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Abstract: An adaptive High-Gain observer (AHG) as well as an Extended (EKF) and
Unscented Kalman filter (UKF) are implemented for joint state and parameter estimation of a
novel multi-axial electromagnetically actuated punch. These observers are compared in terms
of convergence and response time to erroneous parameter and state initialization, as well as
parameter modifications during operation. The AHG is further analyzed proposing an adaptive
gain, which reduces the observer’s high sensibility with respect to noise. Simulation results show
that AHG is more suitable compared to state-of-the-art EKF and UKF.

1. INTRODUCTION

Many aspects of parameter identification have been stud-
ied during the last decades, including problems present in
nonlinear systems. In practical applications unmeasured
states and unknown parameters are usually necessary for
control purposes. Moreover, joint state and parameter es-
timation algorithms are also important in fault detection
and isolation (Witczak [2007]).

Basically, two approaches can be used to design an ob-
server for joint state and parameter estimation. On the
one hand, it is possible to extend the original system state
vector including the unknown parameters. The observers
use this extended system, and state as well as parameter
are estimated simultaneously. However, the convergence of
this observer is only locally ensured (Byrnes and Rantzer
[2003]). The EKF and the UKF correspond to this group of
observers. Both filters do not take advantages of the partic-
ularity of the parameters into account, which are normally
constant. They extend the system state vector introducing
the unknown parameters, transforming the structure of the
original system, e.g., if the original system is linear time in-
variant (LTI) with unknown parameters, the transformed
system is likely to become nonlinear. On the other hand,
a second approach is called adaptive observer. It consists
of designing an observer for the original system assuming
that the parameters are known, and finding an appropriate
adaptive law for estimating these parameters, ensuring the
overall observer convergence. These observers are globally
convergent and present numerical advantages against the
above mentioned observers (Zhang [2002]).

Nonlinear systems satisfying a Lipschitz type condition
(Witczak [2007]) allow for designing an AHG, which is
based on the high-gain (HG) observer for system state
estimation and ensures global convergence. This observer
tries to ’hide’ the system nonlinearities, making the system
’linearities’ predominant against these.

In this paper, the authors implement and compare a AHG
observer, EKF, and UKF for joint state and parameter

estimation of a multi-axial electromagnetically actuated
punch modeled as a single mass oscillator. Moreover, a
modification of the AHG observer based on an innovation
factor is presented in this paper. This helps to reduce the
observer’s sensibility against noise.

The paper is organized as follows. In section 2, the HG
observer, AHG observer, EKF, and UKF are introduced.
In section 3, the proposed adaptive gain modification for
the AHG observer is presented. A simulative example
and results are shown in section 4. Finally, the paper is
concluded by section 5.

2. METHODS

2.1 HG observers

The HG observer presented in this section follows Gauthier
et al. [1992]. It is shown in Gauthier and Bornard [1980]
that, if a system has the property to be observable for any
input, then there is a coordinate transformation such that
a MISO system can be formulated as

ẋ(t) = A0x(t) + φ(x(t),u(t)) ,
y(t) = c0x(t) ,

(1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ R are the
system states, the input vector, and the measured output,
respectively. A0, c0 and φ(x,u) are defined as follows 1 :

A0 =


0 1 0

. . .
1

0 0

 ∈ Rnxn , (2)

c0 = [1, 0, . . . , 0] ∈ R1xn , (3)

φ(x,u) =


φ1(x1,u)

φ2(x1, x2,u)
...

φn(x,u)

 ∈ Rnx1 . (4)

1 The time variable is omitted as long as no ambiguity is presented
for writing convenience.
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If the function φ(x,u) is globally Lipschitz w.r.t. x and
uniformly in u, which should be bounded, then the sys-
tem (1) admits an observer of the following form (Gauthier
et al. [1992]):

˙̂x =A0x̂ + φ(x̂,u) + λΛ(λ)−1k0(y − c0x̂) , (5)

where k0 ∈ Rn is defined such as that A0 − k0c0 is ex-
ponentially stable, Λ(λ)−1 = diag(

[
1, λ, λ2, . . . , λn−1

]
),

and λ ∈ R+ large enough. x̂ ∈ Rn corresponds to the
estimated states.

This observer design is known as a HG observer which has
an exponential convergence. The parameter λ determines
the observer’s speed of convergence.

2.2 Adaptive observers for parameter-affine systems

An adaptive observer allows to estimate both parameters
and states simultaneously in dynamic systems. A collection
of several adaptive observers can be found in Zhang [2005],
and have been expanded to systems with parametric
uncertainty in the unmeasured state dynamics in Besançon
[2007]. In short, the design of the AHG with exponential
state and parameter convergence can be expressed as
follows.

Consider a system of the following form:

ẋ = A0x + φ(x,u) +ψ(x,u)θ ,
y = c0x ,

(6)

where θ ∈ Rp is an unknown constant parameter vector
and ψ(x,u) ∈ Rnxp has the following form:

ψ(x,u) =


0, . . . , 0
...

...
0, . . . , 0

ψ1(x,u), . . . , ψp(x,u)

 . (7)

Besançon [2007] designed a HG observer as in (5) but
for joint estimation of x and θ based on the following
assumptions:

[A1]: φ and ψ are smooth functions w.r.t. their arguments
x and u, and the input vector u is bounded generating
bounded states x.

[A2]: ∃ k0 such that A0 − k0c0 is exponentially stable.

[A3]: ∃Υ(t) ∈ Rnxp defined as the solution of

Υ̇ = λ(A0 − k0c0)Υ + λψ(x,u) . (8)

Additionally, ψ should be persistently exciting so that the
matrix Υ satisfies, for some positive constants α, T , λ
large enough and t0, the inequality∫ t

t−T
Υ(τ)TcT0 c0Υ(τ)dτ ≥ αI, ∀t > t0 , (9)

where I corresponds to the identity matrix.

Considering the system (6) satisfying the previous assump-
tions then

˙̂x = A0x̂ + φ(x̂,u) +ψ(x̂,u)θ̂

+Λ(λ)−1λ(k0 + Υ̂ΓΥ̂TcT0 )(y − c0x̂) ,
˙̂
θ = λnΓΥ̂TcT0 (y − c0x̂) ,
˙̂
Υ = λ(A0 − k0c0)Υ̂ + λψ(x̂,u) ,

(10)

is a global exponential observer for the system (6), i.e.,

∀x(0), any bounded x̂(0) and θ̂(0), the errors ‖x̂− x‖
2

and
∥∥θ̂ − θ∥∥

2
tend exponentially to zero when t→∞.

Γ ∈ Rpxp is a symmetric positive definite tuning matrix
used to balance the convergence speeds of state and
parameter estimation.

See Besançon [2007] for the proof and further details.

2.3 EKF and UKF observers

The EKF is the nonlinear version of the well-known
Kalman filter. The EKF linearizes the model system
around the current estimate using partial derivatives of
the system and measurement functions.

Consider a system of the following form

ẋ = f(x,u) + w ,
y = h(x) + v ,

(11)

where
w ∼ N(0,Q) ,
v ∼ N(0,R) .

(12)

The EKF can be written as
˙̂x = f(x̂,u) + K(y − h(x̂)) , (13)

where

K = PHTR−1 ,

Ṗ = FP + PFT −KHP + Q ,

F =
∂f

∂x

∣∣∣∣
x̂−,u

,

H =
∂h

∂x

∣∣∣∣
x̂−,u

.

(14)

This observer allows the estimation of only the system
states. In order to estimate the unknown parameters, it is
possible to extend the state vector into

X :=

(
x
θ

)
, (15)

being the resulting extended observer for parameter and
state estimation

Ẋ = F(X,u) + w ,
y = H(X) + v ,

(16)

with θ̇ = 0. It should be noted that, LTI systems turn
usually into a nonlinear system. See Welch and Bishop
[2006] for further details on EKF.

The Unscented Kalman filter was first proposed by Julier
and Uhlmann [1997]. A central and vital operation per-
formed in a Kalman filter is the propagation of a Gaussian
random variable (GRV) through the system dynamics.
In the EKF, the state distribution is approximated by
a GRV and then propagated through the linearization
of the nonlinear system. This is sub-optimal and can
introduce errors in the true mean and covariances of the
transformed GRV, particularly when the nonlinearities are
predominant. The UKF addresses this propagation error
by using a deterministic sampling approach. In contrast
to the EKF, the state distribution is approximated using
a minimal set of chosen sample points, which capture
the true and covariance of the GRV. These points are
propagated through the true nonlinear system, allowing a
better accuracy of the transformed mean and covariance.
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This approach was extended for joint state and parameter
estimation by Wan et al. [1999]. This filter is based on
the extended state vector presented in (15) and (16). See
Van der Merwe and Wan [2001] and references therein for
more details on UKF and further observer designs.

3. AHG MODIFICATION

The high sensitivity of HG observers is a well-known
drawback: the observers ensure a global exponential con-
vergence, but increase noise effects. It can be proved that,
with larger gains the convergence of these observers is
faster, but the noise is amplified.

Motivated by Boizot et al. [2010], a solution proposed in
this paper is to compensate this drawback with a varying
gain. When the error in the parameter and state estimation
is large, then the observer gain should be large enough
providing global convergence, otherwise it should converge
to a minimum value ensuring the observer convergence,
but reducing the noise effects.

The proposed varying λ is defined as the solution of the
following differential equation:

λ̇ = KupS(Inn)(λmax − λ)
+Kdown(λmin − λ)(1− S(Inn)) ,

λ(0) = λmax .
(17)

Kup ∈ R+ and Kdown ∈ R+ define the convergence rates
in direction to the boundaries λmax and λmin, respectively.
S(Inn) is an innovation factor which can be defined such
as

S(Inn) =

{
1, Inn ≥ γ
0, Inn < γ

. (18)

However, this transition is abrupt. Hence, the following
function, which has a continuous first derivative is pro-
posed

S(Inn) = 1/(1− e−β(Inn−γ)) ,

Inn =

∫ t

t−T
‖y(s)− yt−T ‖2ds .

(19)

The tuning factors γ, β ∈ R+ are the bounds and the
switching speed of the function S between 0 and 1, and T ∈
R+ represents the length of the window used to calculate
the innovation. The value of the variable y corresponds to
the measured output, and yt−T is the prediction of the
output trajectory of the system (6) over the time interval
[t − T, t], using the initial state and parameter values at
the time t− T .

4. RESULTS

4.1 System description and mathematical model

The simulation model corresponds to the multi-axial
electromagnetically actuated punch (MEAP) described
in Riva et al. [2013].

The MEAP is shown in Fig. 1 and consists of four crosswise
arranged electromagnetic actuators sharing one armature.
Heavy duty spring packs are used to keep the armature
in the mid-position and generate additional forces at the
upper and lower end of the stroke. The cutting tool
is located at the upper side and is connected with the

cutting tool

z

rods

springs

armature

linear bearings

base frame

electromagnet

actuator 3actuator 1

actuator forces

direction of motion

Fig. 1. Structure and functionality of the MEAP.

Table 1. Specification of the MEAP.

Specification Value

maximum stroke 4 mm
maximum cutting force 60 kN
translational inertia (mz) 125 kg
spring stiffness (cz) 20 kN/m
dampers (dz) 1500 N s/m

armature via rods, which are guided using ball-bearing,
reducing bending and vibration problems. The position
of the armature is controlled and measured with four
commercial eddy current sensors located at the side of each
electromagnet and fixed to the base frame.

In z direction of displacement, the system can be modeled
as a single-mass oscillator and the state space representa-
tion of the MEAP can be described by

ẋ = Ax + b(x, u) ,
y = c x ,

(20)

in which

A =

[
0 1

− cz
mz
− dz
mz

]
,

b =

[
0

−dz2
mz

tanh(dz3x2) + Fz

]
,

c = [1, 0] ,

(21)

where mz corresponds to the armature and the cutting
tool masses, cz represents the heavy duty springs, dz is
the velocity proportional dampers, and dz2,z3 are nonlinear
dampers, due to friction between armature and linear
bearings as well as the Coulomb friction, and Fz are the
electromagnetic forces. The output y ∈ R corresponds to
the measured armature position and the system states

x = [x1, x2]
T

= [xz, ẋz]
T

are the armature’s measured
position and speed. Specifications of the MEAP can be
found in Table 1.

In order to control the armature position of the MEAP a
linear state feedback control is applied. See Dagen et al.
[2012] for further details.

4.2 AHG design

The system (20) fits into the form (6). Hence, an AHG can
be designed. The observer matrices are defined as follows:
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Fig. 2. Comparison between AHG, UKF, and EKF being
p̂(0) = 1.8 · p.

A0 =

[
0 1
0 0

]
,

φ(x, u) = 0 ,

ψ(x, u) =

[
0 0 0
−x1 −x2 Fz − dz2tanh(dz3x2)

]
,

θ =

[
cz
mz

dz
mz

1

mz

]T
,

c0 = [1, 0] ,

(22)

and p = [mz, cz, dz] is the unknown parameter vector
with positive constants.

Additionally, the following conditions hold

• Fz is bounded,
• mz, cz, dz are unknown positive constants,
• x is bounded.

4.3 EKF and UKF design

In order to design an EKF and UKF for joint state and
parameter estimation, the extended state vector of the
system (20) is defined as

X(t) :=


xz
ẋz
cz
dz

1/mz

 =


x1
x2
x3
x4
x5

 , (23)

resulting the system’s model in

c
z
[1

e7
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/

m
] true values

d
z
[1

e3
N

s/
m
]

1
/

m
z
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k
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−

1
]
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−0.25

0.5

1.25

0

2

4

1.6

2

2.4

2.8

Fig. 3. Comparison between AHG, UKF, and EKF being
p̂(0) = 1.2 · p.

Ẋ(t) =


x2

x5(−x3x1 − x4x2 − dz2tanh(dz3x2) + Fz)
0
0
0

 ,

y(t) = x1 .
(24)

The previous equations allow the design of both an EKF
and UKF.

4.4 Parameter estimation

In order to evaluate the convergence rate between AHG,
EKF, and UKF with respect to erroneous state and param-
eter initialization, two simulations with initial parameter
values p̂(0) = 1.8 · p and p̂(0) = 1.2 · p were performed,
respectively. The initial system state values were chosen
to be x̂(0) = 0.

Due to the high value of the spring stiffness, it is difficult to
persistently excite the system and identify the parameters.
The MEAP can achieve maximal cutting frequencies of up
to 50 Hz and cutting speeds of up to 200 mm/s. Thus, a
s-curve profile as the desired armature position was con-
sidered taking into account these limitations. White noise
was added to the simulated system output representing
measurement noise.

It should be noted that, the observer tuning parameters
are different. {K0, λ, Γ}, {Q, R, P}, and {Q, R, P} to-
gether with the parameters related with the spread of
the sigma points and Gaussian distributions (Wan and
Van der Merwe [2000]) tune the AHG, EKF, and UKF,
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Fig. 4. Comparison between AHG, UKF, and EKF: Pa-
rameter modifications.

respectively. Hence, it is difficult to find a compatible
tuning standard for comparing these observers. Therefore,
the same tuning procedure was used for the three observers
to get the ’best’ estimation condition for the MEAP for
each observer. Only the state estimation was considered
first, then the parameter estimation was tuned. The goal
was to maximize the convergence rate avoiding oscilla-
tions, driftings, and offsets in the state and parameter
estimation.

The parameter estimation results of the AHG, EKF, and
UKF are shown in Fig. 2 and Fig. 3 for the two initial
parameter values sets p̂(0) = 1.8 · p and p̂(0) = 1.2 · p,
respectively. The first subplot corresponds to the stiffness
spring constant, the second one refers to the linear damper
parameter, and the last one is the MEAP armature mass.

The AHG converged faster than the EKF, and UKF.
The difference between the two initializations did not
considerably affect the convergence time of the AHG. The
EKF and UKF converged with almost the same rate w.r.t
the spring constant, but the UKF reached the true mass
value faster.

With the selected position profile, the EKF and UKF
could not identify the damper constant dz. The reason is
that, due to the high spring stiffness cz, and the maximal
stroke of the MEAP, this parameter could not be enough
exited. Although these complicate the estimation of dz,
AHG overcomes this obstacle by persistently exciting the
system parameters using the adaptive law, allowing the
identification of them.

4.5 Parameter variation

In the previous subsection, neither the initial parameter
values, nor the initial system states were the true values.
In this subsection a parameter variation is proposed in
order to compare the observer response time. Once the
observers reached the true values, a stiffness spring con-
stant modification was introduced, then after converging
to stable values, a damper and finally a mass changes were
added, being x(t−s ) ≈ xtrue, where ts corresponds to the
switching times.

Fig. 4 presents the parameter estimation results for the
three observer. The AHG converged faster than the EKF
and UKF. Although, only a single system parameter was
changed at once, the others oscillated and then converged
again to the true value. The EKF mass estimation was
the most affected parameter. The oscillating phenomenon
appeared on the AHG too, but on the damper constant
estimation. In this case, no comparison with the EKF and
UKF is possible, because these observers were not able to
estimate this parameter.

The EKF and UKF remained with a small bias after the
mass change. These observers did not follow the damper
constant change. Thus, this estimation error was probably
derived to the mass estimation, causing this bias.

4.6 Adaptive gain

Two AHG were used for joint state and parameter estima-
tion of the MEAP. The first observer used a fix gain λ. On
the second observer the adaptive gain λ was implemented.
Thus, γ, β, Kup, Kdown, λmax, and λmin were defined.
The parameters γ and β define the switching boundaries
and switching speed of the innovation function, i.e., if
the innovation value remains under the value γ, then no
parameter modification has been occurred, otherwise, a
parameter was modified. Additionally, Kup and Kdown

were defined to get a fast convergence rate to λmax, but
a slower rate to λmin.This ensured that, the noise effects
were reduced, but the overall observer convergence rate
was not considerably reduced.

Fig. 5 shows on the first subplot the AHG with fix
and adaptive gain λ, and the evolution of the adaptive
gain on the second subplot. The λ value increased up
to its maximum value immediately after a modification
in the parameters. The convergence rate did not change
considerably, both observers needed the same time to
reach the true values, but the sensitivity of the AHG
with adaptive λ to noise was lower, resulting in a smaller
parameter variation. Otherwise, the response to parameter
changes remained almost the same for both observers.
Thus, the adaptive gain λ improve the AHG performance
against noise without enlarging the response time.

5. CONCLUSION

The AHG performed best compared to the EKF and UKF
in parameter identification on the simulated system. The
EKF and UKF had almost the same complexity and effi-
ciency. The UKF is easy to implement in comparison with
the EKF. The later needs the calculation of the analytical
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derivatives of the system matrices. Otherwise, tuning the
UKF was more difficult than the other observers.

Persistency of excitation should be available in order to
guarantee convergence of the observers. As mentioned, the
parameter d was not considerably excited for the EKF
and UKF with the proposed position profile. The high
spring constant hinder the damper identification. Thus,
this parameter did not converge to the true value. The
convergence problem did not occur with the AHG. The
adaptive law helped to persistency excite the parameter
in order to estimate them.

Additionally, the nonlinear part of the presented system
was not predominant. If the nonlinearities were more
predominant, the differences between the three observers
could be greater. The AHG observer has a global expo-
nential convergence, while the EKF and UKF ensure only
local convergence. Thus, greater parameter modifications,
or failures may not be tracked by the EKF and UKF,
especially if the nonlinear part is predominant.

The presented observer designs were developed in contin-
uous time. For real-time and online applications, a dis-
crete or continuous-discrete implementation of the above
observers is planned by the authors.
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