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Abstract: The use of Model Predictive Control is steadily increasing in industry as more
complicated problems can be addressed. Due to that online optimization is usually performed,
the main bottleneck with Model Predictive Control is the relatively high computational
complexity. Hence, much research has been performed to find efficient algorithms that solve
the optimization problem. As parallel hardware is becoming more commonly available, the
demand of efficient parallel solvers for Model Predictive Control has increased. In this paper,
a tailored parallel algorithm that can adopt different levels of parallelism for solving the
Newton step is presented. With sufficiently many processing units, it is capable of reducing
the computational growth to logarithmic in the prediction horizon. Since the Newton step
computation is where most computational effort is spent in both interior-point and active-set
solvers, this new algorithm can significantly reduce the computational complexity of highly
relevant solvers for Model Predictive Control.
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1. INTRODUCTION

Model Predictive Control (MPC) is one of the most com-
monly used control strategies in industry. Some important
reasons for its success include that it can handle multi-
variable systems and constraints on control signals and
state variables in a structured way, Maciejowski [2002].
In each sample an optimization problem is solved and in
the methods considered in this paper, the optimization
problem is assumed to be solved on-line. Depending on
which type of system and problem formulation that is
used the optimization problem can be of different types,
and the most common variants are linear MPC, nonlinear
MPC and hybrid MPC. In most cases, the effort spent in
the optimization problems boils down to solving Newton-
system-like equations. Hence, lots of research has been
done in the area of solving this type of system of equa-
tions efficiently when it has the special form from MPC,
see e.g. Jonson [1983], Rao et al. [1998], Hansson [2000],
Bartlett et al. [2002], Vandenberghe et al. [2002], Åkerblad
and Hansson [2004], Axehill and Hansson [2006], Axehill
[2008], Axehill and Hansson [2008], Diehl et al. [2009],
Nielsen et al. [2013].

In recent years much effort has been spent on efficient par-
allel solutions, Constantinides [2009]. In Soudbakhsh and
Annaswamy [2013] an extended Parallel Cyclic Reduction
algorithm is used to reduce the computation to smaller
systems of equations that are solved in parallel. The com-
putational complexity of this algorithm is reported to be
O (logN), where N is the prediction horizon. Laird et al.
[2011], Zhu and Laird [2008] and Reuterswärd [2012] adopt
a time-splitting approach to split the prediction horizon
into blocks. The subproblems in the blocks are connected
through common variables and are solved in parallel using
Schur complements. The common variables are computed
via a consensus step where a dense system of equations in-
volving all common variables has to be solved sequentially.

In O’Donoghue et al. [2013] a splitting method based on
Alternating Direction Method of Multipliers (ADMM) is
used, where some steps of the algorithm can be computed
in parallel. Stathopoulos et al. [2013] develop an iterative
three-set splitting QP solver. In this method the prediction
horizon is split into smaller subproblems that can be solved
in parallel and a consensus step using ADMM is performed
to obtain the final solution.

In this paper there are two main contributions. First,
it is shown that an equality constrained MPC problem
of prediction horizon N can be reduced in parallel to a
new, smaller MPC problem on the same form but with
prediction horizon p < N . Since the new problem also
has the structure of an MPC problem, it can be solved
in O(p). Second, by repeating the reduction procedure it
can be shown that an equality constrained MPC problem
corresponding to the Newton step can be solved non-
iteratively in parallel, giving a computational complexity
growth as low as O (logN). The major computational
effort when solving an MPC problem is often spent on
computing the Newton step, and doing this in parallel
as proposed in this paper significantly reduces the overall
computational effort of the solver.

In this article, Sn++ (Sn+) denotes symmetric positive (semi)
definite matrices with n columns. Furthermore, let Z be
the set of integers, and Zi,j = {i, i+ 1, . . . , j}. Symbols in
sans-serif font (e.g. x) denote vectors of stacked element.
The product operator is defined as∏t1

t=t0
At , At1 · · ·At0 . (1)

Definition 1. For a set of linear constraints Ax = b, the
linear independence constraint qualification (LICQ) holds
if the constraint gradients are linearly independent, i.e. if
A has full row rank. When LICQ is violated it is referred
to as primal degeneracy.
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2. PROBLEM FORMULATION

The optimization problem that is solved at each sample in
linear MPC is a convex QP problem in the form

min.
x,u

N−1∑
t=0

(1

2

[
xTt uTt

]
Qt

[
xt
ut

]
+ lTt

[
xt
ut

]
+ ct

)
+

1

2
xTNQNxN + lTNxN + cN

s.t. x0 = x̄0
xt+1 = Atxt +Btut + at, t ∈ Z0,N−1
ut ∈ Ut, t ∈ Z0,N−1,

(2)

where the equality constraints are the dynamics equations
of the system, and Ut is the set of feasible control signals.
In this paper, let the following assumptions hold for all t

Assumption 1. Ut consists of constraints of the form
ut,min ≤ ut ≤ ut,max , i.e. upper and lower bounds on
the control signal.

Assumption 2.

Qt =

[
Qx,t Qxu,t
QTxu,t Qu,t

]
∈ Snx+nu

+ , Qu,t ∈ Snu
++, QN ∈ Snx

+ .

(3)

The problem (2) can be solved using different methods, see
e.g. Nocedal and Wright [2006]. Two common methods are
interior-point (IP) methods and active-set (AS) methods.
IP methods approximate the inequality constraints with
barrier functions, whereas the AS methods iteratively
changes the set of inequality constraints that hold with
equality until the optimal active set has been found. In
both types, the main computational effort is spent while
solving Newton-system-like equations often corresponding
to an equality constrained MPC problem with prediction
horizon N (or to a problem with similar structure)

P(N) :

min.
x,u

N−1∑
t=0

(1

2

[
xTt uTt

]
Qt

[
xt
ut

]
+ lTt

[
xt
ut

]
+ ct

)
+

1

2
xTNQNxN + lTNxN + cN

s.t. x0 = x̄0
xt+1 = Atxt +Btut + at, t ∈ Z0,N−1.

(4)
Even though this problem might look simple and irrelevant
it is the workhorse of many optimization routines for
linear, nonlinear and hybrid MPC. P(N) is the resulting
problem after the equality constraints corresponding to
active control signal constraints have been eliminated as
in an AS method (only control signal constraints are
considered). Note that ut and the corresponding matrices
have potentially changed dimensions from (2). Further, let
the following assumption hold (without loss of generality)

Assumption 3. LICQ holds for (4).

3. PROBLEM DECOMPOSITION

The structure of the equality constrained MPC prob-
lem (4) can be exploited by splitting it into smaller sub-
problems that only share a small number of common
variables. Given the value of the common variables, the
subproblems can be solved individually. These smaller sub-
problems are obtained by splitting the prediction horizon
in p+1 intervals i ∈ Z0,p (each of length Ni) and introduc-
ing initial constraints x0,i = x̂i for each subproblem and
terminal constraints xNi,i = di for i ∈ Z0,p−1. The con-
nections between the subproblems are then given by the

coupling constraints x̂i+1 = di for i ∈ Z0,p−1. Let xt,i and
ut,i denote the states and control signals in subproblem i
and let the indices of the matrices be defined analogously.
For notational aspects, and without loss of generality, the
terminal state di is parametrized as di = Âix̂i+ B̂iûi+ âi,
where x̂i ∈ Rnx and ûi ∈ Rnû with nû ≤ nx are the
common variables. The choice of this notation will soon
become clear. Then, the MPC problem (4) can be cast in
the equivalent form

min.
x,u

p∑
i=0

Ni−1∑
t=0

(1

2

[
xTt,i u

T
t,i

]
Qt,i

[
xt,i
ut,i

]
+ lTt,i

[
xt,i
ut,i

]
+ ct,i

)
+

1

2
xTNp,pQNp,pxNp,p + lTNp,pxNp,p + cNp,p

s.t. x̂0 = x̄0

∀ i ∈ Z0,p


x0,i = x̂i
xt+1,i = At,ixt,i +Bt,iut,i + at,i,

t ∈ Z0,Ni−1
xNi,i = di = Âix̂i + B̂iûi + âi, i 6= p

x̂i+1 = di = Âix̂i + B̂iûi + âi, i ∈ Z0,p−1.
(5)

Note that the first initial state x̂0 is equal to the initial
state of the original problem (4). For i ∈ Z0,p−1 the
individual subproblems in (5) are given by

min.
x,u

Ni−1∑
t=0

(1

2

[
xTt,i u

T
t,i

]
Qt,i

[
xt,i
ut,i

]
+ lTt,i

[
xt,i
ut,i

]
+ ct,i

)
s.t. x0,i = x̂i

xt+1,i = At,ixt,i +Bt,iut,i + at,i, t ∈ Z0,Ni−1

xNi,i = Âix̂i + B̂iûi + âi.
(6)

Here i is the index of the subproblem. The last subproblem
i = p is on the same form (6) but with the additional term

1

2
xTNp,pQNp,pxNp,p + lTNp,pxNp,p + cNp,p (7)

in the objective function, and no constraint on xNp,p.

Temporarily excluding details, each subproblem (6) can be
solved parametrically and the solution to each subproblem
is a function of the common variables x̂i and ûi (x̂p for
i = p). By inserting these parametric solutions of all
subproblems in (5) and using the coupling constraints
between the subproblems, problem (5) can be reduced to
an equivalent master problem

P(p) :

min.
x̂,û

p−1∑
i=0

(1

2

[
x̂Ti ûTi

]
Q̂i

[
x̂i
ûi

]
+ l̂Ti

[
x̂i
ûi

]
+ ĉi

)
+

1

2
x̂Tp Q̂px̂p + l̂Tp x̂p + ĉp

s.t. x̂0 = x̄0

x̂i+1 = Âix̂i + B̂iûi + âi, i ∈ Z0,p−1.
(8)

Here Q̂i, l̂i and ĉi are computed in each subproblem and
represent the value function. The dynamics constraints in
the master problem are given by the coupling constraints
between the subproblems in (5). This new MPC problem
is on the same form as the original equality constrained
problem (4), but with prediction horizon p < N . The
reduction of the problem is summarized in Theorem 1
and is graphically depicted in Fig. 1, where the dotted
lines represents repetition of the structure. This approach
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x̂0, û0, V̂0 x̂j , ûj , V̂j x̂p, V̂p

P0(N0) Pj(Nj) Pp(Np)

P(p) :

P(N) :

Fig. 1. The parameters x̂i and ûi in each subproblem i can be
interpreted as new state and control variables in the reduced
MPC problem with prediction horizon p. The value functions
V̂i(x̂i, ûi) are the terms in the new objective function.

is similar to primal decomposition, Lasdon [1970], Boyd
et al. [2008], where the p + 1 subproblems share common
variables x̂i and ûi that are computed iteratively. In the
work presented in this paper the common variables are
however not computed iteratively but instead determined
directly by solving the new, reduced MPC problem at the
upper level in Fig. 1. Inserting the optimal x̂i and ûi (x̂p
for i = p) into the subproblems given by (6) gives the
solution to (4).

Theorem 1. Consider an optimization problem P(N) de-
fined in (4) where Assumption 3 holds. Then P(N) can be
reduced to P(p) in parallel, where 1 ≤ p < N . The optimal
solution X∗ and λ∗ to P(N) can be computed in parallel

from the solution X̂∗ and λ̂∗ to P(p).

Proof. For the proof of Theorem 1, see Appendix A.1.

In the remainder of this section it will be shown how the
subproblems (6) are solved parametrically and how the
matrices needed in (8) are computed.

3.1 Solution of the subproblems

In this section, it will be shown that each subproblem
i ∈ Z0,p given by (6) can be solved parametrically and that
the solution can be expressed as a function of the common
variables x̂i and ûi for i ∈ Z0,p−1 and x̂p for i = p.

For now it is assumed that LICQ holds for (6). The
optimization problem can be cast in a more compact form

min.
Xi

1

2
XT
i QiXi + lTi Xi + ci

s.t. AiXi = bi + Giθi,

(9)

by defining θi , [x̂Ti û
T
i ]T and

Xi ,
[
xT0,i u

T
0,i . . . x

T
Ni,i

]T
, λi ,

[
λT0,i . . . λ

T
Ni,i

λTtc,i
]T

, (10)

Qi , diag
(
Q0,i, ..., QNi−1,i, 0

)
, li ,

[
lT0,i . . . l

T
Ni−1,i 0

]T
, (11)

Ai ,



−I 0 · · · · · · 0

A0,i B0,i −I 0 · · ·
...

0 0 A1,i · · ·
...

...
. . . 0

...
... ANi−1,i BNi−1,i −I

0 · · · · · · 0 −I


, ci ,

Ni−1∑
t=0

ct,i,

(12)

bi , −
[
0 aT0,i . . . a

T
Ni−1,i â

T
i

]
, Gi , −

[
I 0 . . . 0 ÂTi
0 0 . . . 0 B̂Ti

]T
(13)

The dual variables λi in the subproblem are introduced as

λ0,i ↔ x0,i = x̂i (14)
λt+1,i ↔ xt+1,i = At,ixt,i +Bt,iut,i + at,i, t ∈ Z0,Ni−1

(15)

λtc,i ↔ xNi,i = Âix̂i + B̂iûi + âi. (16)

The symbol ↔ should be interpreted as λ being the
dual variable corresponding to the respective equality
constraint.

Note that (9) is a very simple multiparametric quadratic
programming problem with parameters θi and only equal-
ity constraints. Hence the optimal primal and dual solution
to this problem are both affine functions of the parame-
ters θi, Tøndel et al. [2013].

Remark 1. Since the simple parametric programming
problem (9) is subject to equality constraints only it is not
piecewise affine in the parameters. Hence, the solution to
the equality constrained problem can be computed cheaply
and it does not suffer from the complexity issues of a
general multiparametric programming problem.

Since LICQ is assumed to hold, the unique optimal primal
and dual solution can be expressed as

X∗i (θi) = Kx
i θi + kxi , (17)

λ∗i (θi) = Kλ
i θi + kλi , (18)

for some Kx
i , kxi , Kλ

i and kλi , and where i denotes the index
of the subproblem. The value function of (6) is obtained
by inserting the parametric primal optimal solution (17)
into the objective function in (9), resulting in

V̂i(θi) =
1

2
θTi Q̂iθi + l̂Ti θi + ĉi, (19)

where Q̂i = (Kx
i )TQiK

x
i , l̂Ti = lTi K

x
i + (kxi )TQiK

x
i and

ĉi = ci + 1
2 (kxi )TQik

x
i + lTi k

x
i .

The last subproblem given by (6) with the additional
term (7) in the objective function is different from the p
first subproblems since there is no terminal constraint on
xNp,p. Hence the parametric solution of this subproblem
only depends on the initial state x̂p, and λp, Qp, lp, cp,
Ap, bp and Gp in (10) to (13) are modified accordingly.
The derivation of the solution is analogous to the one
for the subproblems i ∈ Z0,p−1, but with θp = x̂p. The
unique optimal primal and dual solution is hence given
by (17) and (18), and the value function is given by (19)
(all with i = p).

3.2 Solution of a primal degenerate subproblem

The terminal constraint in a subproblem given by (6)
introduces nx new constraints, which might result in an
infeasible subproblem or that LICQ is violated for the
subproblem even though this is not the case in the original
problem (4). According to Definition 1, violation of LICQ
is known as primal degeneracy and the dual variables
for a primal degenerate problem are non-unique, Tøndel
et al. [2013]. In this section it will be shown how to
choose the parameter in the terminal constraint to obtain a
feasible subproblem and also how to choose dual variables
of subproblem i that satisfy the optimality conditions of
the original problem (4).

Since the subproblem is feasible only if there exists a
solution to AiXi = bi + Giθi it is required that bi +
Giθi ∈ R (Ai). This is satisfied if the terminal constraint
is chosen carefully, which means that it has to be known
which θi that will give a feasible solution. To do this,
the dynamics constraints in subproblem i can be used to
compute the final state in subproblem i given the control
signals ui and the initial state x̂i as

xNi,i = Aix̂i + Siui +Diai, (20)

where
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Ai ,
∏Ni−1
t=0 At,i, Di ,

[∏Ni−1
t=1 At,i · · · ANi−1,i I

]
(21)

Si ,
[∏Ni−1

t=1 At,iB0,i · · · ANi−1,iBNi−2,i BNi−1,i
]

(22)

and ai and ui are the stacked at,i and ut,i for t ∈ Z0,Ni−1.
The feasibility of the subproblem can be ensured by a
careful selection of the parametrization of the problem. In
this work this is performed by requiring that the final state
satisfies the terminal constraint xNi,i = di = Âix̂i+B̂iûi+
âi, where di is within the controllable subspace given by
Ai, Si and Diai. This can be assured by requiring

Âi = Ai, B̂i = Ti, âi = Diai, (23)

where the columns of Ti form a basis for the range space
of Si. (Note that for a non-degenerate problem, Âi = 0,

B̂i = I and âi = 0 are valid choices since Si has full row
rank.) By using this parametrization, the master problem
can only use parameters that will result in a feasible
subproblem.

The optimal parametric primal and dual solution to a
primal degenerate problem on the form (9) are given
by (17) and

λ∗i (θi) = Kλ
i θi + kλi + λNi , (24)

where λNi ∈ N
(
AT
i

)
, Tøndel et al. [2013]. The null space

N
(
AT
i

)
is given by Lemma 2.

Lemma 2. The null space of AT
i is given by

N
(
AT
i

)
= {z | z = Ziwi, ∀wi ∈ N

(
STi
)
}, (25)

where

Zi ,
[
−Âi −Di I

]T
, (26)

and Si is the controllability matrix.

Proof. For the proof of Lemma 2, see Appendix A.2.

Remark 2. Note that Zi is computed cheaply since the
matrices Âi and Di are already computed.

The dual variables of (5) are introduced by (14)-(16) for
each subproblem, and by

λ̂−1 ↔ x̂0 = x̄0 (27)

λ̂i ↔ x̂i+1 = Âix̂i + B̂ix̂i + âi, i ∈ Z0,p−1, (28)

for the coupling constraints that connect the subproblems
in (5). Note that λtc,i in (16) is the dual variable corre-
sponding to the terminal constraint in each subproblem,
whereas (28) are the dual variables corresponding to the
coupling constraints between the subproblems (interpreted
as the dynamics constraints in the reduced MPC prob-
lem (8)). Hence, λtc,i is computed in the subproblem, and

λ̂i is computed when (8) is solved. This is depicted in
Fig. 2 where the upper level corresponds to problem (8)
and the lower level to problem (5). For primal degenerate
subproblems, the dual solution is non-unique. In order to
choose dual solutions to the subproblems that satisfy the
optimality conditions of the original problem (4), the rela-
tions between the dual variables of different subproblems
are studied. These relations are given by Theorem 3 and
Corollary 4.

Theorem 3. Consider an MPC problem on the form (5)
where Assumption 3 holds. Let the dual variables be
defined by (14), (15), (16), (27) and (28). Then the
relations between the optimal dual solutions in different
subproblems are given by

x0,i xNi,i xNj ,jx0,j xNp,px0,p︸︷︷︸
λ0,i

︸︷︷︸
λtc,i

︸︷︷︸
λ0,j

︸︷︷︸
λ0,p

︸︷︷︸
λtc,j

λ̂i︷ ︸︸ ︷ λ̂j︷ ︸︸ ︷
x̂i, ûi x̂j , ûj x̂p

P(N) :

P(p) :

Fig. 2. The dual variables λ̂i in the reduced problem are related to
the dual variables λtc,i and λ0,i+1 in the subproblems.

λ0,p = λ̂p−1 (29)

λ0,i = λ̂i−1 − ÂTi
(
λtc,i + λ̂i

)
, i ∈ Z0,p−1 (30)

B̂Ti

(
λtc,i + λ̂i

)
= 0, i ∈ Z0,p−1 (31)

λNi,i = −λtc,i, i ∈ Z0,p−1, (32)

where Âi and B̂i are defined by (23).

Proof. For the proof of Theorem 3, see Appendix A.3.

Corollary 4. Let the assumptions in Theorem 3 be sat-
isfied, and let LICQ hold for all subproblems i ∈ Z0,p.
Then the optimal dual variables in the subproblems are
unique and the relations between the dual solutions in the
subproblems are given by

λ0,i = λ̂i−1, i ∈ Z0,p (33)

λtc,i = −λ̂i = −λ0,i+1, i ∈ Z0,p−1 (34)

λNi,i = −λtc,i = λ0,i+1, i ∈ Z0,p−1. (35)

Proof. Let LICQ hold for all subproblems i ∈ Z0,p in (5).
Then N

(
AT
i

)
= ∅, i ∈ Z0,p and the dual solution is

unique. Furthermore,

rank(Si) = nx ⇒ Ti = B̂i non-singular⇒ (36)

{Using (31) in Theorem 3} ⇒ λtc,i = −λ̂i. (37)

Inserting (37) into (30) and (32) gives λNi,i = λ0,i+1, i ∈
Z0,p−1, and λ0,i = λ̂i−1, i ∈ Z0,p by also using (29).

Lemma 2 is used to choose the null space element λNi
in (24) to obtain the correct dual solution for subproblem i.
According to the lemma λNi can be computed as λNi =
Ziwi, wi ∈ N

(
STi
)
, giving the optimal dual variables for

subproblem i as

λ∗i (θi, wi) = Kλ
i θi + kλi + Ziwi, wi ∈ N

(
STi
)
. (38)

Let γi = Kλ
i θi+k

λ
i be the dual solution when the minimum

norm null space element is selected, and let λ̂i be given
by the dual solution to problem (8). Then it follows from
Theorem 3 that

γ0,i = λ̂i−1 − ÂTi (γtc,i + λ̂i), i ∈ Z0,p−1 (39)

B̂Ti (γtc,i + λ̂i) = 0, i ∈ Z0,p−1 (40)

γNi,i = −γtc,i, i ∈ Z0,p−1. (41)

To obtain the same optimal dual solution λi as for the
original problem, the freedom in the choice of the dual
variables from (38) is exploited, i.e.,

λi = γi + Ziwi. (42)

In order to obtain the relation λNi,i = λ̂i = λ0,i+1 as in the

non-degenerate case, (30)-(32) give that λtc,i = −λ̂i must
hold. The last block in (26) and (38) gives λtc,i = γtc,i+wi,
and based on this wi is chosen as

wi = −(γtc,i + λ̂i) ∈ N
(
STi
)
⇒ λtc,i = −λ̂i. (43)
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P0
0 (N0

0 ) P0
i (N0

i ) P0
j (N0

j ) P0
p0

(N0
p0

)

P1
0 (N1

0 ) P1
p1

(N1
p1

)

Pm0 (Nm
0 )

P(N) :

P(p0) :

P(pm−1) :

Fig. 3. The tree structure obtained when the MPC problems are
reduced in several steps. Each level in the tree forms an MPC
problem that is again split into several smaller problems.

Note that (40) gives that wi ∈ N
(
B̂Ti

)
= N

(
STi
)
. By

using this choice of wi in the optimal dual solution (38)
together with (26), (39) and (41) the following hold

λ0,i = γ0,i + λN0,i = γ0,i − ÂTi wi = λ̂i−1, i ∈ Z0,p−1 (44)

λNi,i = γNi,i + λNNi,i = −γtc,i − wi = λ̂i, i ∈ Z0,p−1 (45)

Hence, the chosen dual solution of subproblem i satisfies
the optimality conditions for (4) if it is computed as

λ∗i (θi, λ̂i) = Kλ
i θi+kλi −Zi(γtc,i+ λ̂i) = γi−Zi(γtc,i+ λ̂i).

(46)
The dual solution to the original problem can be retrieved
from (46) for i ∈ Z0,p−1 and (18) for i = p.

4. PROBLEM REDUCTION IN PARALLEL

Theorem 1 states that the original problem P(N) can
be solved by first reducing it to P(p) with p < N , and
then solve the smaller P(p) to determine the optimal
parameters of the subproblems. However, P(p) can instead
be reduced again to an even smaller MPC problem, and in
this section Theorem 1 will be used repeatedly to obtain
a problem structure that can be solved in parallel. This
can be summarized in a tree structure, see Fig. 3. Let
the MPC problem at level k be denoted P(pk−1), and let
Pki (Nk

i ) be the i:th subproblem with prediction horizon
Nk
i at level k. The problem P(pk−1) is reduced to the

equivalent P(pk) by solving all subproblems Pki (Nk
i ), i ∈

Z0,pk parametrically according to Section 3. Since all of
the subproblems Pki (Nk

i ) are independent, this can be
done in parallel. The reduction of the MPC problem
is continued until a problem with the minimal desired
prediction horizon pm−1 = Nm

0 is obtained.

The original problem P(N) is solved by first reducing
the problem in m steps until P(pm−1) is obtained, and
thereafter propagating the solution of P(pm−1) down to
level k = 0. Since information is exchanged between
parents and children only, the optimal solution to each
Pki (Nk

i ) can be computed individually from the other
subproblems at level k. Hence, this can be performed in
parallel.

Remark 3. Note that at each level k in the tree in Fig. 3,
the common variables for level k−1 are computed. Hence,
the consensus step to decide the common variables are
done in one iteration and it is not necessary to iterate to
get consensus between the subproblems as in many other
methods.

5. PARALLEL COMPUTATION OF NEWTON STEP

The theory presented in this paper is summarized in
Algorithms 1 and 2. The algorithms can be used to
compute the Newton step which is defined by the solution
to (4). This is where most computational effort is needed
when solving (2). The computations can be performed

using several processors, and the level of parallelism can
be tuned to fit the hardware, i.e. the number of processing
units, memory capacity, bus speed and more. The level
of parallelism is decided by adjusting the number of
subproblems at each level in the tree in Fig. 3.

5.1 Algorithms for parallel Newton step computation

The algorithm for solving P(N) in parallel is based on
two major steps; reduce the MPC problem in several steps
while building the tree and propagate the solution from
the top level downwards to the bottom level. In both steps
standard parallel numerical linear algebra could be used to
parallelize further, e.g. matrix multiplications, backward
and forward substitutions and factorizations. This paper
focuses on parallelization using the inherent structure of
the MPC problem, and the discussion about possibilities to
parallelize the computations will be limited to this scope.

The first step, to construct the tree in Fig. 3, is sum-
marized in Algorithm 1. Since all subproblems are inde-
pendent of each other, the parfor-loop on Line 8 to 12 in
Algorithm 1 can be performed in parallel on different pro-
cessors. Let pmax be the maximum number of subproblems
at any level in the tree. Then, if there are pmax processors
available, all subproblems Pki (Nk

i ) at level k can be solved
simultaneously.

Algorithm 1 Parallel reduction of MPC problem
1: Initiate level counter k := 0
2: Initiate the first number of subsystems p−1 = N
3: Set the minimal number of subproblems pmin

4: while pk > pmin do
5: Compute desired pk to define the number of subproblems

(with pk < pk−1)
6: Split the prediction horizon 0, . . . , pk−1 in pk + 1 segments

0, . . . , Nk
0 up to 0, . . . , Nk

pk
7: Create subproblems i = 0, . . . , pk for each time block
8: parfor i = 0, . . . , pk do
9: Solve subproblem i parametrically and store Kx

i ,

kxi , Kλ
i and kλi

10: Compute Âi, B̂i, âi, Q̂i, l̂i and ĉi for the next level
11: Compute and store Zi
12: end parfor
13: Update level counter k := k + 1
14: end while
15: Compute maximum level number k := k − 1

The second step is to propagate the solution from the top
down in the tree until the bottom level is reached. This is
summarized in Algorithm 2. Since all subproblems in the
tree only use information from their parents, the parfor-
loop at Line 4 to Line 10 can be computed in parallel.
As for the first step, if there is one processor for each
subproblem, all problems at each level in the tree can be
solved simultaneously.

The equality constrained problem (4) was formed by
eliminating the inequality constraints in (2) that hold
with equality. The dual variables ν corresponding to these
eliminated constraints are important in e.g. AS methods
and can be computed as

νi,t = QTxv,t,ixt,i +QTuv,t,iut,i +BTv,t,iλt,i + lv,t,i +QTv,t,ivt,i,
(47)

for t ∈ Z0,Ni−1 for each subproblem i = Z0,p. Here vt,i are
the values of the eliminated control signals in (2). For the
derivation of this expression, see e.g. Axehill [2008]. The
computation of ν is described in Algorithm 3, which can
be performed in parallel if pmax processors are available.
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Algorithm 2 Parallel propagation of solution
1: Initialize the first parameter as x̄0
2: Get level counter k from Algorithm 1
3: while k ≥ 0 do
4: parfor i = 0, . . . , pk do
5: Compute primal solution given by (17)
6: Compute dual solution given by (18)
7: if Primal degenerate subproblem
8: Select the dual solution according to (46)
9: end if

10: end parfor
11: if k==0 then
12: Compute νi according to Algorithm 3
13: end if
14: Update level counter k := k − 1
15: end while

Algorithm 3 Compute eliminated dual variables
1: parfor i = 0, . . . , p0 do
2: parfor t = 0, . . . , Ni − 1 do
3: Compute νi according to (47).
4: end parfor
5: end parfor

Note that each νt,i in each subproblem can be computed
in parallel if even more processors are available.

So far no assumptions on the length of the prediction
horizon of each subproblem has been made. If however
the lengths of each subproblem is fixed to Ns, and the
prediction horizon of the original problem is chosen as
N = Nm+1

s for simplicity, then the tree will get m+ 1 lev-
els. Furthermore, assume thatNm

s processors are available.
Then, since m = logNs

(N)− 1, the computational com-
plexity grows logarithmically in the prediction horizon, i.e.
as O (logN). The optimal length Ns of the subproblems
can be adjusted to fit the hardware which the algorithms
are implemented on. Depending on the number of proces-
sors, the available memory and the communication delays
between processors, the size of Ns might be adjusted.

5.2 Numerical results

The proposed algorithm for computing the Newton step
has been implemented in Matlab and used to solve ran-
dom stable MPC problems in the form (4). The algorithm
has been implemented serially, and the parallel computa-
tion times are simulated by summing over the maximum
solution time at each level in the tree. Hence, memory
and communication delays have not been addressed but
are assumed small in comparison to the cost of the com-
putations. In the implemented algorithm Kx

i , kxi , Kλ
i and

kλi are computed using the methods proposed in Tøndel
et al. [2013]. The implementation faced some numerical
issues when unstable LTI systems where used, and these
issues have not yet been addressed. Hence, stable systems
have been used to evaluate performance.

The numerical results for the algorithm when solving New-
ton steps for problems with nx = 15, nu = 10 and Ns = 2
are seen in Fig. 4. The computation times are averaged
over several runs. Here, the proposed algorithm has been
compared to a well known state-of-the-art serial algorithm
based on the Riccati factorization from e.g. Axehill [2008]
which is known to have O (N) complexity growth. From
the figure, the linear complexity of the Riccati based algo-
rithm is evident. It is not obvious from this plot that the
complexity grows logarithmically for this implementation
of the proposed parallel algorithm. However, it can be
observed that the computational time required by the
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Fig. 4. Averaged computation times for the parallel solution of
P(N). It is compared to a serial Riccati algorithm with O (N)
complexity.

parallel algorithm is significantly less and the growth of
the computational complexity is much lower.

The simulations were performed on an Intel Core i7-3517U
CPU @ 1.9GHz running Windows 7 (version 6.1, build
7601: Service Pack 1) and Matlab (8.0.0.783, R2012b).

6. CONCLUSIONS

In this paper a new algorithm for computing Newton steps
for MPC problems in parallel has been presented. It has
been shown that the corresponding equality constrained
MPC problem can be reduced in parallel to a new problem
on the same form but with shorter prediction horizon. By
repeating this in several steps, a tree structure of small
MPC problems with short prediction horizons is obtained
and can efficiently be solved in parallel. The proposed
algorithm computes the Newton step arising in MPC
problems in O (logN) complexity growth. In numerical
experiments it has been shown that the proposed parallel
algorithm outperforms an existing well known state-of-
the-art serial algorithm. For future work, MPC problems
with general linear constraints will be addressed, and if
the stability assumption can be removed if for example a
pre-stabilization technique is employed.

Appendix A. PROOFS

The original equality constrained MPC problem is given
by (4), where

lt =
[
lTx,t l

T
u,t

]T
, (A.1)

and λt+1 is the dual variable corresponding to the equality
constraint xt+1 = Atxt+Btut+at. Then the KKT system
gives the following equations for t ∈ Z0,N−1

Qx,txt +Qxu,tut + lx,t − λt +ATt λt+1 = 0 (A.2)

QTxu,txt +Qu,tut + lu,t +BTt λt+1 = 0 (A.3)

xt+1 = Atxt +Btut + at (A.4)

x0 = x̄0, QNxN + lN − λN = 0 (A.5)

The extended problem that is composed of p+ 1 subprob-
lems that share the common variables is given by (5). The
common variables x̂i and ûi are introduced as optimization
variables in the extended problem. Let the dual variables
for the subproblems i ∈ Z0,p be defined by (14)-(16), (27)
and (28). Then the corresponding KKT system of this
extended problem consists of the following equations (for
all subproblems i ∈ Z0,p)

Qx,t,ixt,i +Qxu,t,iut,i + lx,t,i − λt,i +ATt,iλt+1,i = 0
(A.6)

QTxu,t,ixt,i +Qu,t,iut,i + lu,t,i +BTt,iλt+1,i = 0 (A.7)
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for t ∈ Z0,Ni−1. For the last subproblem there is also an
equation corresponding to the last term in the objective
function

QNp,pxNp,p + lNp,p − λNp,p = 0. (A.8)

Furthermore, the relation between the dual variables λNi,i,

λ0,i, λtc,i and λ̂i for i = 0, . . . , p− 1 are given directly by
the KKT system

λ0,p = λ̂p−1 (A.9)

λ0,i = λ̂i−1 − ÂTi (λtc,i + λ̂i), t ∈ Z0,p−1 (A.10)

B̂Ti (λtc,i + λ̂i) = 0, t ∈ Z0,p−1 (A.11)

λNi,i = −λtc,i, t ∈ Z0,p−1. (A.12)

The primal feasibility constraints that must be satisfied
in the KKT system are given by the equality constraints
in (5).

A.1 Proof of Theorem 1

The reduction of P(N) to P(p) with p < N follows directly
from the theory presented in Section 3.

The optimal primal variables in subproblem i and i + 1
are related as x∗0,i+1 = x∗Ni,i

, whereas the dual variables

given by (46) are related according to (33)-(35). The
primal variables in the subproblems satisfy the equality
constraints in (5), and hence, by using x∗0,i+1 = x∗Ni,i

,

also the equations (A.4). By inserting (33)-(35) into (A.6)
and (A.7) and using x∗0,i+1 = x∗Ni,i

, the resulting equations

are identical to (A.2) and (A.3). Hence, the solution to the
system of equations defined by (33)-(35) and (A.6)-(A.8)
is a solution to the original KKT system of the problem
in (4). Assumption 3 gives uniqueness of the solution and
the unique optimal solution to (4) can hence be computed
from X∗i and λ∗i for i ∈ Z0,p.

A.2 Proof of Lemma 2

The null space of AT
i is given by all λNi such that AT

i λ
N
i =

0, which can be expressed as

− λNt,i +ATt,iλ
N
t+1,i = 0, t ∈ Z0,Ni−1 (A.13)

BTt,iλ
N
t+1,i = 0, t ∈ Z0,Ni−1 (A.14)

λNNi,i = −λNtc,i. (A.15)

Equation (A.13) and (A.15) can be combined into

λNi =
[
λN ,T0,i . . . λN ,Ttc,i

]T
=
[
−Âi −Di I

]T
λNtc,i, (A.16)

where Âi and Di are defined as in (21). By using (A.14),
λNtc,i has to satisfy λNtc,i ∈ N

(
STi
)
. For notational conve-

nience, let wi = λNtc,i and define Zi as

Zi ,
[
−Âi −Di I

]T
. (A.17)

Then the null space element λNi is computed as

λNi = Ziwi, wi ∈ N
(
STi
)
. (A.18)

A.3 Proof of Theorem 3

Consider an MPC problem (5). Then the relations between
the optimal dual variables in different subproblems are
directly given by (A.9)-(A.12) by writing down the KKT
system.
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P. Reuterswärd. Towards Pseudospectral Control and Estimation.
PhD thesis, Lund University, 2012.

D. Soudbakhsh and A.M. Annaswamy. Parallelized model predictive
control. In Proceedings of the American Control Conference,
Washington DC, USA, 2013.

G. Stathopoulos, T. Keviczky, and Y. Wang. A hierarchical time-
splitting approach for solving finite-time optimal control prob-
lems. In Proceedings of the European Control Conference, pages
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