
Analysis and identification of complex
stochastic systems admitting a flocking

structure

Giulio Bottegal ∗ Giorgio Picci ∗∗

∗ACCESS Linnaeus Centre, School of Electrical Engineering, KTH
Royal Institute of Technology, Stockholm, Sweden

(e-mail: bottegal@kth.se)
∗∗ Department of Information Engineering, University of Padova,

Padova, Italy (e-mail: picci@dei.unipd.it)

Abstract: We discuss a new modeling paradigm for large dimensional aggregates of stochastic
systems by Generalized Factor Analysis (GFA) models. These models describe the data as
the sum of a flocking plus an uncorrelated idiosyncratic component. The flocking component
describes a sort of collective orderly motion which admits a much simpler mathematical
description than the whole ensemble while the idiosyncratic component describes weakly
correlated noise. The extraction of the dynamic flocking component is discussed for time-
stationary systems.

1. INTRODUCTION

In this paper we elaborate on a new paradigm on stochastic
modeling of complex systems proposed in [Bottegal and
Picci, 2013a] based on the theory of Generalized Factor
Analysis (GFA) [Chamberlain and Rothschild, 1983, Forni
and Lippi, 2001, Deistler and Zinner, 2007, Anderson and
Deistler, 2008, Deistler et al., 2010b,a]. The underlying
idea is to split the overall motion of a large ensemble of
interacting random units into a stochastic flocking plus a
noise of a special character which is called the idiosyncratic
component. The first component describes the average
random motion of the system by a rather simple statistical
model while the second aims at describing the stochastic
dynamics which pertains exclusively to individual fluctu-
ations about the average.

The word Flocking is used to describe a commonly ob-
served behavior in gregarious animals by which many
equal individuals tend to group and follow, at least ap-
proximately, a common path in space. The phenomenon
has been studied very actively in recent years; see e.g.
[Reynolds, 1987, Vicsek et al., 1995, Veerman et al., 2005,
Brockett, 2010] and the literature on this subject is now
huge, consisting of hundreds of papers which would be
impossible to discuss here. The mechanism of formation
of flocks has also been intensely studied in the litera-
ture. There is now a quite articulated theory addressing
the convergence to a flocking structure under a variety
of assumptions on the communication strategy among
agents, specific nonlinearities of the dynamics, the kind of
permissible local control actions etc. see e.g. [Jadbabaie
et al., 2003, Fagnani and Zampieri, 2008, Olfati-Saber
et al., 2007, Tahbaz-Salehi and Jadbabaie, 2010, Cucker
and Smale, 2007, Olfati-Saber, 2006, Shen, 2007, Tanner
et al., 2007] and references therein.

? The first author was partially supported by the Swedish Research
Council under contract 621-2009-4017.

Here we want to address a different and perhaps more
basic problem: given observations of the motion of a large
set of interacting agents and assuming statistical steady
state, find out whether there is a flocking component in
the collective motion and estimate its characteristics. The
rationale for this search is that the very concept of flocking
implies an orderly motion which must then admit a much
simpler mathematical description than that of the whole
ensemble. Once a flocking component (if present) has been
discovered, the motion of the ensemble can naturally be
split into flocking plus a random term (the idiosyncratic
component) which describes local random disagreements
of the individual agents or the effect of external distur-
bances. Hence extracting a flocking structure is essentially
a parsimonious modeling problem. Prediction of the future
behavior and control of a complex ensemble of random
agents could then reasonably be restricted to the flocking
component and be based on the simple model thereof.

Static GFA models describe a zero-mean stochastic se-
quence y := {y(k), k ∈ Z+} (represented as a random
column vector with an infinite number of components) by
a linear model of the form

y =

q∑
i=1

fixi + ỹ (1)

where, in analogy to finite-dimensional Factor Analysis
models, the random variables xi , i = 1, . . . , q are called
the common factors and the deterministic vectors fi ∈ R∞
are the factor loadings. The xi can be taken, without
loss of generality, to be orthonormal so as to form a
q-dimensional random vector x with E xx> = Iq. The
random vector ỹ, uncorrelated with (orthogonal to) x is
the idiosyncratic component. We shall denote the linear
combination ŷ :=

∑
fixi by ŷ so that (1) can be written

y = ŷ + ỹ for short.

The idiosyncratic term is no longer required to have un-
correlated components as in the classical Factor Analysis
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models, but to satisfy instead a zero-average condition.
This condition implies that the covariance of any two
variables ỹ(k) and ỹ(j), say σ̃(k, j) tends to zero when
|k − j| → ∞.

It has been shown that with this new definition the inher-
ent non-uniqueness of classical finite-dimensional Factor
Analysis models does not occur. Moreover in this general-
ized context the dimension q of the latent factors vector
can be characterized as the number of “infinite eigenval-
ues” of the covariance matrix of y.

The overall covariance of the observed process y can then
be decomposed in the sum of two contributions.

• A long range correlation structure which describes
the component of y driven by the latent vector. The
long range property means that the covariance of two
variables ŷ(k) and ŷ(j), say σ̂(k, j) does not go to
zero when |k − j| → ∞.
• A short range correlation structure which corresponds

to the idiosyncratic component ỹ. The short range
property means that the covarinace of two variables
y(k) and y(j), say σ̃(k, j)→ 0 when |k − j| → ∞.

We shall discuss this decomposition for dynamic systems
restricting to the case of processes which are stationary
with respect to the time variable which is a natural
assumption to make in view of statistical inference.

2. DYNAMIC GFA MODELS

Consider an infinite aggregate of random “agents” indexed
by a discrete variable k ∈ Z+ each described by a
scalar output variable 1 y(k, t), which evolves randomly
in (discrete) time. The overall evolution of the ensemble is
then described by an infinite dimensional random process
y := {y(t) ; t ∈ Z} with components y(k, t), an infinite
column vector of zero mean random variables of finite
variance. We shall assume that the infinite covariance
matrix,

Σ(τ) := Ey(t+ τ)y(t)>

is well-defined, independent of t and of positive type. We
shall call y a time-stationary random field. Let F ∈ R∞×q;
we shall say that the q columns of F are strongly linearly
independent if the n×n, (n ≥ q) upper left corner of FF>

has q nonzero eigenvalues which tend to infinity as n→∞.
This concept is introduced in [Bottegal and Picci, 2013a]
and cannot be discussed further here for reasons of space.

Definition 1. A time-stationary random field has a dy-
namic GFA representation of rank q if it can be written
as the sum of two uncorrelated components,

y(t) = Fx(t) + ỹ(t) (2)

where the q columns of F are strongly linearly independent,
the q dimensional process x(t), with Ex(t)x(t)> = Iq, is
jointly (weakly) stationary with ỹ(t) and the covariance

matrix Σ̃(τ) := E ỹ(t + τ)ỹ(t)> is, for all τ , a bounded
linear operator in `2.

Let `2(Σ) denote the Hilbert space of infinite sequences
a := {a(k), k ∈ Z+} such that ‖a‖2Σ := a>Σa < ∞.
When Σ = I we use the standard symbol `2, denoting

1 This assumption is done for ease of notation; finite dimensional
output variables can be treated in the same way.

the corresponding norm by ‖ · ‖2. The following definition
was introduced in [Forni and Lippi, 2001]:

A sequence of elements {an}n∈Z+
⊂ `2 ∩ `2(Σ) is an

averaging sequence (AS) for y, if limn→∞ ‖an‖2 = 0.
We say that a sequence of random variables y is idiosyn-
cratic if limn→∞ a>ny = 0 for any averaging sequence
an ∈ `2 ∩ `2(Σ).

Whenever an infinite covariance matrix Σ defines a
bounded operator on `2, one has `2(Σ) ⊂ `2; in this case an
AS can be seen just as a sequence of linear functionals in
`2 converging strongly to zero. For example the sequence
of elements in `2

an =
1

n
[ 1 . . . 1︸ ︷︷ ︸

n

0 . . . ]> (3)

is an averaging sequence for any Σ. On the other hand, let
Pn denote the compression of the n-th power of the left
shift operator to the space `2; i.e. [Pna](k) = a(k − n) for
k ≥ n and zero otherwise. Then limn→∞ Pna = 0 for all
a ∈ `2 [Halmos, 1961] so that {Pna}n∈Z+

is an AS for any
a ∈ `2.

Example 2. Let 11 be an infinite column vector of 1’s
and let x(t) be a zero-mean scalar process uncorrelated
with ỹ(t), a zero-mean process such that for each fixed t
the random sequence {ỹ(k, t) ; k = 0, 1, . . .} is ergodic 2 .
Consider the process

y(t) = 11x(t) + ỹ(t)

and the averaging sequence (3). Since

lim
n→∞

1

n

n∑
k=1

ỹ(k, t) = E ỹ(0, t) = 0

(limit in L2) we have

lim
n→∞

a>ny(t) =
1

n

n∑
k=1

y(k, t) = x(t) ;

hence we can recover the latent factor by averaging. More
generally, if ỹ is idiosyncratic limn→∞ a>n ỹ(t) = 0 for any
averaging sequence and for all t so one could recover x
from AS’s such that limn→∞ a>n 11 exists and is non zero.
2

The following proposition shows that for a stationary ran-
dom field y := {y(t) ; t ∈ Z}, constructing dynamic GFA
representations is in a sense equivalent to constructing
static GFA representations for the vector y(0), or which
is the same by stationarity, a static GFA representation
for any of the the vectors y(t) ; t ∈ Z. Hence, at least
in principle, the dynamic problem can be reduced to the
static one.

Proposition 3. The stationary random field y := {y(t) ; t ∈
Z} has a dynamic GFA representation (2) if and only if
y(0) has a static GFA represenattion with the same factor
loading matrix F , x ≡ x(0) and ỹ ≡ ỹ(0).

A proof can be found in [Bottegal and Picci, 2013b].

The following criterion, originally stated for the static case
by [Chamberlain and Rothschild, 1983], can in principle be

2 And hence has a short range correlation structure, in the sense
described above.
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used to check the existence of a flocking component in a
time-stationary random field:

Theorem 4. For a time-stationary random field, a flocking
structure exists with q factors if and only if q eigenvalues of
the steady state covariance matrix Σn of the n-dimensional
random subvector yn(t) of y(t), tend to infinity with n
while the others remain bounded.

Below is a sharpened version of Theorem 4 which will be
used later.

Corollary 5. A stationary random field y := {y(t) ; t ∈ Z}
has a flocking structure, if and only if its steady state
covariance matrix Σ has a decomposition

Σ = Σ̂ + Σ̃ ; Σ̂ = FF> (4)

where F ∈ R∞×q has strongly linearly independent
columns and Σ̃ is a bounded operator in `2. In other words,
Σ must admit a decomposition as the sum of a bounded
plus an unbounded finite rank perturbation of rank q. In
particular ‖Σ‖2 = +∞.

3. STATISTICAL ESTIMATION

In this section, we focus on the problem of detecting and
estimating a flocking component in a stationary random
field.

Assume that we have sample estimates of the covariance
of subvectors yn(t) = [y(0, t)y(1, t) . . . y(n, t) ]> of the
process y, computed using a large enough time window
of observations {y(t) ; t = 1, . . . , N}. Since the process is
stationary, the limit

Σ̂n(N) :=
1

N

N∑
t=1

yn(t)[yn(t)]>

converges to the true covariance Σn = Eyn(t)[yn(t)]>.
Following [Chamberlain and Rothschild, 1983, Forni and
Lippi, 2001] the idea is to do PCA on the covariance
estimates for increasing n. If the data admit a GFA
structure, there will be q eigenvalues of Σn which tend
to grow without bound as n → ∞ while the others stay
bounded. The q corresponding eigenvectors will tend as
n → ∞ to the q factor loadings f1, . . . , fq and therefore
provide asymptotically the GFA decomposition of the Σ(0)
matrix

Σ(0) = FF> + Σ̃(0) (5)

where Σ̃(0) is the part of Σ(0) corresponding to the
bounded eigenvalues which can in principle be isolated by
the PCA procedure. After F and Σ̃(0) are estimated, the
stochastic realization procedure described in [Bottegal and
Picci, 2013b] permits to construct the factor vector x and
the idiosyncratic component ỹ of the GFA representation
of y. The identification of the time varying factor variables
xi(t) of y from the observations y(k, t) can be done by
averaging on the space variable. Since there are only q
components to be estimated one should select q indepen-
dent averaging sequences to construct samples of the xi(t)
at different time instants. From these samples one can then
apply standard time-series identification techniques.

4. LINEAR DYNAMIC SYSTEMS AND GFA

We would like to gain some understanding of the struc-
ture of linear dynamical systems which admit a flocking

component. A simple class of systems which is in principle
amenable to analysis is that of random fields described by
linear evolution equations of the general form

y(t+ 1) = Ay(t) + w(t) (6)

where w is a string of uncorrelated stationary white noise
processes and A is a linear operator acting on infinite
sequences. We assume that the evolution is asymptotically
stable and is stationary in time so that the variance matrix
of y(t) is a constant positive definite matrix, which should
then satisfy an infinite dimensional Lyapunov equation

Σ = AΣA> +Q (7)

where A is a matrix representation of the operator A
and Q is the variance matrix of the white noise which
we assume an infinite diagonal matrix with uniformly
bounded positive entries. In this case, a GFA model of
y (if any exists) will also be stationary and the structure
of the model can be inferred by analyzing the covariance
matrix Σ. When the matrix of the operator A has a nested
lower triangular structure, that is when the evolution of
the first n agents is not influenced by that of the agents of
index k > n, the solution of the Lyapunov equations (7)
can sometimes be obtained explicitly. The n-dimensional
random process yn(t), obeys an equation of the form

yn(t+ 1) = Any
n(t) + wn(t) , n = 1, 2, . . . (8)

where the An’s, the upper left n×n submatrices of A, are
lower triangular with a nested structure of the type

An+1 =

[
An 0
b>n an+1

]
, (9)

where |an+1| < 1 so that the asymptotic stability of An
is preserved. The input process wn(t) is an n-dimensional
white noise with variance Ewn(t)wn(s)> = Qnδt,s. We are
interested in the asymptotic covariance matrix of yn(t).
Questions regarding the existence of flocking components
can be answered by analyzing the structure of the solution
to the family of Lyapunov equations

Σn = AnΣnA
>
n +Qn n = 1, 2, . . . (10)

when n→∞. Some types of families of matrices {An}n∈N
are considered below.

Autonomous agents In this scenario, the behavior of
each agent is independent of the others, being just an
autoregressive motion of the type

yk(t+ 1) = akyk(t) + wk(t) , sup
k∈N
|ak| < 1 . (11)

In this case, An = diag{a1, . . . , an}. Assuming also Q
diagonal (with uniformly bounded elements), the family
of Lyapunov equations (10) admits diagonal (nested) solu-
tions with uniformly bounded elements. Hence, in this case
the resulting sequence is idiosyncratic, with uncorrelated
components. Hence, there is no flocking structure.

Flocking by following a leader This is the case for some
hierarchical leadership models as discussed in [Shen, 2007].
A very simple instance is the following model where each
agent evolving with the same scalar random dynamics
wants to follow a “leader” signal y0(t) by applying the
same proportional control law based on the measurement
of its position with respect to y0(t):

y0(t+ 1) = ay0(t) + w0(t) , |a| < 1

yk(t+ 1) = y0(t) + a[yk(t)−y0(t)] + wk(t) , k = 1, 2, . . .
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The question is if following a leader should, under appro-
priate circumstances, produce a random flock. Rewriting
the model in matrix formy0(t+ 1)

y1(t+ 1)
. . .

yn(t+ 1)

 =


a 0 . . . 0

1− a a
...

... 0
. . . 0

1− a . . . a


y0(t)
y1(t)
. . .

yn(t)

+

w0(t)
w1(t)
. . .

wn(t)


and computing the covariance matrices of yn(t) by solv-
ing the Lyapunov equation (10), provides the following
answer.

Theorem 6. Assume for simplicity that Qn = In. The
solution of the Lyapunov equation (10) tends for n → ∞
to

Σ = ff> + Σ̃
where f ∈ R∞ has components

fk =

{
a/(1− a4)

1
2 , k = 1

(1 + a2)
1
2 /[(1 + a)(1− a2)

1
2 ] , k > 1,

and Σ̃ is a bounded operator in `2. Hence

y(t) = fx(t) + ỹ(t) , x(t) = (1− a4)
1
2y1(t− 1) ,

Var ỹ(t) = Σ̃ .

Following the previous agent Let the leader be described
by the same first order dynamics as in the previous exam-
ple. Assume instead that each agent has no measurements
of y0 and tries just to follow the previous agent by using
the same kind of control law namely

yk(t+ 1) = yk−1(t) + a(yk(t)− yk−1(t)) + wk(t) ,

where k = 1, 2, . . . and |a| < 1. Does this field have a
flocking component? The control gain a may depend on k
and, say, increase exponentially with the distance as

a(k) = 1− λk , k > 1

where 0 < λ < 1 so that the spectrum of the system (6)
has an accumulation at z = 1. In this case the solution of
the Lyapunov equation (7) is unbounded see [Przyluski,
1980].

Infinite dimensional distributed average consensus We
may model this adjustment in discrete time by a symmet-
ric linear relation

yk(t+1) = akyk(t)+
∑
j∈Nk

ak,j(yj(t)−yk(t))+wk(t) , (12)

where k = 1, 2, . . . and the sum is over the set of neighbors
Nk of each state k, which we assume to be a finite set. The
overall motion can be described as

y(t+ 1) = Ay(t) + w(t) (13)

starting at some initial state y(0). Here A is a matrix with
positive elements such that

A = A> A11 = 11

an infinite doubly stochastic matrix. The state of (13) is
not stationary since has a random walk component. We
want to see if for some averaging sequence {an} the limit

lim
n→∞

a>nx(t)

is non-zero. This would imply the existence of a flocking
component. Problems of this kind have been studied in
the finite-dimensional setting in [Xiao et al., 2007]. Here
we study a slightly different model, obtained by modifying
(12) so as to deal with an infinite number of agents:

(1) for each n ≥ n0, where n0 is a fixed initial integer,
consider a symmetric doubly stochastic matrix An,
which achieves consensus on the first n agents;

(2) define Ān := (1− 1
n )An, a sequence of matrices such

that consensus is reached as n→∞.

Denoting by Ā the limit of the sequence {Ān, n ∈ N}, the
following result holds.

Theorem 7. The model

y(t+ 1) = Āy(t) + w(t) , Q = I (14)

admits a flocking structure. The relative GFA decomposi-
tion has one (q = 1) latent factor.

4.1 Flocking and the structure of A

By Corollary 5, if the model (6) has a flocking structure,
the spectral norm of the solution of the related Lyapunov
equation must be unbounded. Such a property can be
linked to the structure of the operator matrix A. Define
the radius of stability of A as [Ackermann et al., 1993]

r(A) = inf
0≤θ≤2π

‖(λI −A)−1‖2 . (15)

Theorem 8. Assume y(t) satisfies (6), with Q = I in the
related Lyapunov equation (7). Then a necessary condition
for y(t) to have a flocking structure is that r(A)→ 0.

Proof : The result follows from the inequalities
1

2r(A) + r2(A)
≤ ‖Σ‖2 ≤

1

r2(A)
(16)

of [Gahinet et al., 1990] and [Tippett and Marchesin, 1999]
respectively. 2

Remark 9. The above theorem applies in particular to the
model of (14). In this case the matrix is symmetric and
the radius of stability is just the distance of the largest
eigenvalue from the unit circle, that is n−1. However, when
the matrix A is “highly” non-normal, as in the leader
follower case, the behaviour of the stability radius is quite
unpredictable and depends on the pseudospectrum of A.
Problems of this kind are widely discussed in [Trefethen
and Embree, 2005].

Quite unfortunately, the unboundedness (in the 2-norm
sense) of the solution to the Lyapunov equation (7) does
not generally imply the existence of a flocking structure.
See the example below [Tippett and Marchesin, 1999].

Example 10. We consider the dynamics of a discretized
one-dimensional advection equation

∂y

∂t
+
∂y

∂x
= 0 . (17)

We discretize the space variable x, define yi(t) = y(x =
i, t), i ∈ N and assume that independent random excita-
tions with flat spectrum (white noise) are applied at every
space location. Then the model (8) applies also here, with

An =


0 . . . 0
1 0 . . . 0

0
. . .

. . .
. . . 1 0

 . (18)

a shift matrix. Again, the nesting property of the {An}n∈N
is satisfied. The associated family of Lyapunov equations
(10) admits the solutions

Σn = diag{1, 2, . . . , n} , (19)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2326



and ‖Σ‖2 → ∞ as n grows to infinity. See the infinite
dimensional unilateral shift example in [Przyluski, 1980].
Since the off-diagonal elements of Σ are all equal to 0,
which means that there is no cross-correlation, no flocking
structure can exist. This situation is also described in
Example 2 in [Bottegal and Picci, 2011]. This represents
a limit case, where Σ has unbounded elements and has no
unique GFA representation (it can be viewed as a∞-factor
sequence).

5. CONCLUSIONS

We have discussed a new modeling paradigm for large
dimensional aggregates of random systems based on the
theory of Generalized Factor Analysis. The analysis of
interesting classes of random fields, such as the linear
evolution equation in (6), by using the decomposition of
the steady state covariance has just been touched upon
shortly. Their statistical identification can in principle be
done by a limiting PCA procedure.
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APPENDIX

Proof of Theorem 6

Consider first the case n = 3 and write the solution to the
related Lyapunov equation as
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Σ3 =

[
p1 p2 p3

p2 p4 p5

p3 p5 p6

]
. (20)

Then, simple calculations show that

p1 =
1

1− a2
, p2 = p3 =

a

(1 + a)(1− a2)
,

p4 = p6 =
1

1− a2
+

1

(1 + a)2
+ 2

a2

(1 + a)2(1− a2)

p5 =
1

(1 + a)2
+ 2

a2

(1 + a)2(1− a2)
(21)

Now assume that, for a given n ≥ 3, the solution to the
equation Xn −AnXnA

>
n = In has the form

Σn =



p1 p3 p3 p3 . . . p3

p3 p4 p5 p5 . . . p5

p3 p5 p4 p5 . . . p5

...
...

. . .
. . .

. . .
...

p3 p5 . . . p5 p4 p5

p3 p5 . . . p5 p5 p4

 ; (22)

our goal is to show that Σn+1 has an analogous structure,
that is

Σn+1 =

[
Σn p
p> p4

]
, (23)

where p = [p3 p5 . . . p5]
>

. To this end, express the
variable Xn+1 as

Xn+1 =

[
Xn z
z> u

]
and the matrix An+1 as

An+1 =

[
An 0
b> a

]
,

where b = [1− a 0 . . . 0]
>

. Then the related Lyapunov
equation has the form[

Xn z
z> u

]
−
[
An 0
b> a

] [
Xn z
z> u

] [
A>n b
0 a

]
= In+1 , (24)

which can be rewritten as[
Xn −AnXnA

>
n (In − aAn)z −AnXnb

z>(In−aA>n )− b>XnA
>
n (1−a2)u− b>Xnb− 2ab>z

]
=

=

[
In 0
0 1

]
. (25)

The top-left block of (25) admits the solution given by
(22). Then, by inserting this into the top-right block, one
then gets z = p. Finally, by exploiting the former findings,
from the bottom-right block one has u = p4, and hence
the solution is exactly (23). Hence, one can easily observe
that the matrix Σ̄n, obtained by discarding the first row
and column from Σn, has the structurep5 p5 . . .

p5 p5

...
. . .

+ diag{p4 − p5, . . . , p4 − p5} (26)

that is, it admits a rank-one plus diagonal decomposition,
where the vector generating the rank-one matrix is f̄ =
[
√
p5
√
p5 . . .], with

√
p5 = (1 + a2)

1
2 /((1 + a)(1 − a2)

1
2 ),

while the elements of the diagonal matrix are p4 − p5 =
1/(1 − a2). Now, to complete the proof we need to show

that also the matrix Σn admits a similar decomposition,
i.e.

Σn =

[
f1

f̄

] [
f1 f̄

T
]
+diag{σ2

1 , 1/(1−a2), . . . , 1/(1−a2)} .

This can be done be observing that, for any integer k > 0,
it has to be p3 = f1f̄(k), and so f1 = a/(1 − a4)

1
2 .

Moreover, σ2
1 is easily found by computing σ2

1 = p1 −
f2

1 = 1. Finally, since by comparing the leader dynamics

y1(t) = ay1(t− 1) + w1(t− 1)

with its GFA decomposition y1(t) = f1x(t) + ỹ1(t), where
both ỹ1(t) and w1(t − 1) are white noise with the same

variance, it has to be x(t) = (1− a4)
1
2y1(t− 1).

Proof of Theorem 7

For n ≥ n0, consider the Lyapunov equation

Σn = ĀnΣnĀ
>
n + In ,

whose solution can be written

Σn =

∞∑
j=0

Ājn(Ājn)> . (27)

Since Ān is symmetric, for every j the decomposition

Ājn(Ājn)T = UnS
2j
n U

>
n

holds, with Sn being the matrix of the singular values
of A and Un a unitary matrix whose columns are the
(normalized) eigenvectors of Ān. Note that one of such

singular values is
(
1− 1

n

)2
and the relative eigenvector is

1√
n
11n, i.e. the normalized vector of all 1’s in ∈ Rn. The

other eigenvalues are strictly stable. Then we can express
Σn as

Σn = Un

 ∞∑
j=0

S2j
n

U>n

=
11√
n

 ∞∑
j=0

(
1− 1

n

)2j
 11√

n

>
+ Ũn

 ∞∑
j=0

S̃2j
n

 Ũ>n

= 11
n

2n+ 1
11> + Ũn

 ∞∑
j=0

S̃2j
n

 Ũ>n , (28)

where Ũn and S̃n are obtained from Un and Sn by

removing the parts related to the eigenvalue
(
1− 1

n

)2
.

Now, take the averaging sequence (3)

an =
1

n

[
11>n 0 . . .

]
, 11n ∈ Rn (29)

and apply it to Σn, that is, compute 1
n11
>
nΣn11n

1
n . Then,

letting n→∞, the second term on the right hand side of
(28) vanishes, while the first term gives

11>n 11n11
>
n 11n

n(2n+ 1)
=

n

2n+ 1
, (30)

which converges asymptotically to a finite value. One can
easily verify that the averaging sequence (29) is the only
sequence converging to nonzero values.
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