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AbstractRao-Blackwellied particle filter is a stochastic filter combining Kalman filters with
particle filters. It is suitable for models that could be decomposed into linear and nonlinear
part. Since the conditionally linear part can be solved by the Kalman filter, the sequential Monte
Carlo is run only on the non-linear subspace. The resulting algorithm is a parallel evaluation
of multiple Kalman filters with resampling. The parallel nature of this algorithm allows for
very efficient implementation in hardware supporting parallel computation processes. In this
contribution, we present implementation of the algorithm in the Field Programmable Gate
Array (FPGA). Due to the used model and optimized implementation, the execution time of
the filter is in units of microseconds and scales very favorably with the number of particles. This
is demonstrated experimentally on a laboratory prototype of sensorless drive with permanent
magnet synchronous machine (PMSM) of rated power of 10.7kW.

Keywords: Particle filtering/Monte Carlo methods; Software for system identification;
Adaptive control -applications

1. INTRODUCTION

Control of systems with incomplete state observation is
typically based on the use of state estimator or observer.
The theory of observer design is very rich with many well
known algorithms (Simon, 2006). A prominent example of
a state observer is the (extended) Kalman filter that is
often used in practice (Qin and Badgwell, 2003). However
the Kalman filter is known to be unsuitable for non-linear
and especially for non-Gaussian systems (Ristic et al.,
2004). The particle filter (Gordon et al., 1993) was pro-
posed as a more general algorithm for estimation of such
systems. However, computational cost of the particle filter
is typically much greater than that of the Kalman filter for
the same system. The computation cost typically prevents
its use in real-time application, or high-dimensions. Com-
putational speed of the particle filter in low dimensions can
be improved by the use of dedicated hardware (Athalye
et al., 2005). However, its use in high dimensions is still
very problematic (Quang et al., 2010).
Rao-Blackwellization is a technique that allows to improve
accuracy of a particle filter in cases where the system
permits for an analytical solution (Doucet et al., 2000),
yielding a Rao-Blackwellized particle filter (RB-PF). This
theory has been applied to state-space model in (Schön
et al., 2005) under the name marginalized particle filter
and has been successfully applied in many applications
especially in target tracking and communications. How-
ever, its application in real-time control is still rare. One

reason is that the RB-PF is still considered to be too
computationally expensive.
In this paper, we show that the RB-PF can be efficiently
implemented on a field programmable gate array (FPGA)
which is nowadays a standard component of real-time
control systems. Both key elements of the agorithm, i.e.
the Kalman filter and the particle filter, has already been
implemented in FPGA, in (Lee and Salcic, 1997) and
(Athalye et al., 2005), respectively. Implementation of
the RB-PF algorithm without the resampling operation
was already published in (Šmídl et al., 2013). In this
contribution, we present implementation of the complete
algorithm including systematic resampling.
Performance of the algorithm is demonstrated on the task
of sensorless control of a PMSM drive. Sensorless drive
control is a task of speed, torque or position control of a
drive without speed or position sensor on the rotor (Vas,
1998). We will show that the presented algorithm is able
to operate the drive even at ultra-low speed. All presented
experiments were made on a laboratory prototype of rated
power of 10.7kW.

2. RAO-BLACKWELLIZED PARTICLE FILTERING

Rao-Blackwellized particle filtering is a technique of
Bayesian filtering, where all unknowns are represented by
probability density functions (distributions). By Bayesian
Filtering we mean the recursive evaluation of the filtering
distribution, p(xt|y1:t), using Bayes rule:
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p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1) , (1)

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (2)

where p(x1|y0) is the prior distribution, and y1:t =
[y1, . . . , yt] denotes the set of all observations.
Equations (1)–(2) are analytically tractable only for a
limited set of models. The most notable example of an
analytically tractable model is linear Gaussian for which
(1)–(2) are equivalent to the Kalman filter. For other
models, (1)–(2) need to be evaluated approximately.

2.1 Kalman filtering

An important special case of the Bayesian filtering is the
Kalman filter. The filter is derived for a linear model with
Gaussian distributed errors:

xt ∼N (Axt−1, Q),
yt ∼N (Cxt, R), (3)

where A and C are matrices of system dynamics and
observation operator, respectively. Q and R are covariance
matrices of appropriate dimensions. The posterior distri-
bution (1) is then approximated by:

p(xt|y1:t) ≈ N (x̂t, Pt). (4)
Its statistics x̂t, Pt are evaluated recursively as follows:

x̂t =Ax̂t−1 −K (yt − Cx̂t−1) . (5)
Ry =CPt−1C

′ +Rt, (6)
K = St−1C

′R−1
y , (7)

Pt = St−1 − St−1C
′R−1
y CSt−1, (8)

St =APtA
′ +Qt. (9)

An important quantity for further development in this
work is the predictive density of the observations

p(yt|y1:t−1) = N (Cx̂t−1, Ry). (10)

2.2 Particle filtering

The particle filtering is based on approximation of the
posterior (1) by an empirical probability density function

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ(x1:t − x(i)

1:t), (11)

where x(i)
1:t, i = 1, . . . , N , are samples of the state space

trajectory. Assimilation of the measured data is then
achieved via sampling-importance-resampling procedure,
where the weights can be computed recursively,

w
(i)
t ∝ w

(i)
t−1

p(yt|xt)p(xt|xt−1)
q(xt|yt)

. (12)

Good proposal function and resampling strategy are nec-
essary steps preventing degeneracy of the particle filter
(12), Doucet et al. (2001). We will implement the sys-
tematic procedure since it can be implemented in one
sweep through the particles with O(N) complexity. The
principle of the resampling procedure is demonstrated in
Figure 1. The first step is to evaluate the number of
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Figure 1. Illustration of the systematic resampling algo-
rithm.

copies for each particle. This is achieved by generating
N “random” samples, s0 . . . sN between zero and one. The
key idea of systematic resampling is to randomly choose
only the first number s0 from interval

〈
0, 1

N

〉
and then

create a deterministic grid with step size si = si−1 +
1/(N + 1). The number of copies of the ith particle is
given by the number of indexes j for which it holds that∑i−1
i=1 wi < sj <

∑i
i=1 wi.

However, the resampling operation introduces an addi-
tional stochastic variance of the estimates and it is ad-
vantageous to perform it only when necessary. The most
common condition for resampling is evaluation of the effec-
tive sample size neff =

(∑n
i=1(w(i)

t )2
)−1

and triggering
the resampling operation only when it falls under a chosen
threshold (e.g. neff < 0.9n).

2.3 Rao-Blackwellized particle filtering

Approximation (11) is unnecessary if the system has a
linear Gaussian part (Schön et al., 2005). In such a case,
it is possible to split the state into linear and non-linear
part, xt = [xlt, xnt ], such that

xlt+1 =A(xnt )xlt +B(xnt )ut + εl,t, (13)
xnt+1 = f(xt, ut, εn,t), (14)
yt =C(xnt )xlt +Dut + εy,t. (15)

Here, εl,t and εy,t are assumed to be Gaussian-distributed
with zero mean and known covariance matrix. Function
f() is an arbitrary non-linearity and εn,t can have an ar-
bitrary distribution. Note that if xnt was known, equations
(13) and (15) form a linear Gaussian model that can be
estimated by the Kalman filter. The resulting estimate
would be in the form of Gaussian density with mean and
covariance conditioned on the non-linear state.
The idea of the RB-PF is to approximate the posterior
density of the non-linear part by the empirical density
(11). The full posterior density is then approximated by
the chain rule of probability calculus as follows:

p(xlt, xnt |y1:t) = p(xlt|xn1:t, y1:t)p(xnt |y1:t),

=
n∑
i=1

w
(i)
t N (x̂l(i)t , P

(i)
t )δ(xn(i)

t − xnt ).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8670



Algorithm 1 Algorithm of the Rao-Blackwellized particle
filter.
Initialize: generate x̂l(i)0 , P

(i)
t , x

n(i)
0 and set w(i)

0 = 1/N .
On-line: At each time step:
(1) For each particle:

(a) Predict non-linear part of the state using (14),
(b) Evaluate A(xn(i)), B(xn(i)), C(xn(i)),
(c) Execute the Kalman filter (5)–(9) to obtain

ω
(i)
t , P

(i)
t .

(d) Evaluate non-normalized weight w̃t, (10) and
auxiliary variables for required moments e.g.∑
w̃tx̂t.

(2) Normalize weights wt=w̃t/
∑n
i=1 w̃t and required mo-

ments,
(3) Evaluate the number of offsprings for each particle

using systematic resampling,
(4) Copy the particles with more than one offspring to

the positions of particles without offsprings.

Here, xn(i)
t , i = 1, . . . n, are the samples from the non-

linear state and N (x̂l(i)t , P
(i)
t ) is the posterior density of

the ith Kalman filter associated with the ith particle of
the non-linear state. The weight

w
(i)
t ∝ p(yt|y1:t−1, x

n(i)
t )w(i)

t−1,

is proportional to the marginal likelihood of the associated
Kalman filters (10). Estimates of the unknown state are
typically evaluated as the first moment:

x̂t =
∑
i w̃

(i)
t x̂

(i)
t∑

i w̃
(i)
t

.

Remark 1. Theoretical optimal performance of the parti-
cle filter is achieved for perfect random sampling. This
may be difficult to implement in real-time and also poten-
tially undesired due to different results of estimation for
different realization of the random samples. Therefore, we
intentionally draw samples of ‘random variables’ from a
buffer of stored values of fixed length.

3. FPGA IMPLEMENTATION OF THE RB-PF

Algorithm 1 is intentionally written in four steps. Each of
these steps will be implemented as a block of the FPGA,
the first two blocks are implemented as a pipeline. The
advantage of this solution is that all data goes through
the same calculation process and no additional FPGA
resources are needed when the number of particles is
increased.
All calculations are done in floating-point format, not the
IEEE 754 standard, but a shorter type with 5 bits for the
exponent and 16 bits for the mantisa. This reductions of all
number representations saves a lot of FPGA resources and
increases the calculation speed, at the price of reduced ac-
curacy and lower dynamic range. However, this reduction
is still sufficient for evaluation of the RB-PF algorithm.
In our implementation, the data acquisition and the con-
trol algorithm is implemented in the DSP which simpli-
fies and speed-up control design and saves the FPGA
resources. The DSP sends the observed quantities and the
calculated actions to the FPGA via the I/O buffer and
triggers computation of the RB-PF estimates. It also reads

Figure 2. Block diagram of the FPGA implementation of
the RB-PF algorithm. Dashed lines denote pipelined
blocks of the algorithm.

the results of RB-PF calculation and uses the estimated
states as inputs to the controller. The architecture of
the hardware implementation of RB-PF is displayed in
Fig. 2. The first component is the above described I/O
buffer, where all variables and constants are stored. It is
interconnected with the DSP via a 16-bit data and 9-bit
address bus, with maximum data transfer rate depending
on the DSP speed. The I/O buffer also contains status and
control register, which is used for triggering the calculation
and signaling errors or calculation state. The next blocks of
FPGA implementation of RB-PF are described in details
in the following sections.

3.1 Particle prediction and correction

The first pipeline of the algorithm evaluates particle pre-
diction and correction. The first part is the particle gen-
erator. Its function is to mark each particle going through
the pipeline. This marking allows to detect the last particle
reaching the end of the pipeline, which finishes the calcu-
lation process. As shown in Fig.3, two additional particles
are present, one at the beginning and one at the end. These
two particles are not used in the calculation, but they
ensure correct evaluation of the particles between them.
Specifically, the first particle leads the way through the
pipeline. Since it is the first particle in the pipeline, all
pipeline stages are pointing to this particle and change
its value until another particle number gets in, therefore
this particle is corrupted and contains incorrect values.
The same issue is with the last particle, which closes the
pipeline. The particle generator also adds a random sample
to each particle xn(i)

t before it is send it to the matrix
update block. The random number is not generated by
the hardware, but it is predefined in a ROM table, which
saves the FPGA resources. The ROM table is implemented
as a large buffer of samples from the chosen probability
distribution. Each draw of the random number shifts the
actual position of the buffer. The length of the buffer is
chosen as a large prime number (997 in our case) to extend
the generator period as long as possible. The sine and
cosine functions are not calculated either, but are also pre-
calculated in the ROM table. Sine table consists of 8192
values that describes a quarter of the sine wave, which
implies resolution of 0.01°. The internal logic only chooses
the requested value of the argument. This solution allows
both sine and cosine calculation being done in one clock
tact.
The block of the Kalman filter was implemented using
manually tuned evaluation of equations (5)–(10) for a one
dimensional state and two dimensional observation. For
higher dimensional Kalman filters, it may be advantageous
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Figure 3. Wave diagram of the FPGA implementation of the RB-PF algorithm. Arrows point to the instant where
blocks of the algorithm from Figure 2 starts.

to use more general techniques described e.g. in (Su-
darsanam, 2010). The implemented Kalman filter consist
of many addition and multiplication, taking altogether 26
clock tacts. The weight evaluation block contains the most
expensive operation of the algorithm, the exp function.
This function was implemented using Altera MegaWizard
manager. To achieve maximum calculation speed, the exp
function is clocked by both the rising and falling edge and
it takes only 9 clock tacts instead of 18 when single edge
clocked.
This block also evaluates accumulators of

∑
i w̃

(i)
t for

normalization,
∑
i(w̃

(i)
t )2 for evaluation of neff , and∑

i w̃
(i)
t x̂t for state estimate.

3.2 Normalization and resampling

The sum of the particle weights is accumulated in the
previous pipeline. When the last particle reaches the end
of the previous pipeline, their sum is ready and a weight
normalization pipeline is started to divide all weights by
their sum. At the same time the particle with the highest
weight value is selected in the estimation block and it’s
estimate is sent into the I/O buffer, the calculation_done
flag is set, signaling that the state estimate is ready for
use by the DSP for calculation of the control action. After
the weight normalization, the number of efficient particles
is calculated and compared to the selected threshold
level, and the resampling step is started if needed. The
resampling block is not pipelined but implemented as a
state machine with states: (i) initialization, (ii) update of
the current sample si, (iii) comparison with cumulative
sum of the weights, (iv) delete particle, and (v) copy
particle. States (ii)-(v) are evaluated N times, taking one
tact of the clock each time.

4. EXPERIMENTAL RESULTS

The presented implementation was developed for applica-
tion of the RB-PF for sensorless control of PMSM drive,
which was presented in (Šmídl and Peroutka, 2012). We
briefly review specific forms of the general equations in
Section 2.

4.1 RB-PF for the PMSM drive

A commonly used model of a PMSM is the following first
order model for time step ∆t:

id,t+1 = adid,t + bdiq,tωt + cdud,t + εd,t, (16)
iq,t+1 = aqiq,t − fqωt − bqid,tωt + cquq,t + εq,t, (17)

ωme,t+1 = ωme,t + εω,t, (18)
ϑe,t+1 = ϑe,t + ωme,t∆t+ εϑ,t. (19)

Here, id, iq, ud and uq represent components of stator
current and voltage vector in the rotating reference frame,
respectively; ωme is electrical rotor speed and ϑe is elec-
trical rotor position. Constants ad, aq, bd, bq, cd, cq, and
fq and known parameters of a particular machine. Noise
terms εd,t, εq,t, εω,t, εϑ,t, aggregate errors caused by inac-
curate discretization, uncertainties in parameters (e.g. due
to temperature changes, saturation), unobserved physical
effects (such as the unknown load, dead-time effects, non-
linear voltage drops on power electronics devices).
We will use a reduced order model of the PMSM drive, i.e.
the state variable being only xt = [ωme,t, ϑe,t]. The state
equations are (18)–(19) and (16)–(17) are the observation.
Since we observe only the stator currents in stationary
reference frame, iα,t and iβ,t, they are transformed into
the rotating d-q reference frame as follows:

id,t = iα,t cosϑe,t + iβ,t sinϑe,t, (20)
iq,t = −iα,t sinϑe,t + iβ,t cosϑe,t. (21)

This transformation is done for each particle with an-
gle ϑ

(i)
e,t. The measurement errors are assumed to be

non-correlated Gaussian with variances var(εd,t) = ri,
var(εq,t) = ri.
Such a model is a special case of the model (13)–(15) with
assignments xl ≡ ωme, xn ≡ ϑe, and

A = 1,
yt = [id,t − adid,t−1 − cdud,t−1,

iq,t − aqiq,t−1 − cquq,t−1]T ,
C = [bdiq,t,−(fq + bqid,t)]T .

4.2 Field oriented control of the drive

The drive control is based on the conventional vector
control (cascade PI control) in Cartesian coordinates in
rotating reference frame (d,q) linked to a rotor flux linkage
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Figure 4. Investigated sensorless control of a PMSM drive with the proposed RB-PF

vector, Fig. 4. An input to the drive controller is the
commanded electrical rotor speed ωmew which is controlled
by the PI controller Rω. Output of Rω is the demanded
torque component Isqw of the stator current vector. The
torque (Isqw) and flux (Isdw) currents are controlled by
the PI controllers RIsd and RIsq, respectively. The flux
weakening is secured by the PI controller RUrm which
controls the PWM modulation depth (signal Urm) and
commands the flux current Isdw. The current controllers
are supported by feed-forward voltage calculation (block
‘voltage calculation’) which computes the components of
the required stator voltage vector in (d,q) frame using
a simplified model of the PMSM in steady-state. The
components of the stator current vector (isα, isβ) and the
reconstructed stator voltage vector usα, usβ in the station-
ary reference frame are inputs to the RB-PF. The stator
voltage vector is reconstructed from the measured dc-link
voltage and known switching combination of the voltage-
source converter. The RB-PF output is the estimated
electrical rotor speed ω̂me and the electrical rotor position
ϑ̂e.

4.3 Experimental evaluation

The proposed sensorless drive control with the presented
implementation has been tested on a laboratory prototype
of PMSM drive of rated power of 10.7kW. The sampling
period of the controller was 125 µs. The developed pro-
totype of the PMSM drive was during the experimental
tests operated in both sensored and sensorless mode. All
results are obtained with the RB-PF with 5 particles and
covariance matrices qω = 0.1, qϑ = 0.003, r = 0.05.
The drive was operated in both sensored and sensorless
mode under a triangular speed profile with the com-
manded mechanical rotor speed of ±50 rpm. Results of
estimation of the RB-PF in open loop (sensored mode)
are displayed in Fig. 5 left and sensorless mode in Figure
5 right. Note that the drive trajectory in the sensorless
mode of control is almost identical to that in the sensored
mode.

In comparsion with the traditional EKF, the RB-PF was
able to achieve lower speed of secure operation. However,
reliable operation at standstill was not yet achieved. We
investigate the use of more complex models of the drive
with linear structure (13), e.g. . Implementation of such
model in the presented scheme would require to replace
only the first step of Algorithm 1, all other steps would be
implemented identically.

5. CONCLUSION

The need for reliable state observers arises commonly in
control of systems with imperfect observation. The Rao-
Blackwellized particle filter has been shown to be an
efficient estimator for many practical problems. However,
its use in real-time control is still limited. One reason is
its perception as a computationally costly algorithm. In
this paper, we have demonstrated that this algorithm can
be implemented efficiently on a field programmable gate
array (FPGA). Due to parallel nature of the RB-PF, its
computational cost is comparable to implementation of a
Kalman filter for the same model. The most attractive
feature of the proposed FPGA implementation is its linear
increase of the computational speed with the number
of particles. Specifically, an additional particle extends
computational time of the algorithm by five tacts of
the FPGA clock. This allows to implement the filter for
problems with high sampling frequency.
Feasibility of the presented implementation was demon-
strated on the problem of sensorless control of a PMSM
drive. The model of the drive is suitable for approximation
by the RB-PF. The proposed implementation of the RB-
PF algorithm allowed to test real-time performance of the
closed loop with many more particles than ever before.
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