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Abstract: Post-contrastographic Dynamic Contrast Enhancement (DCE) is a consolidated MRI technique
to perform non-invasive analysis via Imaging. The dynamics perfusion of specific drugs, named Contrast
Agents (CA), allows to highlight anomalies in tissues, since the vascular substrate is differently
developed (hypervascularized) for diseases compared with healthy parenchyma. The goodness of the
analysis procedure influences the inferred diagnosis: the more objective the analysis, the more accurate
the prognosis and the therapies follow-up. Deformations and displacements affect organs and soft
tissues and their correction is challenging for DCE analysis; the complexity lies also on artefacts
of image registration process because of the backscattered image signal intensity varies over time
due to the diffusion/perfusion phenomenon induced by the CA injection. In this work we present a
combined approach based on the Active Contours framework and on the Optimal Mass Transportation
for the automatic depicting and tracking of deformable objects. Active Contours provide the automatical
contour’s depiction of a deformable object by minimizing an energy cost functional; Optimal Mass
Transportation allows to tracking a deformable object by minimizing the (object’s) transport cost under
the (object) mass conservation principle. We applied these methodologies to post-contrastographic DCE
MR images’ series and we are going to show the improvement in the goodness of DCE analysis
compared with results gathered with other tracking strategies.

Keywords: Active Contours, Optimal Mass Transportation, Post-Contrastographic DCE, MR Imaging,
Kernel Tracking, Contour Tracking.

1. INTRODUCTION

Clinical practice, investigations and diagnostic procedures use
Imaging; nowadays, non-invasive techniques, such as Magnetic
Resonance Imaging (MRI), support medical research and diag-
nosis [9], [14], [15]. Post Contrastographic Dynamic Contrast
Enhancement (DCE) procedure, based upon the assessment of
the enhanced backscattered signal intensity measurements over
time, highlights suspicious lesions [4], [8], [21] [23], when a
specific drug, called Contrast Agent (CA) perfuses into regions
with an abnormal vascular network, showing tissues anomalies
and/or necrosis. Whatever the investigated region, the DCE
technique assesses the Contrast Enhancement curve (of tissues)
over time and its parameters and provides useful information
for making a diagnosis [12]. The precision within the region
detection is crucial: the more detailed, the more accurate the
DCE analysis and the subsequent inferred diagnosis.

Object depiction and tracking, in an environment, is a chal-
lenging task. The Tracking Motion problem can be stated as
the problem of estimating the trajectory of said object - either
rigid or deformable - inside an image series; this is not a trivial
task because of the complexity of the form to be depicted and
tracked, the unknown trajectory followed and the noise of the

image. Solutions to this problem can be addressed in answering
the following questions:

(1) Which is the best representation of the object?
Objects classification relies on intrinsic features: shape
or geometric configuration, or on extrinsic characteristics:
intensity, colour, brightness, etc; [25];

(2) How to model the contour of the object?
The used approaches are kernel, silhouette and/or contour
tracking [25];

(3) Which are the best features to help track an object?
Colour, intensities, edges, optical flows, textures, densities
address this issue [2], [25].

In this work we face the Contour Tracking Motion issue for
improving the DCE analysis, by combining techniques for the
automatic depiction of deformable objects, and algorithms for
the tracking of those objects through different images acquisi-
tion over time. We applied Active Contours (AC) framework,
based on the dynamics of elastic elements given by forces and
constraints, for the best approximation of the object outline [2],
[6], [11], [13], and the Optimal Mass Transportation (OMT),
based on the mass conservation principle, to perform the Con-
tour Tracking Motion [1], [7], [10], [22], [24] of a deformable
object in a image time series.
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We report the comparison of different analysis methods for
showing how differs the Contrast Enhancement curve among
those obtained without, and partial, application of corrective
actions; moreover we compared the timing cost of different
tracking techniques for choosing the best compromise between
the goodness of analysis and the computational burden. The aim
of this study is to decipher improvements in the OMT-based
corrections: are these more appreciable and effective in smaller
object even though the timing cost is greater?

2. METHODS AND MODELS

The tracking motion problem can be described in the following
terms: it is given a sequence of 2-D different (subsequent)
temporal or spatial frames; these frames contain the object to
be tracked plus the environment and some noise. The problem
can be stated as follows:

(1) Identify the object to be tracked, using parameters like the
brightness and/or the colors of pixels to depict the object
contour;

(2) Estimate the continuous-time trajectory of the object in
R2, i.e. describe the trajectory of each point forming the
object;

(3) On the basis of the previous point, describe the association
of each pixel belonging to a specific frame into one or
more pixels of the following one.

Deformable models to represent the object’s contour, and Opti-
mal Mass Transportation to describe object’s trajectory, provide
valuable tools to anwer these issues.

2.1 Deformable Models for Object’s Identification in Biomedical
Images

Active Contours framework, based on deformable models,
mates well with the amorphous, nonrigid boundaries found in
many biomedical applications. The contour’s depiction by the
AC framework relies on the idea of a deformable model, that
evolves independently adapting to the object variations by min-
imizing a cost functional [2], [6], [11], [13]. A physicist might
interpret the deformable contours as a set of elastic elements
able to change their position due to the application of forces:
by minimizing the energy functional, it is possible to reach
an equilibrium position associated with the best object edges
configuration. A mathematical representation of an AC is a
parametric curve (or snake):

V (s) = [X(s),Y (s)] (1)
where vectors X(s) and Y (s) collect the contour’s coordinates,
generally obtained using B-Splines functions [5], that allow
depicting a continuous and smoothing parameterized contour.
To each AC it is associated an energy function:
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∫ 1
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where the first two terms form the Internal Energy, and are:
the Stretching Energy (likewise, the tension) that prevents the

contour from getting stretched, and the Bending Energy (also
known as rigidity) that prevents the bending of the snake;
getting greater the rigidity allows making the curve as regular
as possible, by maximizing the contour internal angles [20].The
third term refers to the External Energy where:

f (X(s),Y (s)) = |∇(Gσ (x,y)⊗ I(x,y))|, (3)
refers to the image (I) gradient previously convolved with a
gaussian smoothing filter, whose effect is to uniform a surface
eliminating spikes and ripples due to noise and to image’s blur,
whereas the gradient effect is to find out and emphasize the
edge of the image and it makes the External Energy responsible
of an attraction action towards the object’s edges [5], [6], [11],
[13].

Solving the problem of finding the optimal object’s contour
means minimizing its related energy cost functional: by setting
the first derivative of Esnake (with respect to s) equal to zero and
solving the associated equation, the so-called Euler equations
are obtained. Closed form solution of Euler equations cannot be
computed in general, and numerical techniques, as the Gradient
Descent Method, provide an unconstrained minimization pro-
cedure based on the use, as the search direction, of the opposite
to the gradient. Thus, the iterative expression of the contour
can be rewritten in terms of force’s contributions that drive the
snake towards the edge of interest, [6], [11], [13] both for the
coordinate’s vector X(s) and Y (s), as follows:

Xk+1 = Xk +
(

Fk
x(elastic)−Fk

x(bending)+Fk
x(external)

)
∆

Y k+1 =Y k +
(

Fk
y(elastic)−Fk

y(bending)+Fk
y(external)

)
∆ (4)

where Xk+1 and Y k+1 collect the coordinates of the update
contour, and Xk and Y k those of the current one; k is the iteration
index, ∆ is the algorithm step; parameters α , β and κ weigh
the forces’ contributions as for those of energies (see [20] for
details).

2.2 Optimal Mass Transportation for Registrations and
Processing of Biomedical Images

Optimal transportation issue was first formalized by G. Monge
in 1781, rediscovered by Kantorovich in the context of eco-
nomics and used in mathematics probability as a distance func-
tion (the Wasserstein metric). Formally, it concerns how to
transport a mass (probability density) from one location (and
distribution) to another, in such a way as to keep the transporta-
tion cost to a minimum. Indeed, the original problem concerned
the minimization of transportation cost in moving a pile of
soil from one site to another, thus, the Kantorovich-Wasserstein
distance is also referred to as the earth mover’s distance (EMD).

Optimal transport methods have appeared in econometrics,
fluid dynamics, automatic control, transportation, statistical
physics, shape optimization, expert systems, and meteorology.
Moreover OMT problem has also been studied within context
of imaging and computer vision applications [1], [24].

The Optimal Mass Tranportation problem: Monge and Kan-
torovich formulation We now give a formulation of the
Monge-Kantorovich problem: in 1781 Monge formulated the
problem in the Euclidean space; using a modern terminology,
the measures replace the Monge mass densities for giving flex-
ibility to the model [1], [10].
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Given two mass distribution f+ and f− on RN , for which the
principle of Mass Conservation holds:∫

RN
f+(x)dx =

∫
RN

f−(x)dx, (5)

the Optimal Mass Transportation consists in finding, among
all the maps carrying f+ into f− that with the minimum
transportation cost, where the cost has a physical meaning and
is proportional to the displacement. A such tranport map t is an
element of the set

T ( f+, f−) :=
{

t : RN → RNs.t. t is measurable
}
, (6)

that yields:∫
t−1B

f+(x)dx =
∫

B
f−(x)dx,∀ Borel subset B of RN , (7)

and minimizing the related cost:

min
{∫

RN
|x− t(x)| f+d(x) : t ∈ T ( f+, f−)

}
. (8)

The Kantorovich generalization of the Monge problem [1],
[10], difficult to solve because of the non linearity of the prob-
lem itself, consist in switch from transport maps to transport
plans, i.e. non-negative measures µ defined on M

(
RN×RN

)
and belonging to the set P( f+, f−) that plays the same role of
T ( f+, f−), satisfying the eligibility conditions:

µ
(
B×RN)= µ

+(B) =
∫

B
f+(x)dx

µ
(
RN×B

)
= µ

−(B) =
∫

B
f−(x)dx, (9)

The cost transport minimization, by varying µ among the
tranport plans, is defined as follows:

min
{∫

RN×RN
|x− t(x)|p f+d(x) : t ∈ P( f+, f−)

}
. (10)

Kantorovich formulation shows some advantages: the linearity
with respect to the structure of the vector space of M(RN×RN)
and the new functional definition on a non-empty convex subset
of M, M(RN ×RN), where it is ensured the existence of the
minimum, being lower semicontinuous for the topology. The
new formulation contains the original one: in fact, if the map t
is a transport, then the measure is defined by:

µt (B) = µ
+
(
{x ∈ RN : (x, t(x) ∈ B)}

)
(11)

that is a transport plan and, moreover, the following relationship
holds: ∫

RN
|x− t(x)| f+d(x) =

∫
RN
|x− y|dµt . (12)

OMT approaches The OMT methodology allows to as-
sess the deformations affecting objects within images, relying
upon the problem of optimization built on the Kantorovich-
Wasserstein distance, taken as a likelihood measure. Since ob-
ject’s deformations must respect the constrain of Mass Conser-
vation (MC), the OMT method finds a match between two mass
densities, assumed as the object’s area weighted in the 2D case
or the object’s volume weighed in the 3D case.

The OMT focus is the computing of transport map t: ap-
proaches are based either on linear programming [17] or on the
Lagrangian mechanincs [3]. The common idea is to reduce the
OMT to a linear programing problem by approximating mass
density measures between pairs of images, µ0 and µ1, as sums
of δ functions:

µ0 =
N

∑
i=1

δ (x− xi), µ1 =
N

∑
i=1

δ (y− yi). (13)

Thus, for 2N point (x1, . . . ,xN ,y1, . . . ,yN)∈R2 the Kantorovich-
Wasserstein metric is:

d2(µ0,µ1) = minρ

N

∑
i, j=1
‖xi− y j‖2

ρi j. (14)

Other approaches [7], [18], [22] quantify the deformation be-
tween pairs of images by exploiting the properties of the
elastic materials. This method incorporated the Kantorovich-
Wasserstein (or EMD) metric as a likelihood measure, that
quantifies how close the images are, and the image transfor-
mation is calculated by minimizing it. The main advantages:

(1) Its parameters are free;
(2) It is symmetric;
(3) It does not require you to select reference points;
(4) The solution is unique;
(5) Takes into account density changes resulting from area or

volume changes.

Briefly the OMT problem is recast as follows: let Ω0 and
Ω1 be two subdomains of ℜd (for generality), with smooth
boundaries, each with a positive density function, µ0 and µ1,
respectively. We assume that the same total mass is associated
with Ω0 and Ω1: ∫

Ω0

µ0 =
∫

Ω1

µ1. (15)

Considering a diffeomorphism ũ from Ω0 to Ω1 which maps
one density into the other one, and the MC assumptions, the
relationship between two mass densities is expressed by:

µ0 = |Dũ|µ1 ◦ ũ, (16)
where |Dũ| denotes the determinant of the Jacobian map Dũ,
and ũ the optimal mapping function [7], [22]. Accordingly with
the MC principle, Eq. (16) implies that a small object in Ω0,
mapped into a large one in Ω1 - or vice versa - must exhibit a
corresponding decrease (increase) in density: a such mapping ũ
may be thought as a mass redistribution - of a material - from
one distribution µ0 to another µ1. Hence, the issue is to find an
optimal MC mapping, which minimizes the Lp Kantorovich-
Wasserstein metric, rewritten as:

dp
p(µ0,µ1) := in f

ũεMC

∫
‖ũ(x)− x‖p

µ0(x)dx. (17)

by computing the cheapest way to transport the mass from one
domain to the other. Moreover, the optimal MC mapping thus
defined is symmetric: the optimal mapping from Ω0 to Ω1 is the
inverse of the optimal mapping from Ω1 to Ω0.

Different values of p parameter yield different optimal transport
maps:

• for p > 1, the existence and uniqueness of the optimal
transport map can be proved;

• for p = 1, the existence but not the uniquess of the optimal
transport map can be proved;

• for 0 < p < 1, the existence of a solution is not ensured.

The case p = 2 has been extensively studied and is that applied
in this work for image registration and morphing.

3. DEFORMABLE MODEL AND OPTIMAL MASS
TRANSPORTATION FOR TRACKING MOTION OF DCE

IMAGES SERIES: RESULTS

Post-contrastographic Dynamic Constrast Enhancement (DCE)
is a novel, yet consolidated, non invasive analysis procedure
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in the field of Biomedical Imaging for the assessment of the
malignancy of lesions. Starting from the knowledge of the time
evolution of the backscattered signal intensity corresponding
to each Region Of Interest (ROI) - both organs or lesions -
under investigation, a set of parameters useful for diagnosis are
identified. Specifically, considering different images belonging
to a series, it is possible defining the Contrast Enhancement
(CE) curve (Fig. 1) as follows:

I(Tn,x,y) = [i(Tn,x,y)− i0(x,y)], (18)

Figure 1. Contrast Enhancement Curve and related parameters.

where i(Tn,x,y) is the image intensity value at the abscissa (x,y)
at the sample time Tn and i0(x,y) is the basal value, i.e. the
mean value of the intensity registered before the perfusion of
the CA and assumed as background noise. Hence the CE curve
represents the intensity change, of the backscattered signal,
accordingly of the perfusion of the CA inside each single ROI.
A set of parameters, AUC (Area Under Curve), LPI (Local Peak
Intensity), TTP (Time To Peak) and SLOPE (Average Rising),
useful for the diagnosis (Fig. 1), can be provied, in a compact
fashion, by colour maps [12], [19].

The DCE analysis’s crucial issue concerns with the goodness
of the ROI approximation. A rough approach is to circumscribe
the ROI with a polygon, project it along all the images belong-
ing to the series and perform the DCE analysis on this coarse
shape: that means including even tissues’ portions out of the
ROI (for the rough contouring procedure and for ROI move-
ments). We have bettered the DCE analysis making it more
accurate by improving the ROI’s contour depiction, by means
of AC, and assuming the hypothesis of rigid body motion: AC
captures ROI’s deformations and determines its best outline.
In a previuos work [20] we implemented this approach by the
Kernel Tracking (KT) of a fixed object - ROI’s shape detected
on the first frame - along the image series: a first analysis cal-
culates - frame by frame - the coordinates of the center of mass
and the principal axes of inertia of the ROI, then its movements
are compensated by applying, to each pixel, rototranslation’s
displacements of the centre of mass. Even though this solution
provided satisfactory results, rigid body motion assumption is
still reductive, since it does not take into account ROI shape’s
deformations related, for instance, to breathing shifts, interior
peristalsis and patient movements.

The Control Tracking Motion (CTM) strategy, here proposed,
considers ROI’s whole movement - displacements and defor-
mations - following the OMT approach of the [18], in the case
of p= 2, described in section 2.2.2. For each frame, we suppose
that image’s features provides information both for the object

contouring and for mass density approximation; moreover we
have performed several tests on images pairs by comparing the
differences in the construction of the optimal transport map t
between the case in which images present deformation with
respect to the case in which they do not deform. The optimal
transport map t is represented via a 3D matrix t(i, j,k) and
organized as follows: let n and m the row and coloumn dimen-
sions of the initial images, then i = n

2 and j = m
2 are the row

and column dimensions of the transport map t (dimensions are
halved because pixels’ pairs are analysed jointly), k = 2 because
t(:, :,1) collects deformations along the first dimension, simi-
larly t(:, :,2) collects deformation along the second dimension.

Figure 2. Transport Map sketch.

The line of attack of our procedure faced two main issue: first
adapting the OMT code to process and analyse DICOM images,
second performing the corrective actions for the DCE analysis.
DICOM is the reference standard for Biomedical Imaging
[16] and DICOM images are indeed metafiles which include
graphics file (the image) and text data (patient information,
exam’s date, scanning mode, etc) used to handle the images
themselves. The second issue presents two main steps: the
analysis and the correction. The analysis step was aimed at
collecting the required information on ROI deformations frame-
by-frame, with respect to the first one, chosen as reference.
We realized two main algorithms devoted to the deformations
quantification on the basis of the transport map. Focusing on
the first dimension of t(i, j,k) we analyses the colums: as along
them elements showed unitary hops it means images do not
present deformations, otherwise as hops were bigger than 1
we could quantifiy the deformation (both as an expansion or
a contraction) by evaluating the hop entity. The same procedure
was applied focusing on the second dimension of t(i, j,k)
and analysing the rows. Once quantified - pixel by pixel -
the deformations, we applied these results in the subsequent
corrective action. It has been applied to each pixel belonging to
the ROI shape frame-by-frame: for each of them, the corrective
action provides a new ROI area (expanded or contracted),
accordingly to the deformation analysis information, on which
the subsequent DCE analysis will be performed.

We applied the OMT approach to improve the standard post-
contrastographic Dynamic Contrast Enhancement (DCE) anal-
ysis of temporal series coming from the DCE-MRI images.
Results are provided in terms of CE curve, aggregated color
map (the AUC) and execution times comparison.

We carried out trials of the procedures on different body regions
(Bowel Walls, Liver, Kidneys) affect by patholegies related to
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inflammatory disease or neoplasms. The acronyms in figure
labels (3, 5, 7) refer to different cases as follows:

• simple DCE: post-contrastographic DCE analysis per-
formed on a circumscribed polygonal ROI to the object
and without any corrective action;
• simple DCE + OMT: post-contrastographic DCE anal-

ysis performed on a circumscribed polygonal ROI to the
object and with OMT-based correction;
• DCE + AC + KT: post-contrastographic DCE analysis

performed on a ROI detected by means of AC and with
KT-based correction;
• DCE + AC + OMT: post-contrastographic DCE analysis

performed on a ROI detected by means of AC and with
OMT-based correction.

Figure 3. Dynamic Contrast Enhancement Curve comparison
for Liver.

Figure 4. AUC map comparison: with (left) and without (right)
OMT correction of Liver; high value refers to hypervascu-
larized area within the parenchima.

Large organs as liver, for which the deformation can be negli-
gible, may only admit the assumption of small displacements
and therefore the use of a fixed -polygonal- outline for ROI
detection provides a quite accurate estimate of the ROI intensity
assessment over time (Figs. 3, 4); furthermore, an advantage
of this approach is that the computational costs are drastically
reduced because this analysis does not include the optimal
transport map computing and the ROI correction (Fig. 9).

Figure 5. Dynamic Contrast Enhancement Curve comparison
for Bowel Wall.

Figure 6. AUC map comparison: with (left) and without (right)
OMT correction of Bowel Wall; high value refers to hy-
pervascularized area within the parenchima.

Deformations and displacement affected more small organs
and/or regions: thus improved apporaches can provide a
more precise estimate of the ROI intensity trend over time
(Figs. 5, 6, 7, 8 ); on the other hand, this techniques required
a major cost timing (Fig. 9), because of the optimal transport
map computing and the consequent corrective action of the ROI
along the image series.

Figure 7. Dynamic Contrast Enhancement Curve comparison
for Kidney.

Figure 8. AUC map comparison: with (left) and without (right)
OMT correction of Kydney; high value refers to hypervas-
cularized area within the parenchima.

Figure 9 shows the difference in timing of the various ap-
proaches, whose goodness depends upon the required perfor-
mances: greater the emphasis on speed of execution more it
will prefer DCE analysis without corrective actions, greater the
enphasis on tracking more it will prefer the improved procedure
with AC and OMT.

Figure 9. Tracking techniques: timing comparison.
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4. DISCUSSION

We found that it is possible to improve the goodness of DCE
analysis by combining AC and OMT techniques. The results
showed that the corrective action is more effective as smaller
and irregular is the analyzed region; on the other hand the
image processing becomes time consuming, as the corrective
action complexity increases. However in a clinical context,
where the need is to make the diagnosis procedure both fast and
accurate as possible, a tool that helps clinicians in this process,
is welcomed.

The outcomes show that the combined approach, applied to
organs of different shapes affected by different pathologies,
provides encouraging results: large organs, as liver, suffer
mainly from displacement movements due to patient breathing,
whereas kidneys is affected by the contour’s collapse due to the
irregular shape, bowel wall pools both these aspects and is also
influenced by deformations due to peristalsis movements. Our
work’s aim has been to improving the automatically assessment
of pathologies, by facing all these drawbacks simultaneously
and providing clearer results (CE curve over time and colour
maps) to support the diagnosis procedure.

The Active Contour is a consolidated methodology normally
used in the framework of biomedical imaging, whereas Optimal
Mass Transport methods are widely applied in the context
of image morphing and warping. Our work has exploited the
best of both techniques and provided an application in the
clinical diagnosis. The post-contrastographic DCE technique,
a well-consolidated diagnosis procedure aimed at enhancing
suspicious regions, provides the natural playground for the
proposed approach.

Other improvements in future may come both from new MRI or
CT techniques, that are becoming faster in the execution and not
requiring the patient breath hold, and in the natural evolution
of the procedure in the 3D case. In this direction one may
hypothesize that aggregated parameters, as AUC color map,
will provide information on the whole lesions, and comparing
AUC maps of same patients in different times will be possible to
follow up of a therapy and avoid invasive (hystological) exams.
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