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Abstract: This paper considers the output regulation problem for linear systems in the presence
of state, input and output delays. A state feedback output regulation law is constructed from a
state predictor, recently developed for systems with state and input delays, and the solution to
a pair of regulator equations that transforms the output regulation problem into a stabilization
problem. Necessary and sufficient conditions for the existence of a solution to the regulator
equations are presented. Numerical examples demonstrate the effectiveness of the developed
predictor-based solution.
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1. INTRODUCTION

Output regulation is one of the central problems in control
theory. Its objective is to control the plant output such
that it tracks a prescribed class of reference signals. The
reference signal to track in the output regulation problem,
as well as the external disturbance input perturbing the
system, are produced by an external generator known as
the exosystem. The output regulation problem has been
studied extensively since it was formulated by Francis
[1977] for linear systems, and by Isidori and Byrnes [1990]
for nonlinear systems. In particular, Francis [1977] demon-
strated that, for linear systems, the existence of a solution
to the output regulation problem is equivalent to the
solvability of a pair of linear matrix equations. In the case
of nonlinear systems, Isidori and Byrnes [1990] extended
the results established by Francis [1977], and demonstrated
that the existence of a solution to the output regulation
problem is equivalent to solvability of a set of partial
differential and algebraic equations. In the case of linear
systems with input saturation, Lin et al. [1996] presented
necessary and sufficient conditions for the solvability of
the output regulation problem in the semi-global frame-
work, and a suitable feedback law was constructed based
on the low gain design method in Lin [1998]. The semi-
global framework entails that the open loop system is not
exponentially unstable. The output regulation problem for
general linear systems, including exponentially unstable
systems, under constrained control was studied in Hu and
Lin [2004].

The stabilization and output regulation problems for sys-
tems with time delay have been subject to considerable
research in recent years, motivated by the unavoidable
presence of delay in most control applications. Surveys of
recent results and open problems on the control of delay
systems are found in Gu and Niculescu [2003] and Richards
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[2003]. The output regulation problem for systems with
state delays was discussed in Castillo-Toledo and Núñez-
Pérez [2003] and Wang et al. [2013], in which the authors
derived the necessary and sufficient conditions for the
existence of a solution by employing a similar argument
as presented in Francis [1977] for the delay-free case. In
the nonlinear setting, the conditions for solvability of the
output regulation problem presented in Isidori and Byrnes
[1990] were extended to systems with state delays in Frid-
man [2003].

For systems with delays in the input signal, the predictor
based control has been studied extensively in the liter-
ature. The most common predictor based control laws
presented in the literature are derived from the Smith
predictor in Smith [1959], the Artstein model reduction
technique in Artstein [1982], and the finite spectrum as-
signment technique in Manitius and Olbrot [1979]. Pre-
dictor based control for time-varying delays was treated
in Bresch-Pietri and Krstic [2010]. For linear systems
with a static input delay and poles in the closed left-
half plane, a finite dimensional control law was presented
in Lin and Fang [2007]. The authors introduced a low
gain design method, in which the stabilizing control law
takes the structure of the predictor feedback controller,
but the distributed portion of the predictor is truncated.
This control law, with the truncated predictor, was later
extended to systems with time varying delays in Zhou
et al. [2012], and to exponentially unstable systems in
Yoon and Lin [2013]. When the delays are in both the
state and the input, a predictor feedback controller was
recently developed in Yoon and Lin [2014], where the pre-
dictor is formulated recursively over the prediction time to
guarantee the causality of the resulting predictor equation.

In this paper we consider the output regulation problem
for systems with state, input, and output delays. First,
the output regulation problem is defined for systems with
delays, and conditions for solvability of the regulator
problem are derived. Next, an output regulation control
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law is constructed from the predictor based controller
developed in Yoon and Lin [2014] for systems with state
and input delays. Due to the length limitation, in this
paper we limit our discussion to the state feedback output
regulation problem. The solution to the error feedback
output regulation problem can be obtained from the state
feedback solution discussed in this paper, and the output-
feedback variation of the predictor presented in Yoon and
Lin [2014].

The remainder of this paper is organized as follows. The
output regulation problem is defined in Section 2, and
a solution to the state feedback output regulation is
presented in Section 3. The validity of the derived output
regulation controller is demonstrated through numerical
simulation in Section 4. Finally, conclusions are drawn in
Section 5.

2. PROBLEM DEFINITION

Consider a linear time-invariant system with multiple
delays in the state, input and error,

ẋ(t) =

N∑
i=0

Aixi(t− τi) +Bu(t− τu) + Pω(t), (1a)

ω̇(t) = Sω(t), (1b)

e(t) =

N∑
i=0

Cix(t− τi) +Qω(t). (1c)

The dynamics of the delayed plant are described in (1a),
with state x ∈ Rn and input u ∈ Rm. The time delays
in the state and input are represented by the real scalars
τi ≥ 0, i = 0, 1, · · · , N , and τu > 0, respectively. Without
loss of generality, we will assume that τ0 = 0, and the
delays are ordered such that τi < τj for i < j. The plant
is subjected to a disturbance in the form of Pω, which is
generated by the exosystem in (1b) with state ω ∈ Rr.
Finally, the regulated error signal e ∈ Rs is given in (1c),
which is defined as the difference between the plant output
and the reference signal −Qω.

We introduce the following notation in order to define
the state feedback regulator problem. First, we define the
scalar τ = max{τN , τu}, and xt to be the trajectory of
the state xt(γ) = x(t + γ) for γ ∈ [−τ, 0]. By the same
token, let ut be the history of the input ut(γ) = u(t + γ)
for γ ∈ [−τ, 0].

Problem 1. State Feedback Regulator Problem - Given
the state trajectory xt and input history ut, find a state
feedback control law

u(t) = α(xt, ut, ω(t)), (2)

under which,

(i) the closed-loop system is asymptotically stable when
ω ≡ 0;

(ii) the regulated error e(t) satisfies limt→∞ e(t) = 0.

3. STATE FEEDBACK REGULATOR PROBLEM

Some standard assumptions are made on the system
(1) that are required for the solvability of the output
regulation problem.

A1. The eigenvalues of S have nonnegative real parts.
A2. The system (1) with ω(t) ≡ 0 is stabilizable by a

control law of the form (2).

Assumption A1 does not affect the generality of the
problem since the asymptotically stable eigenvalues of S
do not affect the regulation of the output. Assumption
A2 is required for the existence of a control law (2) that
asymptotically stabilizes system (1), when ω = 0.

3.1 Solution of the Regulator Problem

Lemma 1. Consider the delayed system (1) satisfying As-
sumptions A1 and A2. Further assume that there is a state
feedback control law

u(t) = αs(xt, ut),

such that the closed-loop system (1) under the above
control law and ω ≡ 0 is asymptotically stable. Then,
Problem 1 is solvable if and only if there exist matrices
Π ∈ Rn×r and Γ ∈ Rm×r such that

ΠS =A0Π +

N∑
i=1

AiΠe−τiS +BΓ + P, (3a)

0 =C0Π +

N∑
i=1

CiΠe−τiS +Q. (3b)

Furthermore, the control law that achieves output regula-
tion is given as

u(t) = ν(t) + ΓeτuSω(t), (4)

where ν(t) = αs(zt, νt), the state z(t) is defined as z(t) =
x(t) − Πω(t), and the state trajectory zt(γ) is defined as
zt(γ) = z(t+ γ) for γ ∈ [−τ, 0].

Proof. The above lemma is a generalization of the results
from Castillo-Toledo and Núñez-Pérez [2003] and Francis
[1977] to systems with state, input, and output delays.
It was demonstrated in Francis [1977] that a special case
of (3) provides the necessary and sufficient conditions for
the solvability of the output regulation problem in linear
systems without delay. The sufficient condition for the
solvability of the output regulation problem was extended
in Castillo-Toledo and Núñez-Pérez [2003] to systems with
state delays.

Define the state transformation z(t) = x(t) − Πω(t) for a
given matrix Π. Then, ż(t) can be derived from (1) as

ż(t) =

N∑
i=0

Aiz(t− τi) +

N∑
i=0

AiΠω(t− τi) +Bu(t− τu)

+Pω(t)−ΠSω(t),

and the error equation in (1c) can be rewritten as,

e(t) =

N∑
i=0

Ciz(t− τi) +

N∑
i=0

CiΠω(t− τi) +Qω(t).

Let the control input to (1) be in the form of (4) for a
given matrix Γ. Then, the state equation for z(t) becomes

ż(t) =

N∑
i=0

Aiz(t− τi) +Bν(t− τu)
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+

(
N∑
i=0

Aie
−τiS +BΓ + P −ΠS

)
ω(t), (5a)

e(t) =

N∑
i=0

Ciz(t−τi) +

(
N∑
i=0

CiΠe−τiS+Q
)
ω(t),(5b)

where we used the fact that ω(t) = eσSω(t−σ), for σ ∈ R,
which was obtained from the closed-form solution of (1b).

Since the matrices Π and Γ are the solution to (3), the
state equation (5) can be simplified to

ż(t) =

N∑
i=0

Aiz(t− τi) +Bν(t− τu), (6a)

e(t) =

N∑
i=0

Ciz(t− τi). (6b)

The above system of equations is equivalent to (1) with
ω ≡ 0. Therefore, Assumption 2 yields that that there
exists a control law ν(t) = αs(zt, νt), where νt(γ) = ν(t+γ)
for γ ∈ [−τ, 0], such that the closed-loop of the delayed
system (6a) is asymptotically stable. Furthermore, as the
state z(t) asymptotically approaches zero, the limit of the
error signal will also converge to zero, or limt→∞ e(t) =
0. Therefore, (4) is a solution to the output regulation
problem.

On the other hand, assume that the control input u(t)
is a solution to the state feedback output regulation
problem, and consider the input to be in the form (4).
Then, the error signal in (5b) must satisfy the objective
of the regulation problem, that is, limt→∞ e(t) = 0. Since
Assumption A1 states that the ω subsystem in (1b) has
nonnegative poles, the objective limt→∞ e(t) = 0 from any
arbitrary initial conditions x(t0) and ω(t0) is achieved only
if limt→∞ z(t) = 0 and,

N∑
i=0

CiΠe−τiS +Q = 0. (7)

Furthermore, it was assumed that ν(t) = αs(zt, νt)
asymptotically stabilizes (5a) when ω ≡ 0. Then, for
limt→∞ z(t) = 0 to be true under Assumption 1 and
arbitrary initial conditions x(t0) and ω(t0), it is required
that

N∑
i=0

Aie
−τiS +BΓ + P −ΠS = 0. (8)

Finally, (7) and (8) are the same as the conditions in (3).
This concludes the proof. 2

Remark 1. The conditions for the existence of the solution
to (3) have been discussed in detail in Castillo-Toledo
and Núñez-Pérez [2003] and Wang et al. [2013]. It was
demonstrated that (3) is solvable if and only if

rank


N∑
i=0

Aie
−τiλ − λI B

N∑
i=0

Cie
−τiλ 0

 = n+ s,

for all λ in the spectrum of S.

u(✓ � ⌧u)

t � ⌧u
t � ⌧1

t t + ⌧u
t + ⌧u � ⌧1

Predictor

z(✓ � ⌧1)

Fig. 1. A diagram of the predictor at time t for the state
at t+ τu, and the required information of the delayed
state and input. The dashed line illustrates the non-
causal part of the predictor.

3.2 Prediction Based Control Law

The results in Lemma 1 allow us to transform the output
regulation problem into the stabilization of a state and
input delayed system. The predictor feedback approach, in
which the future state is predicted in order to compensate
for the effects of the delay, has been studied extensively
in the control of input delayed systems. In the absence
of state delays, a causal predictor can be constructed
from the closed-form solution of the delayed state space
equation. When a state delay is present in the system
equations, as in (6), the closed-form solution of the state
space equation becomes

z(t+τu) = eA0τuz(t)+

N∑
i=0

∫ t+τu

t

eAi(t+τu−σ)Aiz(σ−τi)dσ

+

∫ t+τu

t

eA0(t+τu−σ)Bν(σ−τu)dσ. (9)

A prediction of the future state may be obtained from the
above solution, but the calculation of the state prediction
may require future state information if τ1 < τu.

To illustrate the non-causality of the predictor equation
(9), consider the simple linear time-invariant system with
a single state delay τ1 and an input delay τu,

ż(t) = A0z(t) +A1z(t− τ1) +Bν(t− τu). (10)

The predictor feedback law computes the input at time
t + τu in order to cancel the effect of the input delay in
the system. For a state feedback law, this requires the
estimate of the state z(t + τu). We consider the state
prediction as in (9) with N = 1. The diagram in Fig. 1
illustrates the prediction of z(t + τu) on the time line.
It is observed from the integration limits in (9) that the
prediction requires the input history between [t−τu, t] and
the state trajectory between [t−τ1, t+τu−τ1]. For τu > τ1,
the prediction becomes non-causal since it requires future
information of the states as shown in Fig. 1. The following
proposition discusses how to build a causal predictor for a
linear system with both input and state delays.

Proposition 2. Consider the state and input delayed sys-
tem

ż(t) =

N∑
i=0

Aiz(t− τi) +Bν(t− τu), (11)

with the state vector z(t) ∈ Rn and input vector ν(t) ∈
Rm. Let the positive integer k be such that kτ1 < τu ≤ (k+
1)τ1. Define the index sets Nj and N̄j for a positive integer
j as Nj = {i : τi ≥ jτ1} and N̄j = {i : τi < jτ1},

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9782



respectively. We also define the index sets Nu = {i : τi ≥
τu} and N̄u = {i : τi < τu}. Then, there is a τ̄u > 0 such
that ẑτu(t) = z(t + τu) for all t > τ̄u, where the predictor
ẑτu is computed as

ẑτ1(t) = eA0τ1z(t) +

N∑
i=1

Φi(t, τ1) + Φν(t, τ1),

ẑ2τ1(t) = e2A0τ1z(t) +
∑
i∈N2

Φi(t, 2τ1) + Φν(t, 2τ1)

+
∑
i∈N̄2

Ψi(t, 2τ1, 1),

...

ẑkτ1(t) = ekA0τ1x(t) +
∑
i∈Nk

Φi(t, kτ1) + Φν(t, kτ1)

+
∑
i∈N̄k

Ψi(t, kτ1, (k − 1)),

ẑτu(t) = eA0τuz(t) +
∑
i∈Nu

Φi(t, τu) + Φν(t, τu)

+
∑
i∈N̄u

Ψi(t, τu, k). (12)

The functions Φi, Φν and Ψi are respectively defined as

Φi(t, τ) =

∫ t+τ

t

eA0(t+τ−σ)Aiz(σ−τi)dσ, (13)

Φν(t, τ) =

∫ t+τ

t

eA0(t+τ−σ)Bν(σ−τu)dσ, (14)

and

Ψi(t, τ, j) =

∫ t+τ

t

eA0(t+τ−σ)Aiẑjτ1(σ−jτ1−τi)dσ. (15)

Proof. The details on the construction of the predictor
ẑτu have been discussed in Yoon and Lin [2014]. In what
follows we present a sketch of the proof.

Consider the function ẑτ1(t) in (12). Since this function is
a special case of the predictor (9), in which the prediction
time step is equal to the smallest state delay, we conclude
that

ẑτ1(t) = z(t+ τ1) for t ≥ 0. (16)

Next, consider ẑ2τ1(t) in (12). The calculation of this func-
tion requires information about ẑτ1(t). From the equality
in (16) and the integration limits in (15), we observe that
ẑ2τ1(t) also becomes a special case of (9) for t ≥ 5τ1.
Therefore, with τ̄2 = 5τ1,

ẑ2τ1(t) = z(t+ 2τ1) for t ≥ τ̄2. (17)

Finally, assume that

ẑkτ1(t) = z(t+ kτ1) for t ≥ τ̄k, (18)

for some τ̄k > 0. Referring to the predictor equation in
(12), we observe that the calculation of ẑτu requires the
past information of the predicted state ẑkτ1(t). In view of
the equality in (18) and the predictor equation (12)-(15),
we obtain that

ẑτu(t) = z(t+ τu) for t ≥ τ̄u, (19)

where τ̄u = τ̄k + kτ1 + 2τu. This concludes the proof. 2

Remark 2. The predictor in (12) is formulated recursively
over the prediction time, by partitioning the input delay
into sections equal to or smaller than the state delays, and
constructing an auxiliary predictor for each of these time
sections. This way, the resulting predictor is guaranteed to
be causal, only depending on the past system information
and the predictor output history.

Next, we put together the results of Lemma 1 and Proposi-
tion 2 in order to construct a solution to the state feedback
output regulation problem described in Problem 1. The
resulting feedback law combines a feedforward term to
counteract the action of the exosystem, and a predictor
based controller to stabilize the delayed system in the
absence of external disturbances.

Theorem 3. Consider the delayed system (1) satisfying
Assumptions A1 and A2, and let Π and Γ be the solution
to (3). Then, for matrices Q > 0, S > 0 and K̄i satisfying
the matrix inequality

Θ H1 H2 · · · HN

HT
1 −S1 0 · · · 0

HT
2 0 −S2 · · · 0
...

...
...

. . .
...

HT
N 0 0 · · · −SN

 < 0, (20)

where Hi = AiQ+BK̄i and Θ = H0 +HT
0 +

∑N
i=1 Si for

i = 0, 1, · · · , N , a solution to the state feedback output
regulation problem is given by the feedback law

u(t) =

N∑
i=0

Kiẑτu(t− τi) + ΓeτuSω(t), (21)

with feedback gains Ki = K̄iQ
−1, i = 0, 1, 2, · · · , N .

Proof. Let Π and Γ be the solution to (3). Then, with
the input in the form of u(t) = ν(t) + ΓeτuSω(t), it follows
from Lemma 1 that the output regulation problem in (1)
is equivalent to the stabilization of

ż(t) =

N∑
i=0

Aiz(t− τi) +Bν(t− τu). (22)

Thus, the objectives of Problem 1 are reached by achieving
limt→∞ z(t) = 0. Let the control ν(t) be in the form

ν(t) =

N∑
i=0

Kiẑτu(t− τi), (23)

for some feedback gain Ki ∈ Rm×n. Then, by Proposi-
tion 2, there exists a τ̄u > 0 such that the closed-loop
system (22) under the control law (23) becomes

ż(t) =

N∑
i=0

Aiz(t−τi) +B

N∑
i=0

Kiẑτu(t−τu−τi),(24a)

ẑτu(t) = z(t+τu), (24b)

for t ≥ τ̄u. The characteristic equation of the above system
is found to be det ∆(s), where

∆(s) =

 sI − N∑
i=0

Aie
−τis −B

N∑
i=0

Kie
−(τu+τi)s

−eτusI I

 . (25)
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By the properties of the determinant,

det ∆(s) = det

(
sI −

N∑
i=0

Āie
−τis

)
, (26)

where Āi = Ai + BKi. The spectrum of the closed-loop
system (24) is then equal to the roots of the polynomial
(26). This implies that the closed-loop system in (24) is
asymptotically stable if

ż(t) =

N∑
i=0

Āiz(t−τi) (27)

is asymptotically stable.

The stability condition for (27) is derived by employing
the Lyapunov-Krasovskii Stability Theorem with the func-
tional from Gu et al. [2003] as,

V (t) = zT(t)Pz(t) +

N∑
i=1

∫ 0

−τi
zT(t+σ)Riz(t+σ)dσ,

for some real matrices P > 0 and Ri > 0. The derivative
of V (t) along the trajectory of (27) is found to be

V̇ (t) = zT(t)

(
PĀ0 + ĀT

0 P +
N∑
i=1

Ri

)
z(t) + 2zT(t)P

×
N∑
i=1

Āiz(t−τi)−
N∑
i=1

zT(t−τi)Riz(t−τi). (28)

Define Z(t) = [zT(t), zT(t− τ1), · · · , zT(t− τN )]T. Then,

the time derivative of V (t) can be rewritten as V̇ (t) =
ZT(t)ΠZ(t), where

Π =


Π11 PĀ1 PĀ2 · · · PĀN
ĀT

1 P −R1 0 · · · 0
ĀT

2 P 0 −R2 · · · 0
...

...
...

. . .
...

ĀT
NP 0 0 · · · −RN

 ,
with Π11 = PĀ0 + ĀT

0 P +
∑N
i=1Ri. Moreover, we obtain

that V̇ (t) < 0 and the closed-loop system (27) is asymp-
totically stable if Π < 0. Finally, let Q = P−1, Si = QRiQ,
and K̄i = KiQ. Then, we observe that the left-hand side
of (20) and Π are congruent matrices, and the closed-loop
system (27) is asymptotically stable if (20) is satisfied.

Finally, the state feedback control law achieving output
regulation is constructed by combining (21) and (12),
where Ki = K̄iQ

−1. This concludes the proof. 2

Remark 3. A sufficient condition for the existence of the
controller gains Ki in Theorem 3 is given by the solvability
of the matrix inequality (20). Therefore, any requirement
on the controllability of the the delay system (24) is con-
sidered in the stability condition of Theorem 3. Detailed
discussions on the controllability and observability of lin-
ear time delay systems can be found in Salamon [1984], Yi
et al. [2008], and the references therein.

4. A NUMERICAL EXAMPLE

In this section we present a numerical example to verify
the effectiveness of our proposed solution to the output
regulation problem. Consider the perturbed balancing
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Fig. 2. Tracking error under a stabilizing feedback law
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Fig. 3. Tracking error under the output regulation control

beam system studied in Yoon et al. [2013]. The dynamics
of the system is described by equation (1) with

A0 =

[
0 1

9248 −1.635

]
, A1 =

[
0 0
0 10

]
, B =

[
0
1

]
,

C0 = [ 281.9 0.133 ], C1 = [ 0 0 ],

S =

[
0 10
−10 0

]
, P =

[
0 0
1 0

]
, Q = [ 1 0 ] .

Let the time delays be τ1 = 0.01 s and τu = 0.02 s. The
initial conditions of the above system are given as x(θ) =
[−0.02 0.01]T and ω(θ) = [0 10]T for θ ∈ [−τ, 0]. The
balancing beam test rig was designed in Lin et al. [2008]
to represent an active magnetic bearing (AMB) system
subject to rotor unbalance forces, and has previously
served as a test rig for the output regulation problem.
For the above system matrices, we find that the feedback
gains K0 = [−9250 −0.7275] and K1 = [0 −10] satisfy the
matrix inequality (20) in Theorem 3.

We first consider the stabilization problem. More specifi-
cally, the perturbed balancing beam with equation (1) is
controlled by the stabilizing state feedback law

u(t) = K0x̂τu(t) +K1x̂τu(t− τ1), (29)

where x̂τu is a predictor equivalent to (12) for the state
x(t) in (1a) and ω = 0. Figure 2 shows the response of the
error signal e(t) for the closed-loop system, and the the
effect of the perturbation ω(t) is clearly visible.

In comparison to the simulation result presented in Fig. 2,
the response of e(t) for the closed-loop system under
the output regulation control (12) and (21) is presented
in Fig. 3. The simulation shows that the effect of the
perturbation ω(t) from the exosystem (1b) is eliminated
by the proposed feedback law, and e(t) now approaches
zero asymptotically.

Finally, the response of the system state x(t) and the
prediction error z̃τu(t) = z(t + τu) − ẑτu(t) corresponding
to the example with the output regulation feedback law
is presented in Figs. 4 and 5, respectively. Figure 5 shows
that the prediction error becomes zero over time.
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Fig. 4. State response of the closed-loop system under the
output regulation control
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Fig. 5. Prediction error z̃τu of the closed-loop system under
the output regulation control

5. CONCLUSIONS

Based on previous work on output regulation of state
delayed systems, the sufficient and necessary conditions
for the solvability of the output regulation problem was
extended to linear systems with state, input and output
delays. A feedback law achieving output regulation was
constructed from a predictor based control law that was
recently developed for linear systems with state and input
delays. Finally, a numerical example was presented to
illustrate the results developed in this paper.
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