Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Identification of Design Patterns for
IEC 61131-3 in Machine and Plant
Manufacturing

J. Fuchs, S. Feldmann, C. Legat, B. Vogel-Heuser

Technische Universitdt Miinchen, Faculty of Mechanical Engineering,
Institute of Automation and Information Systems, D-85748 Garching
e-mail: {fuchs, feldmann, legat, vogel-heuser} @ais.mw.tum.de

Abstract:

Industrial plant software is implemented in the programming languages of

TEC 61131-3. As plant software needs to perform many tasks, it is often highly complex and typ-
ically characterized by a monolithic structure. Whereas for high-level programming languages,
commonly occurring problems are solved using design patterns, such general reusable solution
alternatives are not yet available for IEC 61131-3. Thus, an approach for statically analysing the
plant software and visualizing the software units’ complexity and interconnectedness is proposed
in this paper. Furthermore, basic software design patterns are introduced and, subsequently,
their appearance within plant software is evaluated using industrial code and interviews with
experts. By that, a first step towards providing design patterns for IEC 61131-3 is made.

Keywords: Programmable logic controllers, Software metrics, Machine code, Pattern

identification, Programming approaches

1. INTRODUCTION

Machines and plants in the industrial automation do-
main are mostly controlled by Programmable Logic Con-
trollers (PLCs). The plant code is implemented in the
signal-oriented programming languages of IEC 61131-3
and needs to perform many tasks, e.g. system functional-
ity, safety requirements or human-machine interface (Lu-
cas and Tilbury, 2004), resulting in highly complex soft-
ware, which is typically characterized by a monolithic
structure. Hence, plant software structures are often diffi-
cult to comprehend.

In object-oriented programming, commonly occurring
problems are solved using design patterns (Gamma et al.,
1994) that enable increased reuse and modularity of the
code and, thus, enhanced software quality and comprehen-
sibility (Thramboulidis and Frey, 2011). However, such
general reusable solutions for common problems are not
yet available in the classical languages of TEC 61131-3.
Nevertheless, plant software engineers often reuse solutions
for specific problems, e.g. error handling and modes of
operation, which could possibly be abstracted and reused
as solution alternatives for various problem types. If these
software solution alternatives were identified, named and
clustered, a first step towards providing software design
patterns in the industrial automation domain would be
provided and, hence, the plant software’s reusability, mod-
ularity as well as comprehensibility could be enhanced.
Thus, this paper aims at statically analysing the software
structure by considering data exchange between software
units as well as code complexity. Hence, software design
patterns can be identified providing the basis for analysing
common software solutions in PLC programming. By that,
modularity and — as a consequence — reusability of software

Copyright © 2014 IFAC

parts can be increased leading to lower engineering costs
and reduced time-to-market.

The remainder of this paper is structured as follows: In
the next section, an overview on IEC 61131-3 language
elements is shown. Subsequently, related work in the fields
of plant code analysis and design patterns is discussed.
The approach for analysing the code structure of plant
software is presented and design patterns for IEC 61131-3
code are introduced in sections 4 and 5, respectively. The
appearance of the design patterns within plant code is
evaluated based on interviews with industrial experts in
section 6. Finally, the paper is concluded by a summary
and an outlook on future work in section 7.

2. LANGUAGE ELEMENTS OF IEC 61131-3

Despite efforts towards including object-oriented program-
ming aspects within IEC 61131-3 (IEC, 2013), the stan-
dard in its current version has not yet been fully estab-
lished in industry. Thus, it is focused on IEC 61131-3
without object-oriented extension (IEC, 2009), which is
mostly used within state of the art industrial applica-
tions (Thramboulidis and Frey, 2011).

The TEC 61131-3 standard contains both textual, i.e.
Structured Text (ST) and Instruction List (IL), as well
as graphical programming languages, i.e. Function Block
Diagram (FBD), Ladder Diagram (LD) and Sequential
Function Chart (SFC). Furthermore, the standard defines
three types of Program Organization Units (POUs) for
structuring and reusing the PLC code. A Program (PRG)
represents the assembly of logical elements necessary for
the machine or process controlled by a PLC. One PRG
is the main program and thus provides the entry point
into the plant code. Function blocks (FBs), which calculate

6092



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

output values based on input and persistent internal
values, and Functions (FCs), which yield the calculation
of a result value based solely upon input values, can be
combined within a PRG. Furthermore, PRG and FB types
are instantiated during design time and hold their data
memories within PRG and FB instances during run time.
Thus, data exchange is realized between POU instances,
namely PRG and FB instances as well as FCs.

3. RELATED WORK

Contrary to approaches such as model-checking, e.g. (Soli-
man et al., 2012), which requires a model of the system for
analysing and verifying its behaviour, code analysis aims
at analysing the implemented software code and is mainly
applied to ensure software quality by identifying defects in
software programs. In contrast to dynamic code analysis,
which aims at executing the program with the intention
to observe its behaviour, static code analysis addresses
“automatic methods to reason about runtime properties of
program code without actually executing it” (Emanuels-
son and Nilsson, 2008). Thereby, a program’s structure and
elements or the set of possible program states are analysed
and, thus, the program behaviour is approximated (Artho
and Biere, 2005). Although static code analysis is suc-
cessfully applied to several programming languages and
environments, e.g. Lint for C (Johnson, 1978) and Find-
Bugs for Java (Ayewah et al., 2008), IEC 61131-3 is not
yet supported sufficiently (Angerer et al., 2013). Up to
now, only tools supporting parts or specific languages of
IEC 61131-3 are provided, e.g. CoDeSys Static Analysis !,
logi.Lint 2 by Logicals and PLC Checker?® by Itris. Never-
theless, in (Prahofer et al., 2012) the benefits of static code
analysis for IEC 61131-3 software quality improvement
are highlighted and an approach for improving compliance
with programming conventions and guidelines is proposed,
e.g. by identifying incorrect naming conventions, deviat-
ing program element complexity or detecting bad code
fragments. Thereby, analysis rules are used to express
the search criteria. Furthermore, call graphs and points-to
analyses were integrated extending the approach for fur-
ther analyses, e.g. concurrent access to shared variables
and coupling of subsystems (Angerer et al., 2013). How-
ever, the focus of these analysis approaches is put on the
identification of software errors and defects; identification
and visualization of commonly occurring designs within
TEC 61131-3 compliant plant code is not addressed.

In order to identify and develop solutions for commonly
occurring problems in software engineering, reusable
design patterns are used as well-documented building
blocks (Sanz and Zalewski, 2003). Despite a multitude
of work within high-level programming languages, espe-
cially within object-oriented languages such as the work
by Gamma et al. (1994), design patterns have been
scarcely considered within the PLC programming domain.
First efforts towards evaluating different methods of imple-
menting logic control algorithms within IEC 61131-3 were
conducted (Hajarnavis and Young, 2008), but specific pat-
terns have not been derived yet. However, design patterns

L http://store.codesys.com/codesys-static-analysis.html
2 http://www.logicals.com/products/logi. LINT/
3 http://www.plcchecker.com/

within control systems engineering would address a mul-
titude of issues such as controller design, architectural de-
sign as well as implementation aspects (Sanz and Zalewski,
2003). Patterns have been especially investigated within
the emerging model-based design of automation software,
e.g. using Unified Modeling Language (Fantuzzi et al.,
2009). Thereby, the authors introduced design patterns
for solving typical problems such as alarm handling and
motion control using state charts and guidelines for imple-
menting these patterns in IEC 61131-3 programming lan-
guages (Bonfe et al., 2013). Preschern et al. (2012) intro-
duce patterns for improving system flexibility and main-
tainability. For IEC 61499-based applications (IEC, 2011),
common solutions and guidelines were proposed for hier-
archical automation solutions (Zoitl and Prahofer, 2013),
failure management (Serna et al., 2010) and portable
automation projects (Dubinin and Vyatkin, 2012). Even
software design patterns for IEC 61499 programs, e.g. Dis-
tributed Application, Proxy and Model-View-Controller,
were defined (Christensen, 2000) and evaluated (Strom-
man et al., 2005). However, although IEC 61499 runtimes
on state of the art controllers exist (Vyatkin, 2011), “TEC
61499 has a long way in order to be seriously considered
by the industry” (Thramboulidis, 2013).

As none of the approaches mentioned above is capable
of sufficiently and comprehensibly analysing IEC 61131-3
programs for identifying common software solutions, the
combination of static code analysis with a comprehensible
visualization of the analysed code would provide a first
step towards identifying standard solutions for commonly
occurring problems in IEC 61131-3 programs.

4. ANALYSIS OF IEC 61131-3 CONTROL SOFTWARE

Currently, there exist few possibilities to structure plant
software as IEC 61131-3 code structure is mainly defined
through data exchange between POUs. The software is
composed of many POUs, i.e. PRG and FB instances as
well as FCs, which are connected through calls that form
the basis of the code structure.

4.1 Calls and instances of POUs in IEC 61151-3

Calls form the basis of the plant code structure by con-
necting POU instances; thus, only POU instances that are
called by other instances are executed during run time. A
PRG instance can call FB instances and FCs, and a FB
instance can call further FB instances and FCs. FCs, by
contrast, can only call other FCs. The calling and called
types of POU, namely PRG type, FB type or FC, are
hence dependent, because modifying one of these POU
types may affect other ones. This basic call structure is
often used to design the plant code and is thus commonly
comprehensible for the programmer.

4.2 The role of data exchange in IEC 61131-3

During a call, direct data exchange (DDE) is implemented
by passing variables between POU instances. Furthermore,
indirect data exchange (IDE) is implemented between
POU instances, as these can write values into and read
values from global variables. Consequently, a hidden data
exchange structure is built additionally, which makes the
plant code structure even more complex.

6093



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4.8 Visualization of the software structure

By composing calls between POUs as well as data ex-
change, the entire structure of the software results. In order
to enable analysis and examination of the software plant
code and the identification of design patterns, the code
complexity and the interconnectedness between software
units need to be visualized within a directed labelled graph

(Fig. 1).

A node of the graph represents a POU type. The node’s
diameter thereby is directly proportional to its complexity,
which is e.g. identified using the POU’s Lines of Code
(LoC); thus, FB1 is more complex than FB3 However,
further metrics such as the ones proposed by Lucas and
Tilbury (2005) may be used to determine a POU’s com-
plexity. The directed edges between nodes of the graph
represent a connection between two POU types by data
exchange. In order to visualize the interconnectedness be-
tween two POUs, the edges’ lengths thereby are indirectly
proportional to the data exchange intensity, which is e.g.
determined using the number of variables committed be-
tween the POUs. To distinguish between data exchange
via POU calls and data exchange via global variables, the
visualization approach provides a DDE and an IDE view.

The DDE view (Fig. 1, no. I) represents the unidirectional
data exchange through calls between POUs. Thus, an edge
within this view denotes that a POU calls another POU,
whereby the edge points from the calling to the called
POU. As the edges’ lengths are indirectly proportional
to the exchange intensity, thus FB2 and FC1 are more
strongly connected than PRG1 and FBI1. Furthermore,
self-calls of POUs are represented through edges from and
to the POU, e.g. for FC2. In this view, POUs which are
not connected to other POUs are not called and thus are
not executed within the PLC code.

The IDE view (Fig. 1, no. IT) represents the unidirectional
and bidirectional data exchange through global variables.
Thus, an edge within this view denotes that a POU writes
into a global variable and another POU reads from this
variable, whereby the edge points from the writing POU
to the reading POU. POUs that both read from and
write into the same global variable are connected via

| - Direct data exchange (DDE)
(data exchange through
calls between POUs)

length ~
(exchange intensity)™' diameter ~

POU complexity

unidirectional direct
data exchange

Il — Indirect data exchange (IDE)
(global data exchange between POUs)

unidirectional indirect
data exchange

FB3
(FB)
PRG1
(p RG ) bidirectional indirect
data exchange

Fig. 1. Overview of the code visualization

Table 1. Identified design patterns

Name Description Vls'uall- C;hafracte-
zation ristics
POUs are i?lggmin
Tree called in a Tree Y edee erg
structure O ooe gep
node
One POU calls Or%e node
Corn- points to
flower many other many other
POUs O DDE/ IDE
nodes
Central Many POUs O /O Nf)?;li’ tr(l)odes
Unit call one POU p
DDE/ TDE, same node
Data exchange O’(% .
d Connection
between POUs (% e} between
in IDE view O | ooe w ;
Cuckoo nodes in IDE
but no data .
. Q D view but not
exchange in R in DDE view
DDE view (
IDE
Uniform Complexm.y of Uniform
all POUs is
Com- node
. nearly the .
ple’“ty IDE/ DDE| diameters
same

bidirectional edges. POUs not connected to other POUs in
this view do not exchange data via global variables. The
proposed visualization can be used for analysing the plant
code. In the following section, common design patterns
within plant code are identified and visualized.

5. DESIGN PATTERNS IN IEC 61131-3

Although programmers in industrial automation do not
engineer software using software patterns, they build their
software structure according to specific criteria, e.g. com-
panies’ programming guidelines or personal experiences,
without being explicitly aware of these solution alterna-
tives. Patterns resulting from these alternatives can be
identified by evaluating calls and different kinds of data
exchange, namely DDE and IDE, as presented in section 4.
Using the approach of visualizing the complexity and in-
terconnectedness of POUs, five elementary patterns, which
are introduced in this section, can be identified (Table 1).
In the following, these patterns are explained in detail
using their visualization, interpretation and characteristics
making them measureable.

5.1 Tree

Within the software pattern Tree, a POU should only be
called if it has not been called by another POU within
the Tree structure yet. Hence, any two nodes, i.e. calling
and called POU, are connected by exactly one directed
edge and each node has only a single incoming edge, i.e.
each POU type is only called by one POU type. If each
branch represents an accumulation of dependent POUs, a
Tree offers the possibility to avoid too many dependencies
in between POUs and thus encapsulates functionality. In
case different branches of a Tree use the same POU,

6094



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

the software structure deviates from the hierarchical Tree
structure. On the one hand, reuse of a POU is desired and
on the other hand, if a POU, which is used by multiple
branches, is modified, undesired behaviour for dependent
POUs may arise. The pattern Tree can be identified in
DDE, whereby the edges’ length and the nodes’ diameter
do not correlate to the pattern.

5.2 Cornflower

Within the pattern Cornflower, a single POU calls mul-
tiple dependent POUs; thus, directed edges point from
a central node to circularly arranged nodes within the
directed graph, whereby both nodes’ diameter and edges’
length do not contribute to the pattern. A special case of
the pattern Cornflower arises, if each directed edge from
the central POU to dependent POUs has the same length.
Using this special case, standardized interfaces between
POUs can be implemented, e.g. to exchange process data
within IDE. Cornflowers may be used within DDE and
IDE as well as within a combination of both data exchange

types.

5.8 Central Unit

In contrast to the Cornflower pattern, multiple dependent
POUs call a single central POU within the Central Unit
pattern; hence, directed edges point from circularly ar-
ranged nodes to a central node within the directed graph.
Analogously to the Cornflower, both nodes’ diameters and
edges’ lengths do not have a correlation to the pattern.
This pattern may be used if a central data aggregation
point for further data commitment is necessary, e.g. for
human-machine interfaces. It may also occur in the case
that multiple POUs call commonly used functionality,
e.g. conversion functions. However, the application of the
Central Unit depends on the type of data exchange: Within
DDE, the pattern increases reuse of a single POU, whereas
within IDE, data aggregation is implemented.

5.4 Cuckoo

If a POU is called, data is exchanged via DDE. How-
ever, further data exchange may be implemented by IDE,
making the analysis of the entire software structure nec-
essary. Within DDE, code structure can seem very well
organized, but if IDE is analysed additionally, the global
data exchange often shows different connections between
POUs ruining the software structure intended by the
programmer. Hence, patterns may also be identified by
analysing the entire data exchange, i.e. analysing IDE and
DDE at the same time. The pattern Cuckoo considers
the interaction of DDE and IDE and occurs if a POU
exchanges data with another POU via IDE but not via
DDE. If the pattern Cuckoo is identified, the programmer
has to determine whether the global data exchange has
any benefit and whether it can be resolved using another
solution.

5.5 Uniform Complezity
The patterns introduced within the preceding subsections

are characterized by the connections between POUs. Nev-
ertheless, further patterns can be identified considering

the POUs’ complexity. The pattern Uniform Complexity
aims at a uniform POU complexity within the plant code.
Thus, all nodes within the directed graph have a similar
diameter. A uniform code distribution of POU complexity
may be desired in order to increase comprehensibility and
reuse of the software code. However, the challenge is to find
the appropriate POU size in between having many small
POUs making it difficult to reuse and combine POUs and
few large ones constraining flexibility (Jazdi et al., 2011).

6. EVALUATION

To provide an appropriate evaluation of the identified
patterns and to prove the feasibility of the proposed
approach, different automation plant codes were analysed
(Table 2). In order to give an impression of the complexity
of the different codes, the Lines of Code (LoC) value was
evaluated. The graphical languages LD, FBD and SFC
were converted into the textual languages IL and ST in
order to measure the LoC value in a similar manner. There
are different LoC values from rather low complexity, e.g.
lab demonstrators (Table 2, codes #5 and #6), to high
complexity, e.g. industrial plants such as code #2 and #4.
Nevertheless, in each plant code evaluated, the patterns
introduced in section 5 can be identified. As the same
patterns either can fulfill the intentions of a programmer
or can cause undesired plant code structure, the aims
of the code were discussed with the developers of the
analysed PLC code within expert interviews. The results
are abstracted due to confidentiality agreements.

6.1 Tree

The pattern Tree, as introduced in section 5, is used for
the entire software structure by arranging POUs in a
strictly hierarchical manner resulting in a modular struc-
ture. Thereby, every branch of the Tree represents a single
module, as was identified e.g. in code #3. In some cases,
the Tree was repeatedly used by being arranged as sub-
branches of the main branch, namely sub-modules. The
application of the Tree pattern increased the opportunity
to extract modules, as there are few dependencies between
POUs of other modules, as e.g. implemented in parts
of code #2. There can be derivations from the strictly
modular structure of the Tree if common functionalities
are used by more than one module. In some cases, this can
result in unexpected effects on the plant code behaviour,
e.g. if a commonly used POU is modified, dependent POUs
may behave differently than expected. By analysing the
Tree’s structure, strongly dependent POUs can be identi-
fied using the proposed approach. Hence, the Tree pattern
and its derivations can help to draw conclusions concerning
modularity and modifiability of the code structure.

6.2 Cornflower

The entry into the plant software is often a Cornflower.
Furthermore, it can be part of a Tree, thus providing the
entry into a module which occurs in almost each code
analysed in the context of this paper. The interfaces of
the POUs that are connected to the central POU are
standardized; hence, an easy change of POUs is possible. In
IDE the pattern Cornflower was used for a standardized

6095



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

Table 2. Overview of the evaluated PLC code

Industrial Plants Demonstrators

No. 1 2 3 4 5 6 7
Application PT PT MT MT PT MT MT
Domain
Area PU P M PU M PU M
Lines of Code 332k 234.5k 170k 1,246k 41.9k 24.9k 1.3k
No. of POUs 581 315 208 351 199 294 5
No. of DDE

°-° 1103 | 2,082 407 | 789 n.a. 626 | 1061 316 | 145 618 | 365 1|3
no. of IDE

alarm sectional . very intercon- almost
. X in DDE a . .

N collectors with Trees, which . nected, many exclusively Uniform

Significant . strict Tree . few POUs,
Central Units, are reused as Cornflowers DDE, composed Complexity,
use of structure, . . only pattern
Cornflowers modules; and Central of Tree sections, very inter-
patterns . many . Cornflower
for signal many Cuckoos Units, only Cornflowers and connected
propagation Cuckoos DDE Central Units

(PT — process technology, MT — manufacturing technology, P — plant, PU — plant unit, M — machine))

transfer of signals, as e.g. used in code #1. Thus, each
module receives all signals and influences all actuators
enabling simple adding of new modules.

6.3 Central Unit

A Central Unit often fulfils a standardized or commonly
needed functionality, e.g. alarm handling or calculation
functions in code #4. Changing a Central Unit can have
an impact on the behaviour of many other POUs. Within
DDE, this pattern can be identified easily and occurs in
many cases exposing intensive dependencies in between
POUs as was confirmed . Furthermore, the Central Unit
pattern is used within IDE for communication between
modules. However, expert interviews showed that this is
often unintended, because this results in huge interfaces.
A possible solution is e.g. to concentrate data exchange
in one POU. Another typical application of the Central
Unit within IDE is an alarm collector. Each relevant POU
communicates an alarm directly to the alarm collector —
implemented as a Central Unit — whereby the other POUs
can be directly informed, as e.g. used in code #1.

6.4 Cuckoo

There are only a few cases in which the pattern Cuckoo is
desired although it occurs in almost every analysed code.
To get a well-structured code, these undesired global data
exchanges without direct calls have to be dissolved. Often,
too many Cuckoos prevent an adequate modularization
and reuse of parts of the code. This was confirmed in the
interviews with the programmers of almost each code.

6.5 Uniform Complezity

On the one hand, significantly huge POUs can be identified
in almost each analysed code. Amongst others, a reason
could be the use of SFCs, which results in a high LoC value
through conversion into text, especially in the process
technology domain, i.e. codes #1, #2 and #5. Expert
interviews showed that changing the code has no benefit

as encapsulating parts of the functionality within smaller
POUs would lead to increased complexity. In other cases,
huge POUs contain much functionality making it hard to
detect errors, especially by someone who did not develop
the code. Discussions with experts exposed the need to
split the functionality and encapsulate parts of it within
smaller POUs. On the other hand, in some cases the
functionality is distributed into many small POUs, in
which cases the entire behaviour of the code is difficult
to comprehend. Concluding, a suitable POU size must
be found to support the comprehensibility of the code
structure and to fit the application-specific requirements.

6.6 Entire Structure

The patterns introduced in this paper can be composed
to an entire plant code structure. In industrial code, there
often exist parts of Trees that form modules, Cornflowers
used for structuring calls, Central Units that are used to
exchange data in between modules and Cuckoos mostly
undesired within the code. The most significant findings
concerning the patterns’ intentions are summarized for
each PLC code in Table 2. In code #1, the patterns
are used to solve recurrent requirements such as data
exchange between units. Reuse is realised within code
#2 by implementing sectional Trees within the code that
form modules. In some cases, reuse of a module is limited
because too many Cuckoos produce interdependencies. An
overall strict Tree pattern was identified in code #3, but
there also occur many Cuckoos similar to code #2. No
reuse was planned initially for code #4; hence, the DDE
structure is mostly interconnected. However, also patterns
such as Central Units or Cornflowers were identified, which
are used for data exchange and hierarchical structuring
of functionality. There are almost no connections between
POUs within IDE; hence, Cuckoos do not appear within
the code. Nearly the same structure exists in code #5,
but DDE is well-structured through patterns, e.g. Tree
and Cornflower. The complexity in code #6 is distributed
equally, but POUs are mostly interconnected. Code #7
corresponds to a demonstration plant and is thus quite
small; nevertheless, the pattern Cornflower was identified.

6096



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7. CONCLUSION

In this paper, a first step towards identifying typical solu-
tion alternatives for commonly occurring problems within
automation software engineering, namely plant software
patterns for IEC 61131-3, was proposed. Based on a de-
tailed analysis of plant code, an approach for analysing
and visualizing IEC 61131-3 plant code was introduced.
Using this approach, dependencies and encapsulations of
software units can be analysed and, hence, software design
patterns can be derived. Using industrial applications, the
appearance of the plant code design patterns was evalu-
ated and discussed regarding their benefits and program-
mer’s intention with industrial experts.

Future work will include the extension of the proposed
patterns towards a more detailed pattern library in order
to increase modularity, reuse as well as software quality
and comprehensibility. Further research will be investi-
gated towards identifying appropriate metrics that sup-
port rating and, thus, evaluating software quality and
reuse. The existing software tool will be extended by these
metrics and further patterns; thus, a support system for
identifying reusable artifacts can be provided. Moreover,
as slight differences in software complexity are sometimes
difficult to recognize in the graphical representation, addi-
tional mechanisms will be integrated within the tool to
support the engineer. To evaluate these enhancements,
benchmarks of different industrial plants in addition to
expert interviews can be done. By doing this evaluation
an illustration of specific properties of the analyzed code
is aspired.

REFERENCES

Angerer, F., Prahofer, H., Ramler, R., and Grillenberger,
F. (2013). Points-To Analysis of IEC 61131-3 Programs:
Implementation and Application. In 18th IEEE Int.
Conf. Emerg. Technol. Fact. Autom. Cagliari, Italy.

Artho, C. and Biere, A. (2005). Combined Static and
Dynamic Analysis. FElectron. Notes Theor. Comput.
Sei., 131, 3-14.

Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix,
J., and Pugh, W. (2008). Using Static Analysis to Find
Bugs. IEEE Softw., 25(5), 22-29.

Bonfe, M., Fantuzzi, C., and Secchi, C. (2013). Design
patterns for model-based automation software design
and implementation. Control Eng. Pract., 21(11), 1608—
1619.

Christensen, J.H. (2000). Design patterns for systems
engineering in IEC 61499. In Fachtagung Verteilte
Autom., 63-71. Magdeburg, Germany.

Dubinin, V.N. and Vyatkin, V. (2012). Semantics-Robust
Design Patterns for IEC 61499. IEEE Trans. Ind.
Informatics, 8(2), 279-290.

Emanuelsson, P. and Nilsson, U. (2008). A Comparative
Study of Industrial Static Analysis Tools. FElectron.
Notes Theor. Comput. Sci., 217, 5-21.

Fantuzzi, C., Bonfe, M., and Secchi, C. (2009). A Design
Pattern for Model Based Software Development for
Automatic Machinery. In 13th IFAC Symp. Inf. Control
Probl. Manuf., 1429-1434. Moscow, Russia.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Boston, US-MA.

Hajarnavis, V. and Young, K. (2008). An Assessment of
PLC Software Structure Suitability for the Support of
Flexible Manufacturing Processes. IEEE Trans. Autom.
Sci. Eng., 5(4), 641-650.

IEC (2009). Programmable Logic Controllers Part 3:
Programming Languages. IEC Standard 61131-3.

IEC (2011). Function Blocks. IEC Standard 61499.

IEC (2013). Programmable Logic Controllers Part 3:
Programming Languages. IEC Standard 61131-3.

Jazdi, N., Maga, C.R., and Go6hner, P. (2011). Reusable
Models in Industrial Automation: Experiences in Defin-
ing Appropriate Levels of Granularity. In 18th IFAC
World Congr., 9145-9150. Milano, Italy.

Johnson, S. (1978). Lint, a C Program Checker. Technical
report, Bell Laboratories.

Lucas, M.R. and Tilbury, D.M. (2004). The Practice of
Industrial Logic Design. In Am. Control Conf., 1350—
1355. Boston, US-MA.

Lucas, M. and Tilbury, D. (2005). Methods of measuring
the size and complexity of PLC programs in different
logic control design methodologies. Int. J. Adv. Manuf.
Technol., 26(5-6), 436-447.

Prahofer, H., Angerer, F., Ramler, R., Lacheiner, H., and
Grillenberger, F. (2012). Opportunities and challenges
of static code analysis of IEC 61131-3 programs. In
17th IEEE Int. Conf. Emerg. Technol. Fact. Autom.,
1-8. Krakow, Poland.

Preschern, C., Kajtazovic, N., and Kreiner, C. (2012).
Applying Patterns to Model-Driven Development of
Automation Systems: An Industrial Case Study. In 17th
Eur. Conf. Pattern Lang. Programs, 1-6. Kloster Irsee,
Germany.

Sanz, R. and Zalewski, J. (2003). Pattern-based control
systems engineering. IEEE Control Syst. Mag., 23(3),
43-60.

Serna, F., Catalan, C., Blesa, A., and Rams, J.M. (2010).
Design patterns for Failure Management in IEC 61499
Function Blocks. In 15th IEEE Int. Conf. Emerg.
Technol. Fact. Autom., 1-7. Bilbao, Spain.

Soliman, D., Thramboulidis, K., and Frey, G. (2012).
Function Block Diagram to UPPAAL Timed Automata
Transformation Based on Formal Models. In 1jth
IFAC Symp. Inf. Control Probl. Manuf., 1653—-1659.
Bucharest, Romania.

Stromman, M., Sierla, S., and Koskinen, K. (2005). Con-
trol Software Reuse Strategies with IEC 61499. In 10th
IEEE Int. Conf. Emerg. Technol. Fact. Autom., 749—
756. Catania, Italy.

Thramboulidis, K. (2013). IEC 61499 as an Enabler of
Distributed and Intelligent Automation: A State-of-the-
Art Review. J. Eng., 1-9.

Thramboulidis, K. and Frey, G. (2011). Towards a Model-
Driven IEC 61131-Based Development Process in Indus-
trial Automation. J. Softw. Eng. Appl., 04(04), 217-226.

Vyatkin, V. (2011). TEC 61499 as Enabler of Distributed
and Intelligent Automation: State-of-the-Art Review.
IEEE Trans. Ind. Informatics, 7(4), 768-781.

Zoitl, A. and Prahofer, H. (2013). Guidelines and Patterns
for Building Hierarchical Automation Solutions in the
IEC 61499 Modeling Language. I[IEEE Trans. Ind.
Informatics, 9(4), 2387-2396.

6097



