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Abstract: The solution of the invariance problem for arbitrary external perturbations is
proposed for the system output control. It is assumed that perturbations are not measured,
and acts through another channels than control inputs (so called unmatched perturbation). The
nonlinear control algorithms are developed on the base of discontinuous function. The main
idea consists in using relay linearization effect with the help of self damping oscillations of the
system output. In such operation mode the theoretically infinite linearization coefficient can be
realized, and asymptotical invariance of the system output is provided. The simulation results
show the efficiency of the designed algorithms.

1. INTRODUCTION

The theory of invariance is a major field of control theory.
At present, there are the following formulations of invari-
ance problems and methods for their solution as applied
to linear models of control systems: complete invariance,
invariance with prescribed accuracy, and asymptotic in-
variance. Let us consider each of them in more detail.
Complete invariance means that the transition process
with respect to output variables is independent of dis-
turbances. In the class of linear controls, the complete
invariance problem is reduced to finding a feedback con-
trol such that the controllability space of the closed loop
system with respect to disturbances belongs to the kernel
of the output mapping. In this formulation, the problem
was first considered in Schipanov [1956] and was solved
(with necessary and sufficient conditions stated) by apply-
ing the geometric approach Wonham [1979]. The class of
completely invariant systems is expanded if disturbances
can be measured. In this case, those of the disturbances
that belong to the control space (matched disturbances)
Drazenovic [1969] can be compensated for by applying a
combination control. Next, the complete invariance prob-
lem is solved only for the uncompensated disturbances.
By applying the theory of systems with discontinuous
controls, this problem is solved under the assumption that
the disturbances are non-measurable magnitude bounded
functions; more specifically, enforced sliding modes are
applied that are invariant under matched disturbances
V.A Utkin [2001], V.I Utkin [2009]. Note that a finite
time is required for producing sliding modes, after which
complete invariance is achieved. Invariance with prescribed
accuracy, or ε-invariance Rozonoer [1963] guarantees that
the transition process with respect to output variables
differs from the undisturbed motion by a prescribed value.
This formulation makes use of systems with deep feed-
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back V.A Utkin [2001], in which ε-invariance is provided
with increasing feedback factors under the assumption
that the disturbances are magnitude bounded functions
that belong to the control space. In the case of un-
matched disturbances, the class of ε-invariant systems is
expanded by applying the block approach V.A. Utkin
et al. Drakunov, Izosimov, Luk‘yanov, V.I. Utkin [1990]
due to a hierarchical choice of local continuous feedbacks.
Asymptotic invariance means that the output variables
(or their residuals with respect to given values) tend to
zero as the time in the transition process tends to infinity
irrespective of the disturbances. In asymptotic invariance
problems, it is assumed that disturbances are generated
by a known dynamic model (model disturbances) with
unknown initial conditions. This formulation deals with
an extended model of a control system (control system
+ disturbance model) and the problem is to stabilize the
output variables by applying the theory of asymptotic
observers or the dynamic compensation method Wonham
[1979]. In both cases, the invariance problem is reduced
directly or indirectly to the synthesis of a feedback control
with the use of estimated components of external distur-
bances. The well known difficulties in synthesis related to
an increase in the dimension of the extended system can
be resolved by applying the block approach, in which case
the synthesis problem is decomposed into independently
solved subproblems of lower dimension V.A Utkin [2001].
Let us note some aspects concerning the use of the above
results of invariance theory in practice. The possibility of
providing complete invariance is strictly limited by the
structural properties of the control system model. Specif-
ically, even if the complete invariance problem has been
solved, one needs to satisfy the engineering requirements
for the operation of the closed loop system, for example,
its stability. In asymptotic invariance problems, the most
vulnerable assumption from a practical point of view is
that of model disturbances. More important in practice is
the ε-invariance problem: the class of such systems is wider
than in complete invariance problems and the assumption
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of magnitude-bounded disturbances is more realistic than
in the other formulations. Moreover, the formulation of
the ε-invariance problem frequently satisfies the imposed
engineering requirements. Note that the invariance prob-
lem as solved with respect to the whole state vector, which
was frequently addressed, especially at an earlier stage of
the invariance theory development, is impractical and has
a solution only in the case of matched disturbances. In
this paper, a new approach to the synthesis of invariant
systems is described that is based on nonlinear oscillation
modes created in the closed-loop system by applying bang-
bang controls in the case of unmatched disturbances of
a broad class. In contrast to the synthesis of invariant
systems based on sliding modes, where the motion in
a sliding mode is described by linear equations, in the
proposed approach, the capabilities of nonlinear control
theory are used to a full extent. The properties of nonlinear
oscillations are frequently employed in control theory, for
example, in algorithm with second order sliding modes
Levant [1993, 2003], which ensure that second order sys-
tems with matched disturbances converge in a finite time.
At a physical level, the basic idea of this work is based on
the vibrolinearization of relay characteristics by applying
a high frequency signal to the relay input. It is well known
Mossaheb [1983] that the vibrolinearization coefficient of
the relay increases unlimitedly with decreasing amplitude
of the high-frequency signal. Based on this fact, damped
eigenoscillations with respect to the output coordinate
can be generated in the closed-loop system by applying
a bang-bang control and, as a consequence, an infinitely
large vibrolinearization coefficient can be obtained. As a
result, the asymptotic invariance problem for output vari-
ables can be solved in the case of unmatched disturbances
from a broad class. Note that the unlimited growth of
the vibrolinearization coefficient is then caused not by
applying an external high-frequency signal Iannelli [2006],
Kochetkov [2010], but rather by damped high-frequency
eigenoscillations in the closed-loop system.

2. DISCUSSION OF THE PROBLEM

Consider the invariance problem with respect to the out-
put for the second order linear system

ż1 = z2 + f1(t),
ż2 = u+ f2(t),

(1)

where f1(t), f2(t) are external disturbances, |f1(t)| ≤
≤ F1 = const > 0, |f2(t)| ≤ F2 = const > 0, | · | hereafter
denotes the absolute value of a number, y = z1 is the
output of the system, and u is a scalar control. It is
assumed that the variables z1 and z2 can be measured.

A given control accuracy can be ensured by applying a
linear control law. Consider a step-by-step pro cedure for
choosing feedback factors as based on the block approach
V.A. Utkin et al. Drakunov, Izosimov, Luk‘yanov, V.I.
Utkin [1990]. At the first step, we introduce the new
variable z2 = l1z1 + z2, where l1 = const > 0. In new
coordinates, the equations of the system are rewritten as

ż1 = −l1z1 + z2 + f1(t),
ż2 = −l21z1 + l1z2 + u+ l1f1 + f2(t).

At the second step, we choose a control function of the
form

u = l21z1 − (l1 + l2)z2 = −l1l2z1 − (l1 + l2)z2, (2)

where l2 = const > 0.

The equations of the closed-loop system are

ż1 = −l1z1 + z2 + f1(t),
ż2 = −l2z2 + l1f1 + f2(t).

The given accuracy with respect to the external distur-
bances f1(t) and f2(t) can be achieved by choosing control
parameters l1 and l2 satisfying the inequality

|z1| ≤ F1

(
1

l1
+

1

l2

)
+

F2

l1l2
. (3)

This synthesis procedure can be extended to the case of
an n-dimensional system V.A Utkin [2001]. Note that the
control function given by (2) determine two real roots of
the characteristic equation of the closed-loop system, and,
in the general case, the prescribed accuracy is achieved by
choosing two amplification factor l1 and l2.

Consider a different method for choosing a control function
that leads to complex roots of the characteristic equation:

u = −ω2z1 − αz2, ω2 >
α2

4
, (4)

where ω, α = const > 0.

The equations of closed-loop system (1), (4) are

ż1 = z2 + f1(t),
ż2 = −ω2z1 − αz2 + f2(t),

(5)

As t → ∞ the variables of system (5) tend to a neigh-
borhood of the origin whose size is determined by the
inequalities

|z1(t)| ≤ αF1

ω2
+
F2

ω2
, |z2(t)| ≤ F1. (6)

In contrast to algorithm (2), in this system, any prescribed
accuracy of the control with respect to the output variable
can be achieved by choosing the only parameter ω.

Now consider the problem of providing invariance with the
help of a nonlinear oscillator of the form

ż1 = z2,
ż2 = −M1sign(z1),

where M1 = const > 0.

This system satisfies the energy conservation law

E = M1|z1|+
z2

2

2
= M1|z1(0)|+ z2

2(0)

2
= const > 0.

However, in contrast to a linear oscillator, the cyclic
oscillation frequency of the system depends on the initial
conditions (oscillation energy)

ω =
πM1

2
√
E
. (7)

It can be seen that the lower the energy, the higher
the oscillation frequency. Let us consider the so-called
“twisting”algorithm Levant [1993] according to which the
control of system (1) is taken in the form

u = −M1sign(z1)−M2sign(z2), (8)

where M1 = const > 0, M2 = const > 0, M1 > M2 > F2.
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One can determine the equations of the closed-loop sys-
tem:

ż1 = z2 + f1(t),
ż2 = −M1sign(z1)−M2sign(z2) + f2(t).

(9)

As was shown in V.I Utkin [2009], Levant [1993], the
energy of nonlinear oscillations for f1(t) = 0 damps in
a finite time. According to (6) and (7), this leads to
infinite frequency of switchings in the stable mode and,
therefore, to full invariance of the variables z1, z2 with
respect to f2(t). We note that in contrast to the linear
oscillator this mode of the closed-loop system arises under
bounded control. In Kochetkov, V.A. Utkin [2013] was
shown that, only the output ε-invariance can be provided
in the closed-loop system (9). This fact constrains practical
application of this approach and the new approach for
providing invariance is developed in the paper.

3. PROBLEM STATEMENT

Consider a linear time-invariant system represented in
the regular form V.A. Utkin et al. Drakunov, Izosimov,
Luk‘yanov, V.I. Utkin [1990]

ẋ1 = A11x1 +A10x0 +Q1f(t),
ẋ0 = A01x1 +A00x0 +Q0f(t) +Bu,

y = Dx1, (10)

where x1 ∈ Rn−p, x0 ∈ Rp, u ∈ Rp is the vector of control
inputs, f(t) ∈ Rq is the vector of external disturbances,
y ∈ Rm is the output of the system, rankB = dim x0,
rankD = m, 1 ≤ m ≤ n − p, the pair {A11, A10} is
controllable, and the whole state space vector can be
measured.

Assume that the external disturbance f(t) is restricted by
the condition

ImQ1 ⊂ ImA10, (11)

where Im(·) denotes the image of a matrix.

Condition (11) means that there exists a matrix Λ, such
that

Q1 = A10Λ. (12)

The class of external disturbances is restricted by the
inequalities

|fi(t)| ≤ Fi, |ḟi(t)| ≤ F i, |f̈i(t)| ≤ F̃i, i = 1, q, (13)

where fi(t)− iis the ith component of the external distur-

bance vector, Fi, F i, F̃i are constants.

The problem is to provide the asymptotic invariance of the
output variables with respect to the external disturbance:

lim
t→∞

|yi(t)| = 0, i = 1,m,

where yi(t) is the ith component of the vector y(t).

4. SYNTHESIS OF A CONTROL ALGORITHM

The procedure for designing a control algorithm is based
on the block approach V.A. Utkin et al. Drakunov, Izosi-
mov, Luk‘yanov, V.I. Utkin [1990], which is, in fact, a step-
by-step procedure. The first step of deriving a block form
for system (10) is described as follows. We introduce the
notation

rankA10 = p1 ≤ p.

It is well known that, by applying a nonsingular coordinate
transformation x1 = T1x1 and taking into account (12),
system (10) can be represented in the form

ẋ2 = A22x2 +A21x̃1,
˙̃x1 = A12x2 + Ã11x̃1 +A10x0 +Q1f(t),

ẋ0 = A02x2 + Ã01x̃1 +A00x0 +Q0f(t) +Bu,

(14)

where y = DT−1
1 x1 is the output of the system,

x1 = (x2, x̃1)T, dim x̃1 = rankA10 = p1, dimx2 = p2.

At the next steps, the first equation is divided in a similar
manner into two subsystems such that the dimension of
the lower subsystem coincides, as at the first step, with
the rank of the matrix multiplying the variable of the next
block. After a block controllability form has been derived
by applying the block approach, since the pair {A11, A10}
is controllable (and, hence, so is the pair {A22, A21}), we
can choose a nonsingular coordinate transformation

x̃1 = s1 + Cx2,

such that Eq. (14) is rewritten as

ẋ2 = A22x2 +A21s1,

ṡ1 = Ã12x2 +A11s1 +A10x0 +Q1f(t),

ẋ0 = Ã02x2 + Ã01s1 +A00x0 +Q0f(t) +Bu,

y = D

(
x2

s1

)
where the matrix A22 = A22 + A21C has a characteristic
equation with the desirable spectrum of roots, Ã12 = A12−
C(A22 + A21C) + Ã11C, Ã02 = A02 + Ã01C, A11 =

Ã11 − CA21, D = DT−1
1

(
Ip2 0
C Ip1

)
, Ip1 , Ip2 are identity

matrices of sizes p1 and p2.

Introducing the new variables

s2 = Ã12x2 +A11s1 +A10x0, x0 = T 2x0,

where rankT 2 = p − p1, rank
(
A

T

10, T
T

2

)T

= p, we can

rewrite the last system in new coordinates as

ẋ2 = A22x2 +A21s1,
ṡ1 = s2 +Q1f(t),
ṡ2 = A2x2 +As1s1 +As2s2 +A20x0+

+ Q2f(t) +B2u,
ẋ0 = A02x2 +A01s1 +A02s2 +A00x0+

+ Q0f(t) +B0u,

y = D

(
x2

s1

)
(15)

where dim s2 = rankB2 = p1, dimx0 = rankB0 = p−p1,
Reλi(A22) < 0, i = 1, p2, λi(A22) are the eigenvalues of
the matrix A22. In view of rankB = p according to the
basic idea of this work, the control functions are specified
as

(
B2

B0

)
u =


−A2x2 − (As1 + Lβ)s1 −As2s2−

−A20x0 −Msign(s1)

−Lα)s2 −A02x2 −A01s1 −A00s2−
−A00x0 −Hsign(x0)

 , (16)

where sign(s1) = [sign(s1i), ..., sign(s1p1)]T, sign(·) is the
sign function, s1i is the ith component of the vector s1,
Lα = diag {αi + βi}, Lβ = diag {αiβi}, αi = const > 0,
βi = const > 0, M = diag{Mi}, Mi = const > 0, i = 1, p1,
H = diag{Hj}, Hj = const > 0, j = 1, p− p1
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Define

s2 = s2 +Q1f(t),

ξ(t) = Q1ḟ(t) + LαQ1f(t) +Q2f(t),
ξ0(t) = Q0f(t).

(17)

According to constraints (13) imposed on the class

|ξi(t)| ≤ Σi, |ξ̇i(t)| ≤ Σi, |ξ0j(t)| ≤ Σ0j ,
i = 1, p1, j = 1, p− p1,

(18)

where ξi(t) is the ith component of the vector ξ(t), ξ0j(t)
is the jth component of the vector ξ0(t) and the quantities
Σi = const > 0, Σi = const > 0 and Σ0j = const > 0 are
calculated according to (13) and (17).

Theorem 1. Let the following conditions hold in system
(15), (16)
(i) The external disturbance vector ξ(t) satisfies con-
straints (18).
(ii) The elements of the matrices Lα, Lβ ,M andH in (16)
are chosen according to the expressions

Mi > Σi, αi(Mi − Σi) > Σi, βi =
αi

2(1 + Σi
Mi

)
,

αi = αi

(
1− Σi

Mi

)
− Σi
Mi

, Hi > Σ0i.

Then the output y = D
(
xT

2 sT
1

)T
of closed-loop system

(15), (16) tends exponentially to zero independently of the
external disturbances.

Proof. By substituting the control action (16) in system
(15) and taking into consideration notation (17), we es-
tablish that

ẋ2 = A22x2 +A21s1,
ṡ1 = s2,
ṡ2 = −Lβs1 − Lαs2 −Msign(s1) + ξ(t),
ẋ0 = Q0f(t)−Hsign(x0),

y = D

(
x2

s1

)
.

We notice that the last subsystem is feedback autonomous
and does not affect the output of system 15), (16). In
virtue of the theorems conditions, the sliding mode over
the manifold x0 = 0 arises in the subsystem during a finite
time V.I Utkin [2009], and in what follows the subsystem
is disregarded in the proof of exponential convergence.

Let us consider composite Lyapunov function

V =

p1∑
i=1

Vi, Vi = |s1i| −
ξi(t)

Mi
s1i +

(αis1i + s2i)
2

2Mi
. (19)

In virtue of these equations, we obtain by differentiating
the ith component of the Lyapunov function (19) that

V̇i = −αis1i

[
sign(s1i)−

ξi(t)

Mi

]
− ξ̇i(t)

Mi
s1i−

− βi
Mi

(αis1i + s2i)
2 ≤

≤ −αi
[
|s1i|+

βi
αiMi

(αis1i + s2i)
2

]
.

Taking into account constraints (18) on the class of per-
turbations, the inequality from (19) is given by(

1 +
Σi
Mi

)
|s1i|+

(αis1i + s2i)
2

2Mi
≥ Vi.

From the last inequalities we establish the constraint on
the derivative of the ith component of the Lyapunov
function

V̇i(t) ≤ −γiVi(t), γi =
αi

1 + Σi
Mi

.

The exponential convergence of the output of the closed-
loop system (15), (16) to zero ∀t ≥ t0 follows from the fact
that the vector s1(t) converges exponentially and A22 is a
Hurwitz matrix, which proves the theorem.

The following result shows that the system with the control
given by

(
B2

B0

)
u =


−A2x2 −As1s1 − (As2 + Lα)s2−

−A20x0 −Msign(s1)

−A02x2 −A01s1 −A00s2−
−A00x0 −Hsign(x0)

 ,
Lα = diag{αi}, αi = const > 0, i = 1, p1,

(20)

which differs from (16) in that damping is achieved only
with the help of the vector s2, is asymptotically invariant
under disturbances from the same class (18). In view of
(17) and (20), the equations of the closed-loop system
become

ẋ2 = A22x2 +A21s1,
ṡ1 = s2,
ṡ2 = −Lαs2 −Msign(s1) + ξ(t),
ẋ0 = Q0f(t)−Hsign(x0),

y = D

(
x2

s1

)
. (21)

Theorem 2. Let the following conditions hold in system
(15), (20):
(i) The external disturbance vector ξ(t) satisfies con-
straints (18).
(ii) The elements of the matrices Lα,M,H in (20) are
chosen according to the inequalities

Mi > Σi, αi(Mi − Σi) > Σi, Hi > Σ0i.

Then the following assertions are valid:
(i) The output of the closed-loop system (21) is asymp-
totically invariant under the external disturbance
(ii) There exists a finite time tr and constants S1i, S2i and
γi such that, for t ≥ tr the output of closed-loop system
(21) is exponentially stable and the components s1(t) and
s2(t) of the vectors s1(t) and s2(t) satisfy the estimates

|s1i(t)| ≤ S1ie
−γi(t−tr), |s2i(t)| ≤ S2ie

− γi2 (t−tr), i = 1, p1.

Proof. To prove assertion (i) of Theorem 2, we consider
the composite Lyapunov function (19) whose derivative of
the ith component in virtue of the equation of system (21)
is given by

V̇i = −αis1i

[
sign(s1i)−

ξi(t)

Mi

]
− ξ̇i(t)

Mi
s1i ≤

≤ −αi|s1i|,

(22)

where αi = αi

(
1− Σi

Mi

)
− Σi

Mi
.

According to the conditions of Theorem 2, we obtain that
the derivative of the Lyapunov function is nonpositive
∀ t ≥ t0.

The proof of assertion (ii) can be found in Kochetkov, V.A.
Utkin [2013].
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As was discussed in Section 2, the “twisting”algorithm
provides only the desired precision of control of the output
variable at the cost of increased relay amplitude. It shown
in Kochetkov, V.A. Utkin [2013] that an unmatched ex-
ternal disturbance restricts the switching frequency, which
finally leads to only the prescribed accuracy of the system
output. To overcome this effect, another control algorithm
as applied to (15) in view of (20) is proposed, which makes
use of high-frequency external signals

(
B2

B0

)
u =


−A2x2 −As1s1 −As2s2 −A20x0−
−M2 sign(δ(t) + s2)−M1 sign(s1)

−A02x2 −A01s1 −A00s2 −A00x0−
−Hsign(x0)

 ,
M1 = diag{M1i},M1i = const > 0,M2 = diag{M2i},
M2i = const > 0, δ(t) = diag{δi(t)},

(23)

δi(t) =



2δiω

π
t, 0 ≤ t ≤ π

2ω
;

2δi −
2δiω

π
t,

π

2ω
≤ t ≤ 3π

2ω
;

4δi +
2δiω

π
t,

3π

2ω
≤ t ≤ 4π

ω
,

i = 1, p1,

where ω is the frequency of vibration signals and δi =
const > 0 is the amplitude of the ith vibration signal.

Substituting (23) into (15), we obtain the following equa-
tions of the closed-loop system:

ẋ2 = A22x2 +A21s1,
ṡ1 = s2,
ṡ2 = −M2sign(δ(t) + s2)−M1sign(s1) + ξ(t),
ẋ0 = Q0f(t)−Hsign(x0),

y = D

(
x2

s1

)
.

(24)

According to Kochetkov [2010], Iannelli [2006], with
a certain choice of the parameters δi(t), the action
M2isign(δi(t)+s2i) of the ith relay on the system is equiv-

alent to the linear feedback
M2i

δi
s2i. Based on Theorem 2

and the results of Kochetkov [2010], Iannelli [2006], the
following theorem is stated without proof.

Theorem 3. Let the following conditions hold in the
closed-loop system (15), (23):

(i) The external disturbance vector ξ(t) satisfies con-

straints (18), whereLα = diag

{
M2i

δi

}
in notation (17).

(ii) The elements of the matrices M1,M2 and H and the
parameters δi in (23) satisfy the inequalities

M1i > M2i > Σi,
M2i

δi
(M1i − Σi) > Σi,

δi > 2L1i, Hi > Σ0i,

where f1(t) = Q1f(t), according to (13) |f1i(t)| ≤ L1i,
f1i(t) is the ith component of the vector f1(t),
L1i = const > 0, i = 1, p1.
Then there exist Ni = const > 0 (i = 1,m) and ω0 =
const > 0 such that, for ω > ω0 it is true that

lim
t→∞

|yi(t)| ≤
Ni
ω
, i = 1,m,

where yi(t) is the ith component of the output of closed-
loop system (15), (23).

Theorem 3 implies that, with the frequency of the vibra-
tion signal increasing unlimitedly ω → ∞ control algo-
rithm (23) ensures asymptotic invariance with respect to
output variables.

5. SIMULATION RESULTS

Let us consider the sixth-order system

ẋ1 =

 55.18 27.98 21.54 −90.71
−83.75 −43.82 −42.65 139.94
11.68 6.24 7.21 −19.39
7.91 4.09 4.12 −12.06

x1+

+

2.36 0.28
−3.4 −0.47
0.55 0.01
0.41 0.17

x0 +

−4.57 7.91
6.57 −11.63
−1.1 1.69
−0.74 1.75

 f(t),

ẋ0 =

(
−2.8 0.6 10.5 11.7
−3.1 −0.1 9.85 6.1

)
x1 +

(
−4 6
2 1

)
x0

+

(
1 0
0 1

)
u+

(
−1 5
0.3 −2

)
f(t),

y = (−2.9 0.5 8.5 11.7)x1.

We present a procedure to solve the formulated problem
relying on Theorem 2. After the nonsingular transforma-
tion of the coordinates

(
x1

x̃0

)
= T1x1, T1 =


15.5 −3.7999 4 2 0 0

−0.025031 3.8 −1 0.7 0 0
22.934 −6.3665 6 2 0 0
0.58334 3.3333 −0.5 7 0 0
4.1673 −1.1327 10 −1 1 0
−2.1085 0.66679 4.25 4.5 0 1


this system is representable in the form:

ẋ2 =

(
−5 0
−4 −3

)
x2 +

(
1 2
−1 4

)
s1,

ṡ1 =

(
1 0
0 1

)
s2 +

(
−2 3
0, 5 3

)
f(t),

ṡ2 =

(
102, 77 −4, 13
104, 86 −2, 67

)
x2 +

(
−27, 95 −41, 7
−22, 65 −40

)
s1+

+

(
6 5

3, 25 6, 5

)
s2 +

(
1 0
0 1

)
u+

(
−21, 5 32
−5, 95 24, 25

)
f(t),

y = (−3, 5833 1, 6667 1, 0000 1, 0000)
(
xT

2 sT
1

)T
.

By taking control in the form (20) we establish the
equations of the closed-loop system:

ẋ2 =

(
−5 0
−4 −3

)
x2 +

(
1 2
−1 4

)
s1,

ṡ1 =

(
1 0
0 1

)
s2 +

(
−2 3
0, 5 3

)
f(t),

ṡ2 = −
(
α1 0
0 α2

)
s2 −

(
M1 0
0 M2

)[
sign(s11)
sign(s12)

]
+

+

(
−21, 5 32
−5, 95 24, 25

)
f(t),

y = (−3, 5833 1, 6667 1, 0000 1, 0000)
(
xT

2 sT
1

)T
.

The harmonic perturbations

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8138



Fig. 1. The simulation results

f(t) =

[
2 + 3sin(10t)

−5cos(10t) + 8sin(20t)

]
are used for simulation. By denoting

f1(t) =

(
−2 3
0, 5 3

)
f(t), f2(t) =

(
−21, 5 32
−5, 95 24, 25

)
f(t),

we get the constraints for the components fij(t) (i =
1, 2; j = 1, 2) of the vectors f1(t) f2(t):(

|f11(t)|
|f12(t)|

)
≤
[

44, 16
40, 1

]
,

(
|f21(t)|
|f22(t)|

)
≤
[

426, 6
328, 5

]
,(

|ḟ11(t)|
|ḟ12(t)|

)
≤
[

641, 55
630, 75

]
,

(
|ḟ21(t)|
|ḟ22(t)|

)
≤
[

6845, 1
5105, 6

]
,(

|f̈11(t)|
|f̈12(t)|

)
≤
[

11216
11107

]
,

where the inequalities are understood in the component-
wise sense.

Using the last expressions, we write the constraints in the
form of (18):

|ξ1(t)| ≤ 44, 16α1 + 1068, 2; |ξ2(t)| ≤ 40, 1α2 + 959, 25;

|ξ̇1(t)| ≤ 641, 55α1 + 18061, 1;

|ξ̇2(t)| ≤ 630, 75α2 + 16213.

One can readily verify that the conditions of Theorem 2
are satisfied for the following values of the elements of the
matrices Lα M :

α1 = α2 = 10, M1 = 4000,M2 = 3620.

Figure 1 depicts the results of modeling in the MAT-
LAB/Simulink environment. The Dorman Prince (ode5)
method was used for numerical integration. The right
side of Fig. 1 shows for the output variable the error at
different steps of integration: ts = 10−4 to the left and
ts = 10−5 to the right. As can be seen, the smaller the
step of integration, the smaller the stationary error. It is
quite clear why the theoretical result of Theorem 2 is valid
only for the infinite frequency of relay switching (ts = 0).
One also can see from the results of modeling that the
components s21(t) and s22(t) of the vector s2(t) follow the
external perturbations f11(t) and f12(t).

6. CONCLUSION

The present paper solved the problem of providing in-
variance of the output to a wide class of external non-
coordinated perturbations on the basis of the proposed

relay vortex algorithms. The developed nonlinear control
algorithms provide asymptotic convergence of the output
variables to zero for arbitrary initial conditions under the
magnitude-bounded control actions maintaining oscilla-
tions in the closed-loop system with an unlimited growth
of frequency and asymptotic tendency of the oscillation
amplitude to zero. For the case where the control actions
are of knowingly key nature, a method of realization of
the relay vortex algorithms with the use of the method of
vibrolinearization of the relay elements was proposed. The
above algorithms can be used to solve a wide range of the
application problems Kochetkov [2011], V.A. Utkin [1998].
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