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Abstract: In this study, two recently developed methods for qualitative trend analysis are applied and 

compared on the basis of two different data sets. One of the methods is globally optimal in the maximum 

likelihood sense but is computationally expensive. This method is based on shape constrained spline 

function. The second method is based on kernel regression and a Hidden Markov Model. This is more 

efficient but cannot be guaranteed to be optimal. Nevertheless, both methods deliver satisfying results 

with respect to the estimation of the location of inflection points as well as the corresponding tangent 

slopes. In contrast, only the globally optimal method appears useful to identify time series which do not 

satisfy a presupposed shape. 
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1. INTRODUCTION 

Qualitative trend analysis (QTA) constitutes a relatively 

small area of the literature on signal processing in which so 

called qualitative characteristics of a signal are discovered 

and identified. Historically, the sign of the first and second 

derivatives have received most attention (e.g., Bakshi and 

Setphanopoulos, 1994, Rengaswamy and 

Venkatasubramanian, 1995, Dash et al., 2004, Maurya et al., 

2005, Villez et al., 2013a). In this case, the aim is to identify 

segments of time series in which the signal is characterized as 

isotonic or antitonic and/or convex or concave. Such a 

characterisation results in a qualitative representation (QR) of 

the signal. Such a QR consists of episodes, i.e., time 

segments in which the sign of one or more derivatives does 

not change. Each of such episodes is uniquely characterized 

by (1) a start time, (2) an end time and (3) a primitive. The 

primitives correspond to a unique combination of signs for 

the signal derivatives. In this study, the sign of the signal 

value and the second derivative only are relevant. The 

relevant primitives are shown in Table 1. 

Table 1. Primitives as used in this work according to the 

signs of the signal value and second derivatives. The marker 

“?” signifies that the sign of the signal is unknown or 

unspecified. 
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The use of QRs as time series descriptors is motivated 

foremost by the ideas that (1) such characterization allows 

automated process supervision by incorporating expert 

knowledge, which is often expressed in rough and qualitative 

terms rather than precise and quantitative terms and (2) a 

qualitative description of a phenomenon can be extrapolated 

further than a detailed quantitative description of the same. 

The latter capacity can be extremely useful if one wants to 

identify rare events online for which limited repeated 

instances are available. Because of this feature of QRs, they 

have been used mostly for process fault diagnosis. 

Unfortunately, simple differentiation of a signal does not 

allow such characterization because of noisy features in the 

time series. Whereas the identification of a QR appears trivial 

to the human eye, it is certainly not straightforward to 

construct reliable algorithms to do the same in an automated, 

computer-based fashion. Several attempts have been made to 

do so however. The currently available toolset includes 

methods based on wavelet analysis (Bakshi and 

Setphanopoulos, 1994, Villez et al., 2013a), neural networks 

(Rengaswamy and Venkatasubramanian, 1995), piece-wise 

polynomials (Dash et al., 2004, Maurya et al., 2004), spline 

functions (Villez et al., 2013b), and kernel regression (Villez 

and Rengaswamy, 2013). This is in part because several 

methods are based on (1) a locally optimal, greedy 

optimization method or (2) heuristics, making comparison or 

selection of methods on theoretical grounds practically 

impossible. A rather common feature of these methods is that 

they make use of a quantitative feature generation step, e.g., 

to compute wavelet coefficients, polynomial coefficients or 

neural network outputs, which are then further abstracted into 

a qualitative descriptors (see Fig. 1). As such, we refer to 

these methods as feature extraction based methods. Even 
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though the feature extraction techniques themselves are often 

approximating the original signal optimally because of their 

universal approximating properties, the further abstraction 

into qualitative descriptors usually has no statistical basis at 

all. As such, statistical inference regarding the found QRs is 

found impossible. Furthermore, the results in Villez et al. 

(2013a) suggest that many of the methods may not work as 

well as suggested in the original work or that they require 

excessive efforts in tuning for a particular application.  

The above observations have led to improved methods which 

may also permit statistical inference. In Villez et al. (2013b), 

a new method is proposed in which the start and end points of 

the episodes in a QR are optimized in a globally optimal 

fashion. In this case, a spline function is fitted optimally 

while being constrained to exhibit a particular shape. The 

method is hence referred to as the Shape Constrained Splines 

(SCS) method. This shape is identified as a sequence of 

primitives, called a qualitative sequence (QS). The start and 

end points of the episodes, a.k.a. transitions, are unknown a 

priori and optimized simultaneously with the coefficients of 

the spline function. Selection of the best QS is possible by 

enumerating all possible QS candidates and optimizing the 

corresponding transitions for each. Importantly, the 

underlying model can be simulated, meaning that the shape 

constrained function can be used to the generate estimates for 

the underlying noise-free signal. It is this generative model 

property (e.g., Bischop, 1999) which leads to a maximum 

likelihood estimation of the QR, conditional to a number of 

QSs, at the cost of possibly lengthy diagnosis procedures as it 

is based on the branch-and-bound algorithm. A sketch of the 

method, stressing generative properties, is given in Fig. 1. 

 

Fig. 1. Conceptual comparison of historical feature-based 

methods and newly developed Qualitative Probability 

Smoothing (QPS) and Shape Constrained Splines (SCS) 

methods for qualitative trends analysis (QTA). 

To counter the observed computational complexity, a faster 

method has been developed in Villez and Rengaswamy 

(2013). In this case, a compromise is found between the 

feature extraction methods and the desire for an optimized 

likelihood. Indeed, point-wise probabilities for the shape of 

the underlying noise-free signals are derived based on kernel 

regression. These point-wise probabilities are then smoothed 

by means of a Hidden Markov Model and the Viterbi path 

finding algorithm. This method is further referred to as the 

Qualitative Probability Smoothing (QPS) method. In this 

case, the method exhibits the generative property to the 

extent that the point-wise probabilities can be generated by a 

Hidden Markov Model (HMM). As a result a globally 

defined objective function, i.e. defined over the whole time 

series, is still available for optimization. However, the QPS 

method is expected to suffer from (1) the approximation of 

the point-wise probabilities and (2) ignoring of correlation 

and auto-correlation within the Viterbi algorithm. The 

simulation study in Villez and Rengaswamy (2013) suggests 

that the computational benefits may outweigh the 

unguaranteed optimality of the method.  

In this contribution, we apply both the QPS and SCS method, 

in this order, to two real-life data sets. It is the first time these 

methods are compared directly. The two case studies are first 

explained in the next section, after which the two existing 

methods are explained in a nutshell. This is followed by the 

results section. Further interpretation to the results is given in 

the Discussion and Conclusions sections. 

2. CASE STUDIES 

2.1  Case study 1 

The first case study concerns the oxygen measurement 

profiles of a Sequencing Batch Reactor (SBR) process. In the 

aerobic stage of this 6-hour cycle process, a bang-bang 

controller ensures that the oxygen concentration remains 

within preset upper and lower limits. The oxygen 

measurement is available at a 1-minute time interval. The 

resulting profiles exhibit alternating upward and downward 

trends corresponding to aerated and non-aerated phases. The 

downward trends are used to estimate the Oxygen Uptake 

Rate (OUR). Initial attempts have been aimed at 

implementing a local linear regression approach as advocated 

in standard text books (e.g., Eaton et al., 2005). 

Unfortunately, several practical issues arise with such 

method. First, the assumption that a sufficiently long linear 

segment of data exists within the downward trend is not 

always met. Secondly, even if such a linear segment exists, 

then the identification of the linear segment is affected by 

subjective choices such as the criterion for linearity and the 

linear segment identification procedure, which is usually an 

ad hoc and suboptimal procedure. In this contribution, we 

discard the notion of linearity and instead identify the tangent 

slope at the downward inflection point as the oxygen uptake 

rate. It is assumed that this approach minimizes the effects of 

auto-correlated and delayed actuator and sensor responses. It 

is noted that this assumption remains to be validated. 

The shape of the oxygen profile over each aeration cycle 

consisting of an aeration “on” and “off” phase is constrained 

to be P
+
N

+
P

+
, i.e. positive and convex-concave-convex (see 

Table 1). This leads to a number of advantages such as (1) the 

use of all available data rather than a subjective and 

suboptimal selection and (2) implicit accounting for nonlinear 

effects on the oxygen time series such as (a) the effect of 

remaining air bubbles when the aeration is shut off and (b) 

the response time of the oxygen sensor, both of which 
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severely reduce the time length of the linear segment –if even 

present- in the first aeration on/off cycles. The initial results 

as obtained for 11 cycles are presented in this abstract. 

2.2  Case study 2 

The second study concerns the full-scale side stream 

Membrane Bio-Reactor (MBR) “De drie Ambachten” 

(Terneuzen, The Netherlands). The analysed data consist of 

the Trans Membrane Pressure (TMP) measurements recorded 

at one-second time intervals. A single filtration cycle lasts 

455 seconds. In each cycle, the TMP typically drops first 

because of backwashing, then increases fast when the normal 

flow is reinstated. This increase typically continues until the 

end of the cycle but the slope reduces, leading to a concave 

profile. As such, an NPN sequence (see Table 1) is typical. 

The locations of the inflection points implied by such shape 

are identified as well as the tangent slopes in these points. 

Whereas case study 1 is aimed at robust quantification of the 

OUR, this case study is  set up as a data mining exercise.  

3. METHODS 

The recently developed generative methods for Qualitative 

Trend Analysis (QTA) were both used  in this work to obtain 

(1) the location of inflection points, (2) the corresponding 

tangent slopes, and (3) measures of goodness of fit. The 

firstly applied method is the one presented in Villez and 

Rengaswamy (2013). This method is faster than the second 

because its objective function can be optimized by means of a 

dynamic programming method, which computational demand 

is linear in the number of data points. The second method is 

the SCS method (Villez et al., 2013b) which is more complex 

in terms of computational load, due to the fact that the 

objective function is nonlinear in the optimized parameters. 

However, it is currently hypothesized that the results of this 

method of more reliable in general. In addition, the objective 

function can be interpreted as a likelihood function for the 

data, which is not the case for the first method. 

3.1  Method 1 – Qualitative Probability Smoothing (QPS) 

This method consists of a two-step procedure. The first one is 

a feature generating step and aims to provide point-wise 

probabilities for the shape of the underlying data-generating 

function. This is done by means of kernel regression. The tri-

cube kernel was used with a window support of 7 data points, 

which is considered relatively narrow. The point-wise 

probabilities for the shapes are then smoothed by means of 

the Viterbi algorithm (Forney, 1973). This algorithm is a 

specific instance of dynamic programming to find the 

maximum likelihood sequence of discrete states as modelled 

by an HMM (Rabiner, 1989). Indeed, the method is based on 

the association between HMM states with each of the 

primitives in a QS and a transition probability between each 

ordered pair of such states. As soon as the optimal sequence 

is found, the method is used to report (1) the transition times, 

i.e. the points in time at which a transition from one state to 

another is most likely, (2) the smoothed function value (for 

maxima and minima) or its derivatives (in inflection points), 

and (3) the optimized objective function value. Although this 

method is based on well-known principles and methods, the 

optimized objective function may not reflect the true 

objective function because (a) the correlation between 

derivatives of different orders is ignored and (b) the analysis 

of point-wise probabilities in an additive manner ignores the 

fact that the computed derivatives can exhibit strong auto-

correlation. A strong advantage is that the computational time 

for both kernel regression and the Viterbi algorithm is linear 

in the number of data points. 

3.2  Method 2 – Shape Constrained Splines (SCS) 

The second method in this work is based on shape 

constrained spline functions (Papp, 2011). Such shape 

constraints allow controlling the signs of any derivative in 

any argument interval of a spline functions to be positive, 

negative or zero. By extension, it allows to fit a function to a 

time series which satisfies the shape as defined by a 

predetermined QR. This means that the transition times are 

fixed a priori in this case. Fortunately, this shape constrained 

spline fitting method has been adapted to permit the 

automated identification of the transition times given a 

predetermined QS. A drawback of the method is that the 

objective function is non-convex in the transition times and 

requires a branch-and-bound algorithm for deterministic 

global optimization (Villez et al., 2013b). This leads to a 

lengthy optimization procedure which may prevent online 

application. The transition times as found by the QPS method 

are used as initial guesses for contraction as in Faria and 

Bagajewicz (2011) so to reduce the initial search space and, 

thereby, the computational load. At this point in time, the 

effectiveness of this procedure has not been evaluated yet. 

4. RESULTS 

4.1  Case study 1 

Fig. 2 shows the oxygen measurements in the first alternating 

cycles between aerated and non-aerated phases. In addition, 

the fitted shape constrained splines as identified by the SCS 

method are plotted. As one can see, the obtained fit is very 

good and the identified inflection point locations make sense.  

In the top panel of Fig. 3, the oxygen measurements of the 

whole first SBR cycle are shown as well as the locations of 

the identified inflection points with the SCS method. The 

bottom panel shows the (absolute) slopes of the tangent in the 

identified inflection point for both methods and for both the 

rise (aeration) and fall (no aeration) phases. While the slopes 

of the falling trends match each other very well, it appears 

that the rising slope estimates are consistently lower for the 

QPS method. This may indicate that the kernel support 

window, even if it is narrow already, may be too high. The 

slopes of the falling trends are local estimates of the OUR 

and match typical expectations in the sense that the first 

estimates show a relatively high OUR which decrease 

relatively quickly at sample 2650, after which the OUR levels 

off. This transition is generally known as the switch from 

exogenous to endogenous respiration conditions. 
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Fig. 2. First aeration cycles of the first SBR cycle. Dots 

represent the data. Full lines indicate the start and shutdown 

of the aeration. Dashed lines indicate the identified inflection 

points. 

 

Fig. 3. First full SBR cycle. Top – Data and identified 

location of inflection points based on the SCS method. 

Bottom – Tangent slopes as function of identified inflection 

point location for both methods. 

The shape identification procedure was repeated over all 11 

cycles. The QPS method optimizes a path likelihood, shown 

in the top panel of Fig. 4, whereas the SCS method optimizes 

an SSR which is shown in the bottom panel. In case of the 

latter, a statistical limit was computed based on the 

assumption that SSR is distributed as a χ
2
 distribution. This is 

based on an estimate of measurement noise variance and the 

effective degrees of freedom of a smoothing spline function 

(Hastie et al., 2009). Because the bang-bang controller adapts 

the aerated and non-aerated cycles on-line, the length of each 

analysed time series segment is not constant. Because of this, 

the degrees of freedom change for the χ
2
 distribution and, 

therefore, its statistical limit changes as well. Note that this 

computed limit does not take the shape constraints into 

account and is therefore only approximately correct. 

Nevertheless, this approach results in a clearly anomalous 

aeration cycle around sample 18000 (Fig. 4), as the SSR is 

much higher than the computed limit. Visual inspection of 

the data (not shown) indicated that this is because the 

measurement profile does not conform to the expected 

P
+
N

+
P

+
 profile, due to handling of the sensor during cleaning. 

All other data appears normal (not shown), in line with the 

SSR based statistic in Fig. 4. The likelihood function as 

optimized with the first method (Fig. 4, top panel) does not 

permit such clear distinction. Further notes on this are made 

in the discussion section that follows.  

 

Fig. 4. All SBR cycles. Top – Likelihood obtained with the 

Qualitative Probability Smoothing (QPS) method. Bottom – 

Sum of Squared Residuals (SSR) and statistical limit as 

obtained with the Shape Constrained Splines (SCS) method. 

4.2  Case study 2 

The inflection points as identified for the NPN shape 

constrained  profiles for both methods are shown against each 

other in Fig. 5. As can be seen, the methods do deliver 

similar but not the exact same results. Interestingly, there 

seems to be a very good correlation between the two 

methods.  

 

Fig. 5. Scatterplot of the identified time location of inflection 

points for both the falling and rising trend in the TMP 

profiles for both methods. The locations identified by both 

methods resemble each other very well. 

The corresponding slopes of the tangents are shown in Fig. 6. 

Here, substantial differences can be seen as the QPS method 

generally delivers a lower estimate of the absolute slope than 

the SCS method. Also in this case, the kernel support window 

may have been too large for the QPS method. Despite this 

difference, both methods result in similar trends over the 

range of cycles, indicating that both are useful to find 

changes in the tangent slopes. In this case, a slow increase in 

the (absolute) slopes can be seen until about cycle 800 after 
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which the slopes return to their initial levels. It is unclear at 

this time what the significance of this change is. 

Fig. 7 shows the SSR values as a function of the cycle index. 

Here, the statistical limit is constant as the cycle length is 

constant. While none of the statistic values rise above this 

limit, the large distance between the limit and the obtained 

values suggests that the limit may be too conservative, i.e., it 

is possible that anomalous cycles are not detected. This is 

believed to be due to the fact that the effects of the shape 

constraints on the degrees of freedom for the spline function 

fitting are not accounted for. 

 

Fig. 6. The identified slopes of the tangents in each of the 

falling and rising inflection points as a function of cycle 

index. The QPS method generally results in a lower absolute 

value for the slope than the SCS method. 

 

Fig. 7. The SSR as a function of cycle index.  

5. DISCUSSION 

Two recently developed methods for qualitative trend 

analysis were tested on two real-life case studies. In both case 

studies, a predetermined shape was imposed onto time series 

of a cyclic nature. Each time, two methods were used to 

obtain estimates of the time location of inflection points, the 

corresponding tangents and the optimized objective function. 

The methods delivered comparable results with respect to the 

time location of inflection points and tangent slopes. This 

shows that the first method, although only approximately 

optimal, allows a reliable analysis despite its computational 

efficiency. However, the presence of anomalous data, which 

affects the tangent and inflection point estimation, cannot be 

detected reliably on the basis of the optimized objective 

function. The current hypothesis is that the changing time 

series lengths affect the computed likelihood so strongly that 

any other effect, e.g., due to mismatch of imposed and true 

shape, is dominated by it. This remains to be investigated. 

In contrast to the historical feature extraction based methods, 

the recently developed methods offer the advantage of a 

clearly defined objective function defined for the whole data 

series. The optimization of a globally defined objective 

function appears to lead to reliable results in terms of 

inflection point identification as well as tangent slopes, even 

though the objective functions have a different basis. Still, it 

should be noted that the applied methods require the shape to 

be known as a qualitative sequence whereas the original 

feature extraction methods do not. A unique explanation for 

the reliable performance is therefore not established yet. 

Further research will be directed at finding methods that 

identify both the qualitative sequence and the transitions 

defining the qualitative representation, instead of only the 

transitions. It is hypothesized that better performance can also 

be expected from such generative methods compared to the 

historical feature extraction methods. 

Despite the effort in finding globally optimal methods for 

qualitative trend analysis, a number of challenges remain to 

be addressed. For instance, the methods have been applied in 

a maximum likelihood setting by (1) using an ad hoc defined 

prior for alternative shape constraints depending on 

subjective beliefs and the problem setting (Villez et al., 2012, 

Villez et al., 2013a). In addition, (2) method 1 does not define 

a likelihood for the data directly but rather on derived 

features for which the distribution is assumed independent 

which is only approximately true. Furthermore, (3) effects of 

the shape constraints on the prior distribution of the spline 

function coefficients have been ignored when using method 

2. The fact that using a prior distribution in a Bayesian setting 

is possible is a fortunate side-effect of focusing on generative 

methods. However, for a proper Bayesian analysis it is 

required that (a) better conditional likelihoods can be defined 

for method 1, (b) reasonable prior likelihoods can be defined 

for the coefficients shape constrained spline functions, and 

(c) effective sampling strategies become available for second 

order cone constrained function fitting problems. To address 

(a), the approach taken in Gorinevsky (2008) for smoothing 

of an isotonic process by means of Moving Horizon 

Estimation can possibly be extended to allow for shape 

constraints in multiple derivatives as well as multiple, 

sequential episodes with different shapes. In a number of 

special cases of method 2, one can reduce the original second 

order cone programming problem reduces to a linearly 

constrained quadratic problem for fixed locations of the 

transitions. A 4
th

 order (cubic) spline function fitting problem 

with a quadratic objective function and constraints on the 

second derivative only is an example. In such case, prior 

likelihoods can be adopted as in the work of Romeijn and 

Van De Schoot (2008), which is specifically oriented at 

finding proper information criteria for model selection when 

the hypothesized alternative models define a parameter set 

rather than a specific parameter value. Combined with the 

sampling strategy of Rodriguez-Yam et al. (2004), a full 

Bayesian approach may within reach. On the other hand, it is 
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unclear how one could sample from the shape constrained 

spline coefficient distribution in the more general case 

involving second order cone constraints (or, by extension, 

semi-definite cone constraints). This appears especially 

challenging because the question whether a given spline 

coefficient vector belongs to the feasible set can –so far- only 

be answered by solving an optimization problem. This means 

that Monte Carlo sampling strategies based on such 

evaluation suffer from (1) the time needed for optimization 

and (2) the lack of structural information about the problem 

which can be used to optimize sampling strategies. 

Most of the fault diagnosis applications of the qualitative 

trend analysis deal with time series data. As such, it is not 

surprising that a number of methods are based on time series 

analysis methods such as wavelet analysis (Bakshi and 

Stephanopoulos, 1994,  Villez et al., 2013a). In contrast, the 

generative methods as well as others are based on static 

models which do not explicitly adopt the notion of causality 

as is done in classic methods for state estimation and model 

identification. It may be of benefit to account for this as it 

may be considered implausible that the underlying noise-free 

time series truly behaves in a piece-wise polynomial fashion. 

It is unclear at this time whether a linear time-invariant causal 

model could lend itself to a constrained state estimation 

formulation of QTA, possibly inspired by Gorinevsky (2008). 

Importantly, such possibility would lend itself to the online 

application of the resulting methods, which has not been 

attempted yet with the newly developed generative methods. 

5.  CONCLUSIONS 

Two methods for Qualitative Trend Analysis have been 

applied to two real-life data sets. In both case, both the 

suboptimal QPS method and the optimal SCS method deliver 

similar results for the identified qualitative representation of 

the data. This suggests that the approximation error of the 

QPS method may be minimal. In contrast, a good lack-of-fit 

statistic has not been obtained yet for the QPS method. The 

obtained results further support the general applicability of 

QTA methods for computer-based tasks unrelated to fault 

diagnosis. Despite the promise of these methods, several 

challenges remain open, including the need for a Bayesian 

inference framework as well as the adoption and extension of 

the methods for on-line applications. 
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