series forecasting. In Advances in Neural
Information Processing Systems, pages 529–536. MIT
Press, 2003.

Carl E. Rasmussen and M. Kuss. Gaussian processes in
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems 16, pages 751–759. MIT Press,
2004.

Carl E. Rasmussen and Christopher K.I. Williams. Gaus-
sian Processes for Machine Learning. MIT Press, 2006.

Dearden Richard, Nir Friedman, and Stuart Russell.
Bayesian q-learning. In In AAAI/IAAI, pages 761–768.
AAAI Press, 1998.

Sigurd Skogestad and Ian Postlethwaite. Multivariable
Feedback Control: Analysis and Design. John Wiley &
Sons, 2005.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Michel Verhaegen and Vincent Verdult. Filtering and
System Identification: A Least Squares Approach. Cam-
bridge University Press, 2007.

Draguna Vrabie, Kyriakos G. Vamvoudakis, and Frank L.
Lewis. Optimal Adaptive Control and Differential
Games by Reinforcement Learning Principles. The In-
stitution of Engineering and Technology, 2013.

Christopher J.C.H. Watkins. Learning from Delayed Re-
wards. PhD thesis, King’s College, 1989.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10396

