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Abstract: In this paper, we present a novel method to localize a robot throughout its navigation path
using a stereo camera. We first estimate the 3D locations of the feature points in the images using the
partial depth estimation technique and compute the motion estimate among the set of subsequent images.
Then those motion estimates are filtered using a particle filter method in order to minimize the error in
the motion estimates and reliably localize the moving robot. In the partial depth estimation technique,
we determine the disparity of the feature points between the stereo images and estimate the depth of the
feature points. The main novelty of the paper is the formulation of a vision based localization algorithm
which combines the partial depth estimation and particle filter techniques. Experiments were conducted
on mobile robots and the obtained localization results are analysed.
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1. INTRODUCTION

Vision based automation methods are interesting topics in
robotics since the cost of cameras have become cheap. Among
these topics, localizing a robot using pure vision based method
is one of the most widely researched and also a challenging
topic. The term localization is the process of finding the current
location of a robot. Robot localization is a key technology for
many robotic tasks such as obstacle avoidance, path planning,
indoor and outdoor exploration, etc. The use of GPS (Global
Positioning System) is the most common way of localizing a
robot in outdoor environments. Other sensors such as Laser,
IMUs (Inertial Measurement Units), etc are also used to achieve
localization. A camera represents the environment with mil-
lions of pixels. Each image gives us abundant information about
the environment using various colors, gradients, shapes, etc.
These significant image properties make the camera as one of
the most powerful and cost effective sensors.

1.1 Objective and Challenges

The main objective of this paper is to determine the problems
involved in localizing a robot using vision based methods and
then propose a novel method to localize a robot robustly and
analyse the accuracy, repeatability and drift rate in the proposed
method. The main challenges involved in vision based robot
localization include estimation of camera parameters of the
stereo camera, identifying feature points and disparity between
the stereo images tracking the feature points and determining
the pose estimates using the tracked feature points and filtering
the pose estimates using particle filter method.

1.2 Contributions

The main contribution of this paper is the process of combining
partial depth estimation with the particle filtering method. Par-
tial depth estimation is the process of estimating the depth of

only the feature points present in the image whereas computing
the depth of all the pixels in the image is full depth estimation.
Particle filtering ensures that noisy motion estimates are filtered
out during the estimation of location of the robot and it also
suppresses the uncertainty present in the pose estimates.

1.3 Related Work

Robot localization is important for many higher level robot
tasks such as motion planning, autonomous navigation, etc.
Over the past two decades, many researchers all over the world
have been working on the vision based robot localization prob-
lem, in order to unlock the full potential of the camera sensor.
In the late 1990s, the Bouguet and Perona [1995] and Fox et al.
[1999] stated the importance of robot localization. Fox et al.
[1999] proposed a promising localization algorithm based on
Monte-Carlo technique. Later, Fox et al. proposed a variant
of the previously proposed method in [Thrun et al., 1999] and
successfully implemented the new method in a museum robot.
Se et al. [2005] used image features as the main parameter for
robot odometry and developed vision based SLAM (Simultane-
ous Localization And Mapping) system for a robot. Yuen et al.
[2005] proposed a vision based localization method using a
landmark matching technique. Maimone et al. [2007] discusses
the entire algorithm of how visual odometry was implemented
on the Mars Exploration Rovers (MERs). This application
clearly highlighted the importance of vision based localization
and navigation system Recently, Kitt et al. [2010] proposed
another visual odometry algorithm based on RANSAC outlier
rejection technique. All the above mentioned research works
provided a fundamental basis for the localization algorithm
developed in this paper.

2. BACKGROUND PRELIMINARIES

Some of the basic preliminary topics that are required for
implementing the method proposed in this paper are,
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(a) Stereo camera calibration using
multiple chessboard poses.

(b) Schematic for robot localiza-
tion.

Fig. 1. Preliminaries

2.1 Stereo Geometry

An image obtained from a camera is a projection of 3D world
to 2D pixel coordinates. So the depth information is lost in the
camera projection process. Stereo Geometry is the method used
to recover the lost depth information using the basic geometry
between the left and right cameras.

2.2 Stereo Calibration

In order to recover the 3D coordinates from the 2D coordinates,
we need to determine those camera parameters using calibration
process. For the purpose of localizing the robot, we used the
camera calibration methods as explained in [Bouguet, 2000].
Fig. 1(a) shows few chessboard poses used in the calibration
process of the stereo camera.

2.3 Feature Extraction and Matching

The total number of pixels in the image (with resolution 640×
480) is 307200 pixels. It is evident that a normal camera gives
abundant information for manipulation. Out of that abundant
information, only a very few information in the image are
meaningful and unique called features. Features are broadly
classified into two types: feature points and feature templates
or patches. Feature points are very unique single pixels such
that they are very different from the surrounding neighbour-
hood pixels while templates are unique group of pixels that
are different from the neighbouring group of pixels. So, point
features are easy and computationally efficient when compared
with the template feature matching. Among the various existing
feature points, we chose SIFT (Scale Invariant Feature Trans-
form) features as the feature point detector in our localization.
SIFT features are more robust than any other features, since
they are scale and rotation invariant as well as partially invariant
to illumination and affine transformation.

3. PROBLEM FORMULATION

The problem of localizing a robot is shown in Fig. 1(b). Con-
sider a robot moving from point A to point B in an environ-
ment. In order to map the robot in that particular environment,
it is necessary to trace the path of the robot by localizing
the robot. The process of determining localization information
using pure vision based methods is susceptible to errors due
to motion blur, lighting conditions, region similarity, etc. Thus,
this paper provides a robust algorithm to solve this localization
problem of the robot. The Odometry information required for
the successful localization of the robot is given by (x, y, θ),
where (x, y) and θ gives the position and heading angle of the
robot at any instant, respectively.

4. LOCALIZATION ALGORITHM

The basic steps used by the localization algorithm of this paper
are as follows.

i) Compute SIFT features and extract the location of the
SIFT features from the stereo images.

ii) Estimate Disparity of the features between the left and
right images.

iii) Compute 3D world coordinates of each features from the
estimated disparity of the features.

iv) Perform the steps 1 to 3 again for the subsequent frame
(Say nth interval frame). Decide the value of n based on
the motion velocity of the robot.

v) Estimate the 3D transformation (rotation and translation)
between the initial frame and the subsequent frame.

vi) Steps 1 to 5 are repeated for a set of frame pairs, i.e.,
transformation is computed for a set of frame pairs such
as between ith and (i + n)th, (i + 1)th and (i + 1 +
n)th,. . . . . . (i+N)th and (i+N + n)th frame pairs etc.

vii) Compute the mean translation and rotation among all
frame pairs and also compute the global location of all
the SIFT features with respect to the origin (starting point
of the robot motion).

viii) Finally, use particle filter to eliminate the noise in the
localization estimates.

Fig. 2. Flowchart of Localization Algorithm using Partial Depth
Estimation and Particle Filter. Here we show the flow only
for [i, i+ n] and [i+N, i+N + n] frame pairs.

The Fig. 2 explains visually the steps of the localization algo-
rithm with N frame pairs and frame interval of n for computing
the mean transformation. The following sections describes the
detailed mathematical formulation of all the steps explained in
Fig. 2.

4.1 Feature Extraction and Matching

Assuming the stereo camera is calibrated, the images are then
grabbed from the stereo camera. Using the calibration param-
eters of the camera, undistortion and rectification of the stereo
image pairs are also performed. The calibrated images are then
used for the feature extraction process. The features used for
localization must be robust and consistent. This is the reason for
using SIFT features in the localization process. SIFT features
are extracted from the images based on the mathematical tech-
nique proposed in [Lowe, 2004]. Here, the SIFT features are
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extracted from the left and right stereo image pairs. Let n and m
be the total number of features extracted from the left and right
images respectively and the extracted features from the stereo
images are matched using a correspondence algorithm. FLANN
(Fast Library for Approximate Nearest Neighbor) matching
algorithm is used for matching the features of left image with
the features of the right image as proposed in [Muja and Lowe,
2009]. Only j number of features are matched between the
stereo images. Thus, the set of matching features of the stereo
images are denoted as,

F l
i = {f l

i1, f
l
i2, ...........f

l
ij} (1)

F r
i = {fr

i1, f
r
i2, ...........f

r
ij} (2)

where and right image respectively. Here the correspondence of
f l
i1 is fr

i1. Similar correspondence applies to all the j features
in the feature set. Each feature point is represented as,

fij = (xf l
ij
, yf l

ij
), ∀ fij ∈ F l

i , F
r
i , (3)

where (xf l
ij
, yf l

ij
) ∈ R2 is the x and y coordinates of the feature

point respectively.

4.2 Feature Sorting

Once the features have been extracted, the feature points are
sorted either according to their 2D x coordinate or y coordinate.
The algorithm used for the purpose of sorting the features is
Quick sort, proposed in [Knuth, 1998]. This algorithm is chosen
since its average computation complexity is O(n log n). This
sorting step will ease the process of searching the correspon-
dence between the two successive frames in the subsequent
steps of the localization algorithm. Both the left and right image
features are sorted along 2D y coordinate of the feature points
such that they are represented as,

(yf l
i1
< yf l

i2
< yf l

i3
......... < yf l

ij
), ∀ fij ∈ F l

i (4)

(yfr
i1
< yfr

i2
< yfr

i3
......... < yfr

ij
), ∀ fij ∈ F r

i (5)

4.3 Partial Depth Estimation

Estimating the entire depth image by stereo block matching
methods as proposed in [Konolige, 1998, Hirschmuller, 2008]
is computationally expensive. Full depth image can be obtained
from the block matching methods which is unnecessary for the
localization process unless we want to develop a SLAM system.
In order to avoid these expensive computation task, we estimate
the depth value of the SIFT feature points only. Feature points
need to be represented in 3D world coordinates from 2D pixel
coordinates. The projection equation for the stereo vision is
described in [Hartley and Zisserman, 2004] and is given by,

Q

 xij

yij
dij
1

 =

 Xij

Yij

Zij

Wij

 , ∀ fij ∈ F l
i , F

r
i (6)

where, d is the disparity between the feature points in the left
and right images and Q is the reprojection matrix of the camera.
The disparity d and reprojection matrix Q is given as,

dij =
√

(xf l
ij
− xfr

ij
)2 + (yf l

ij
− yfr

ij
)2, ∀ fij ∈ F l

i , F
r
i (7)

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 −1/Tx (cx − cx
′
)/Tx

 , (8)

where cx, cy represents x and y coordinate of the principal point
of the image, f is the focal length of the stereo cameras and Tx

represents the baseline between the stereo cameras. From (7)
and (8), we can obtain the 3D world coordinates of the feature
points using the following equations,

Wij = ((cx − cx
′
)− dij)/Tx, Xij = (xf l

ij
− cx)/Wij ,

Yij = (yf l
ij
− cy)/Wij , Zij = f/Wij ,

qij = (Xij , Yij , Zij)

Thus, qij represents the 3D homogeneous world coordinates of
the feature points and the term Zij represents the depth of the
feature points.

4.4 Removal of Features with Invalid Depth

After calculating the 2D pixel location and 3D world location
of feature points, we need to remove the features with invalid
depth values. For any stereo cameras, depth range is limited
due to the baseline length between the left and right cameras. A
feature point is discarded from the feature set if,

(Zij/Wij) ≥ D′ , ∀ qij ∈ Qi (9)
where, D′ is the maximum depth range that can be computed
for a particular stereo set-up.

4.5 Feature Matching between ith Frame and (i+ n)th Frame

The above steps are used for computing features of the left and
right image of the ith frame only. The procedure is repeated
for successive N number of frames. Choose the frame interval
n (say, n = N ) to compute the pose estimation. Finally, we
obtain the set of 2D and 3D locations for the feature points in
each frame. This is given by,

F l
1 = {f l

11, f
l
12, ...........f

l
1j}

Q1 = {q11, q12, ...........q1j}
..... Frame 1

...
F l
n = {f l

n1, f
l
n2, ...........f

l
nj}

Qn = {qn1, qn2, ...........qnj}
..... Frame n

where F l
n ∈ R2 represents the set of 2D pixel location of

feature points corresponding to left image of the nth frame.
The 2D pixel locations can be obtained either from the left or
right images. Qn ∈ R3 is the respective set of 3D location of
feature points (F l

n) at the nth frame. After the frame interval n,
the above feature manipulation processes are again performed
on the (i + n)th frame as well as the correspondence relation
between the ith frame and (i + n)th frame are estimated. This
correspondence estimation is the additional step performed for
all the frames from the (i+n)th to (i+N +n)th frames. Only
the left images of the ith and (i+n)th frames are used to match
features using FLANN Matching algorithm. A new feature set
F ′
i|i+n is obtained as the result of matching between the ith and

(i+ n)th frames such that,
F ′
i|i+n = {f ′

i1, f
′
i2, ...........f

′
ij} (10)

4.6 Estimation of 3D Location of the Common Features
between the Previous and Current Frame

Next step is to obtain the 3D location of those common features
at the ith and (i + n)th instants. This task is easy as we
have already computed the 3D location of feature points for

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7274



all the previous frames. For every common feature points
determined in the previous step, we need to find their respective
3D locations in the ith and (i+n)th frames. An efficient search
algorithm named Binary search algorithm, proposed in [Knuth,
1998], is used to search the required features between the
previous and current instants. Binary search algorithm requires
the elements to be sorted before searching. This was the reason
for sorting the feature points in the earlier steps. The yf ′

ij

coordinate value of the common feature point is chosen as
the search key for the binary search algorithm. Once there is
matching yf ′

ij
value in the ith and (i + n)th frame, then their

corresponding 3D locations is obtained from the 3D feature set
Qi. The new feature set contains only the features common
between the two frames as,

∀i, j, f l
ij ∈ (F l

i )new, | ∃F ′
i|i+n ⊆ F l

i ∧ yf l
ij
≈ yf ′

ij
, (11)

qij ∈ (Qi)new, ∀f l
ij ∈ (F l

i )new (12)

Thus, after this search process, the 2D (F l
i )new and 3D (Qi)new

are the truncated feature sets of the ith frame corresponding to
the new feature set F ′

i|i+n. Similarly, the feature sets F l
(i+n)j

and Q(i+n)j from the (i + n)th frame is also truncated to
(F l

(i+n)j)new and (Q(i+n)j)new accordingly.

4.7 Discarding Outlier in the 3D Feature Point Locations

There may be still few outlier features among the estimated
common features. In order to discard those outliers, we use
the Random Sample Consensus (RANSAC) outlier rejection
algorithm proposed in [Fischler and Bolles, 1981]. RANSAC
is an iterative regression algorithm which tries to fit a plane to
the set of estimated 3D feature points. It effectively removes
the feature points that are far away from the plane fitted to the
feature data. This outlier rejection greatly helps in improving
the accuracy of the localization result. RANSAC algorithm
is used for both the left and right image 3D feature points.
RANSAC iterative procedure is performed only on the feature
points common between the ith and (i+ n)th frames.

4.8 Estimation of 3D Transformation

O

o

Rotation & Translation

between ith and (i+n)th frame

Shifted Robot's origin

Robot's origin

Landmarks

Same set of Landmarks

as in ith frame

A

B

A

ith frame

(i+n)th frame

Fig. 3. 3D transformation between the ith and (i+n)th frames.

Feature Matching and Outlier removal is performed for all the
frame pairs from [ith, (i+ n)th] frame pair to [(i+N)th, (i+
N + n)th] frame pair. Now, we need to estimate the 3D trans-
formation between the frame pairs as shown in Fig. 3. This
transformation yields us the translation and rotation between
the frame pairs, which indirectly gives us the translation and
rotation of the robot from the previous instant to the current
instant. Consider the two sets of 3D feature points, one from
the ith frame instant and the other from the (i + n)th frame
instant. The transformation between the two 3D feature point

sets is computed using a least squares fitting algorithm with Sin-
gular Value Decomposition (SVD) as proposed in [Arun et al.,
1987]. Eggert et al. [1997] provided a comparison between four
different R and T estimation methods and proved that the SVD
method proves to be more efficient than the other methods. Let
us consider the two 3D feature point sets Qi and Qi+n that are
related by certain amount of rotation and translation as,

Qi+n = Ri|i+nQi + Ti|i+n (13)

Qc
i+n =

1

j

j∑
i=1

Qi+n & Qc
i =

1

j

j∑
i=1

Qi (14)

Now, compute the correlation matrix H (3× 3) using,

Hi|i+n =

j∑
i=1

(Qi −Qc
i ).(Qi+n −Qc

i+n)
T . (15)

Then, decompose the H matrix using SVD to get the two
orthonormal matrices U and V and the diagonal matrix Σ,

[UΣV ] = SVD (Hi|i+n). (16)
After obtaining the U and V matrices from the decomposition,
the rotation matrix, Ri|i+n and translation vector Ti|i+n is
obtained as

Ri|i+n = V UT (17)
Ti|i+n = Qi+n −Ri|i+nQi. (18)

The above estimation is performed only for the [ith, (i +
n)th] frame pair instant. Similarly, we need to estimate the
transformation for all the frame pairs such as [(i + 1)th, (i +
1 + n)th], ......[(i + N)th, (i + N + n)th] frames. Finally, We
need to calculate the mean transformation from all the R and T
estimates. Fig. 4 explains the process of consecutive estimates
of transformation from the ith frame to (i+N + n)th frame.

Frame i

Frame i+1

Frame i+2

Frame i+3

Frame i+N

Frame i+n

Left Images

Frame i+1+n

Frame i+2+n

Frame i+3+n

Frame i+N+n

Ri|i+n, Ti|i+n

Ri+1|i+1+n, Ti+1|i+1+n

Ri+2|i+2+n, Ti+2|i+2+n

Ri+3|i+3+n, Ti+3|i+3+n

Ri+N|i+N+n, Ti+N|i+N+n

Fig. 4. R & T estimates between the consecutive i+ n frames.
(Note: The n value can also be n = N ).

The transformation matrix Tr is the effective transformation
pose of the robot between the ith and (i + n)th frame and it is
given by,

Treffi|i+n =

(
Ri|i+n Ti|i+n

0 0 0 1

)
(19)

where,

Ri|i+n =

(
rxx rxy rxz
ryx ryy ryz
rzx rzy rzz

)
(20)

Ti|i+n = ( tx ty tz )
T (21)

The global transformation matrix Trglobal, is obtained from the
effective pose transformation matrix as,

Trglobal = Trglobal . T reff (22)
This global transformation matrix gives the global pose of the
robot (X,Y, Z) with respect to the world coordinate frame.
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5. FINE TUNING WITH PARTICLE FILTER

In spite of rejecting most of the noise in the features selection
process, there will still be some errors in the estimated trans-
formation matrix. The most common type of filter employed
in tracking or odometry applications is Kalman Filter. If the
measurements are multimodal, then the variants of Kalman
Filter such as Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF) can be employed. The disadvantage of
the EKF or UKF is that both these filters try to linearize the
non-linearity in the sensor measurements using approximation
methods. Hence, Particle filtering technique is used to filter the
errors in our algorithm. Kalman Filter predicts the position of
the robot at the next instant from the obtained measurements
from past and current instants while the Particle Filter samples
the probable positions of the robot from 1st position to say
N possible positions. In [Fox et al., 1999] and [Thrun, 2002],
the authors proposed a localization algorithm based on Monte-
Carlo method using the particle filter technique. In our algo-
rithm, a particle filter predicts the position of the robot based on
the estimated feature locations. Since the robot is a Unmanned
Ground Vehicle (UGV), the motion along the vertical axis of
the robot is assumed to be negligible. So, both the pose esti-
mates and feature location estimates in R3 is assumed to be
in R2. We formulate the pose estimates from (X,Y ) ∈ R2

into motion estimate of the robot in (r, δ). A motion model
developed for the UGV with the formulated motion estimates
is given as(

xp

yp
θp

)
=

(
xc

yc
θc

)
+ 2

(
r cos(θc + δ)
r sin(θc + δ)

θc + δ

)
, (23)

where (xp, yp, θp) is the predicted localization estimate from
the current position estimates (xc, yc, θc) and the motion es-
timates (r, δ). Particle filter samples position of robot into
multiple hypothetical positions called particles. All these par-
ticles will have their own belief confidences from the predicted
position. The beliefs are influenced by the global landmark
locations ∈ Qi. This process of creating the multiple beliefs
is called Sampling process. This sampling process takes care of
the uncertainty introduced in the estimation of R and T . Once
the pose is estimated for the ith frame, then we need to sample
the position of the robot. This process can be given as,

Pi = X ∗ rn, (24)
where X is the pose estimate of the robot given by (x, y, θ) and
Pi is the set of particles representing the probable position of
the robot at the ith instant. In our algorithm, we fix the size
of the particle set to be constant at 1000 particles.The term
rn is the random noise, which induces noise in (xp, yp, θp)
components for sampling the pose estimates into 1000 particles.
In the prediction step, the pose for all the particles at the next
frame instant is predicted as,

X [m]
i ∼ p(Xi|ui,X [m]

i−1, Qi−1), (25)

where Xi is the predicted pose estimate for each particle X [m]
i

with respect to the previous pose estimates X [m]
i−1, motion con-

trol input ui and feature set locations Qi−1. This step is called
as the Belief propagation. At the (i+n)th instant, we determine
the next set of feature point locations Qi+n and estimate the
new motion estimate using the new measurements. This is the
measurement update step where the predicted pose estimates
are corrected with the newly obtained motion estimates. The
Particle set Pi is updated as,

w
[m]
t = p(Qi|X [m]

i ) (26)

P̄i = Pi + (X [m]
i , w

[m]
i ), (27)

where P̄i is the corrected set of particles indicating the possible
poses of the robot and w

[m]
i is the confidence probability

assigned to the each particles based on their distance with
respect to the set of measurements Qi at the current instant.
Particles having least probability are replaced with the particles
having high probability. This process is called Low variance
sampling. So, only the particles with high beliefs are involved
in the next prediction and measurement step. This process is
continued throughout the robot’s motion for each frame pairs
to filter the errors in R and T and gradually all the particles will
converge to the true robot location.

6. EXPERIMENTAL RESULTS

Experiments were performed with the proposed localization
algorithm in actual robots. We used a commercial stereo camera
Bumblebee 2 mounted on a Pioneer P3-AT robot. The experi-
mental setup is shown in Fig. 5. Initially the algorithm is used

Fig. 5. Experimental setup with a stereo camera.

without the particle filtering technique. Next, we included the
particle filtering method in the algorithm, so as to achieve better
localization results. The particle filter usually initializes the
starting point of the robot as a random value. So, the initial
start point will be a random point in Fig. 6(a) and 6(c). From
the initial random point, the next pose is estimated based on
the motion estimates calculated from the transformation matrix
Treff for each frame pair instants. The figures 6 show our
experimental results that were performed to close a loop. It is
clear from Fig. 6(a) and 6(c) that the unfiltered transformation
estimation yields incorrect odometry path. We observed that
the estimated R matrix is incorrect because of the presence
of outliers in the 3D feature points and also depth estimation
is incorrect due to occlusion and FOV limitation. But this can
be improved by using a stereo setup with a very wide baseline
Tx. However, our particle filter method reduces the errors by
imposing constraints in the pose estimates (x, y, θ). we can
observe that the starting point is at random position in both the
experiments and also random noise is generated initially around
the starting point. Then the random noise gradually converges
to the actual location of the robot pose and finally closes the
loop successfully. The table 1 and 2 shows the endpoint position
of the robot with respect to the true ground truth. It can be seen
that localization estimates obtained from the experiment 1 is
better than the experiment 2 as the number of inlier features
detected in the experiment 2 are less compared to the features
detected in experiment 1. We can also observe that the un-
filtered odometry results deviates away from the ground truth
path. In Fig. 7, the mean squared error between the determined
robot pose estimates and ground truth is plotted against the time
of duration of the robot motion. In experiment 1, the error is rel-
atively small at the end point even though it increases from the
starting point but in experiment 2, the pose error increases as the
duration of robot traversal increases. Based on the experimental
results, it can be observed that in our proposed algorithm, the
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(a) Experiment 1 - Output (b) Experiment 1 - Ground Truth

(c) Experiment 2 - Output (d) Experiment 2 - Ground Truth

Fig. 6. Localization Result of Experiments.
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Fig. 7. Error Propagation with prolonged localization

Table 1. Particle Filter Results with Experiment 1

X value (m) Y value (m) θ (rad)
Ground Truth Endpoint 8.30 6.00 0.00

Estimated Position Endpoint 8.894 5.547 3.269

Error 0.594 −0.453 3.269

Table 2. Particle Filter Results with Experiment 2

X value (m) Y value (m) θ (rad)
Ground Truth Endpoint 4.50 5.00 0.00

Estimated Position Endpoint 9.769 2.093 1.659

Error 5.269 −2.907 1.659

particle filter tries to converge to true robot location thereby
suppressing the error in the estimation of R and T .

7. CONCLUSION

In this paper, a new stereo vision based robot localization
process is developed by combining the partial depth esti-
mation and particle filter technique. The localization of the
robot is achieved by effectively computing the robot pose es-
timates from the motion estimates of the features between each
frame instants. Although there are various state-of-the-art algo-
rithms already available for vision based robot localization, our
method also proves to be one of the promising algorithms for
robot localization. Experiments were conducted at our univer-
sity campus and the accuracy and persistence of the localization
path of the robot is analysed. Planned future works for the
proposed localization algorithm include reducing computation
time using a dynamic size for the particle set and using global

minimization techniques to suppress the outlier errors in the
estimation of transformation matrix.
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