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Abstract: In this paper, a new hierarchical data-driven modelling strategy based on Interval Type-2 

Fuzzy Clustering is elicited for the Interval Type-2 Takagi-Sugeno-Kang (TSK) Fuzzy Logic System. 

This framework which we have called the IT2-Squared framework uses interval type-2 fuzzy clustering 

for initial antecedent parameters and structures determination and least-squares algorithm for deriving 

initial consequent parameters. To improve the accuracy of the system, we show how the steepest descent 

algorithm is used to tune the parameters of both the consequent and antecedent parameters. To test the 

efficacy of this proposed system, the model is used on a real-life engineering project for the prediction of 

the ultimate tensile strength (UTS) of steel. Results show excellent generalization properties of the IT2-

Squared modelling framework when compared to previously elicited models of the same system.  
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I.  INTRODUCTION 

     Fuzzy rule-based modelling has been shown to be 

particularly effective when expert knowledge of a system is 

vast and/or when an interpretable system is sought from the 

data. By expert knowledge, we mean those systems where we 

have extensive human understanding (Wang et al., 2012a). 

There exists a plethora of techniques for modelling type-1 

fuzzy logic systems (T1 FLSs) in the literature. However, 

Type-2 fuzzy modelling is a relatively new area of research 

because it was not until relatively recently that the complete 

theory of type-2 fuzzy sets (      ) and systems was 

developed (Karnik et al., 1999 and Mendel, 2001) even 

though they had been introduced as far back as 1975 (Zadeh, 

1975) to tackle the paradox of handling uncertainties with 

crisp fuzzy membership functions (MFs) in Type-1 Fuzzy 

Sets (T1 FSs). A T2 FS has a MF that is itself a fuzzy set and 

a type-2 fuzzy logic system (T2 FLS) is a FLS with at least 

one of the membership functions (MFs) being a T2 FS 

(Karnik et al., 1999). 

    This extra dimension allows T2 FLSs to potentially 

provide better modelling capabilities than T1 FLSs especially 

in the presence of system noise and uncertainties. The price 

to pay for this better uncertainty handling is that T2 FLSs are 

more computationally demanding than their T1 counterparts 

mainly because of the added block in the output processing 

stage called the type-reducer (TR) (Fig. 1). However, this 

increased computational burden might be a small expense to 

pay when a more robust system is desired. Moreover, 

computational feasibility of T2 FLS is greatly enhanced by 

using the interval type-2 approach (Liang et al., 2000).  

    The purpose of this paper is to provide a new relatively 

computationally inexpensive and systematic approach to 

modelling an Interval Type-2 Fuzzy System (IT2 FLS) from 

data. We start by determining the structure of the system by 

clustering the data following a similar approach used by 

Delgado et al., 1997. However, here, we take into 

consideration a source of uncertainty involving the fuzzifier 

  which regulates the degree of overlap amongst the clusters 

when fuzzy c-means (FCM) clustering technique is used to 

elicit the initial structure of fuzzy models.  

    To achieve this, we follow a similar procedure introduced 

in Choi et al., 2009 by making use of the interval type-2 

fuzzy clustering algorithm developed by Rhee et al., 2007 to 

elicit the initial structure of the antecedent structure of the 

interval type-2 fuzzy logic system (IT2 FLS). This is a detour 

from the popular method of randomly initialising the width of 

the IT2 Fuzzy Sets (IT2 FSs) after having used FCM for the 

initial structure determination with the fuzzifier value set to a 

constant value (usually set to 2) (Delgado et al., 1997 and 

Wang et al., 2012b). 

     It is argued in this report that this systematic approach to 

finding these initial parameters has the potential to helping 

one build a more optimal fuzzy system especially when no 

further parameter tuning is performed. Even when the initial 

system is further optimised, local optima methods may return 

solutions that are equal or not far off from global optimum 

solutions. (Park et al., 2001) i.e. by making use of IT2 fuzzy 

clustering, good clustering results are returned and invariably 

good modelling performances.  

    Two most popular FLSs used today are the Mamdani and 

Takagi-Sugeno-Kang (TSK) FLSs (Mendel, 2001). Our paper 

is focused on the latter. Methods based on orthogonal least-

squares (Mendel, 2001) and fuzzy clustering (Babuska et al., 

1995) have particularly found interesting applications in 

modelling TSK fuzzy systems.  

    Our approach follows that obtainable in the method 

proposed in Delgado et al., 1997 and Babuska et al., 1995 

which involves first finding the structure of model using 

FCM clustering and further optimising these parameters. 

They applied this technique to a T1 FLS while we apply it to 

an IT2 FLS. The modelling paradigm involves first selecting 

the initial antecedent structure using IT2 fuzzy clustering and 

then the least-squares approach is used to derive initial 

consequent parameters by making use of the Nie-Tan (NT) 

defuzzification method (Nie et al., 2008). Finally, the whole 

system is optimised using steepest descent. 
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     In building this framework, we have made some necessary 

assumptions. For example, in deriving the steepest descent 

algorithm, we have used the product t-norm to find the firing 

interval of each input rules antecedent. This will be made 

clearer by some sets of equations in the succeeding sections. 

    The rest of this paper is organised as follows: Section II 

briefly introduces IT2 FLSs and the methodologies involved 

in IT2 fuzzy clustering. The methodologies involved in this 

new data modelling framework are presented in section III. 

Results and findings are then succinctly presented in section 

IV. And the conclusion of this paper and future works 

presented in section V. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Conventional Type-2 FLS.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Type-2 FLS with Nie-Tan Defuzzification. 

 

II. INTERVAL TYPE-2 FUZZY SYSTEMS 

 

A.  Interval Type-2 Fuzzy Logic Systems 

 

(i) Interval Type-2 Fuzzy Sets 

    Because of the much reduced computational burden, we 

have used the IT2 FLS. The IT2 FLS has the same structure 

as that of the general T2 FLS, but instead of using general T2 

FSs, the fuzzy sets are IT2 FSs. An Example of an IT2 FS is 

given in fig. 3a. IT2 FSs are still able to handle uncertainties 

as their membership functions are no longer crisp but a type-

1 interval as shown in fig. 3b.  Mathematically, an        

can be expressed as follows: 

 

 

 

    Where   is the primary variable and its measurement 

domain denoted by  ;   is the secondary domain variable 

      at each     ,    is the primary membership of  . 

The footprint of uncertainty (FOU) is the union of all the 

embedded T1 FSs which is marked by the grey area in fig. 

3a. This grey area is bounded by an upper membership 

function (UMF) and a lower membership function (LMF). 

The primary MFs of an IT2 FLS may be any of the convex 

IT2 FSs such as the triangular, trapezoidal or Gaussian. 

However, the latter is usually utilised in fuzzy modelling as it 

meets the requirements of the continuity and smoothness of 

mapping when using FLSs as a universal approximator 

(Wang et al., 2012b). 

 

 
 

 

 

Fig. 3. An example of an IT2 Fuzzy Set. 

 

In this research, our proposed modelling framework uses the 

Gaussian primary membership function (MF) of fixed mean 

and uncertain spread i.e. 

 

 

 

 

Where   and  ̅ are its associated LMF and UMF. 

 

(ii) Inference 

    Given an IT2 TSK FLS with   inputs,            
                and one output       and the rule based 

composing of   rules, with the  th rule   ̃  expressed as: 

 ̃   IF    is  ̃ 
  and    is  ̃ 

  ... and    is  ̃ 
 , THEN 

  is                  

 ̃ 
  and     represent the  th antecedent IT2 membership 

function and the consequent of the  th rule for           

and          respectively. The primary MF of the  th 

antecedent is denoted by  
 ̃ 

    .  ̃ 
   ̃ 

   ̃ 
  are IT2  

antecedent fuzzy sets.        is a crisp value defined as 

follows: 

 

 

Where                   are the consequent parameters 

for           
 

(iii) Type Reduction and Defuzzifcation  

    This is the last block of an IT2 FLS and it is where the 

more tasking computational effort of an IT2 FLS is incurred. 

In a TSK FLS (T1 or T2) each fired rule, denoted by   , 

represents a scaled FS in the output domain. The defuzzifier 

obtains a single set by using a certain weighted average 

method.  

    Conventionally, an ITS FLS is that obtained in fig. 1. The 

TR stage involves reducing the T2 FSs into a T1 FS at the 

consequent. If IT2 FSs are used in the system, then this 

reduces to a T1 interval after TR. To find this type reduced 

set, the KM algorithms are used to find the left (L) and right 

(R) end points. These two points are then averaged to find the 
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final output of the system. Closed form of an IT2 FLS is 

practically impossible. (Karnik et al., 1999). 

    The second approach which allows finding a closed form 

solution of the IT2 FLS was developed by Nie et al, 2008 and 

is used in this research. Using this method the output 

processing block reduces to a single block of output 

processing. The closed form for this IT2 FLS may be 

expressed by (4). Unfortunately, this simple closed form of 

an IT2 FLS loses its ability to ascertain uncertainty involved 

in the final computed output values. 

 

 

 

 

Where  ̂ is the final defuzzified value,    is as prior defined. 

    For the Gaussian primary MF of fixed mean and uncertain 

spread and product T-norm,   ̅ and   ̅ are defined as: 

 

 

 

or          and         .    
  is the primary 

membership grade of the     antecedent of the     rule. 

In matrix form, (4) may be rewritten as follows: 

 

 

Where r is a cx1column vector of 1’s. F is a cx1 vector. 

 

B. Interval Type-2 Fuzzy Clustering 

    The IT2 fuzzy clustering proposed by Rhee et al., 2007 

presents a systematic way of choosing the widths of the 

initial IT2 FSs. A brief illustration of this technique as shown 

in fig. 4, involves ‘determining     and    ’ which 

automatically helps one select the initial width, centre and 

spread of the antecedent MFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Interval Type -2 FCM Algorithm. 

III. METHODOLOGY 

    The IT2-Squared has 3 stages as shown in fig. 5. We now 

describe each of the stages in this new IT2 FLS modelling 

framework. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Stages involved in our IT2 FLS Modelling framework. 

 

A. Stage 1- Initial Antecedent Structure and Parameters 

    As mentioned earlier, in this stage of the modelling 

process, the initial structure and parameters of the antecedent 

MFs are obtained through the use of the IT2 FCM algorithm. 

The parameters of these antecedent MFs are found by 

projecting the UMF and LMF found from the fuzzy clusters 

to each input subspaces. This approach follows directly from 

that obtainable in Babuska et al., 1995 which uses this 

approach to find the antecedent initial parameters of a T1 

FLS. The centres and widths (consequently the variances) are 

gotten from the fuzzy means and fuzzy variances respectively 

of each input dimension after clustering. For detailed 

discussions of how these antecedent parameters may be 

found from the input subspaces projections, the reader is 

advised to consult Babuska et al., 1995 and Delgado et al, 

1997. Fig. 6 shows a synthetic data in two dimensions and 

the projections in each dimension for a fixed mean and 

uncertain standard deviation IT2 FS after using the IT2 FCM 

to cluster the data (2 clusters/2 rules). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Synthetic data projections.  
 

B. Least-Squares for the Consequent Part  

    The least-squares and its variants are popular choices for 

finding the consequent parameters of a T1 TSK FLS. 

However, its use in finding that for a T2 FLS has been 

somewhat limited owing the non-closed-form-compatibility 

of T2 FLS when we are using the iterative KM algorithm in 

finding the final output of the T2 FLS. N-T method of 
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defuzzification may help one solve this problem since it is 

very similar to that of T1 FLS. Below, we show how, when 

using the N-T method of defuzzification, and after having 

found the initial antecedent parameters, we may find the 

consequent parameters of an IT2 FLS using least-squares.  

(4)  may be re-expressed as follows: 

 

 

 

Where 

  

Let  

 

Also Let 

 

 for              , then 

 

 

Where   is a column is vector of     for         

        and   is a column vector of associated parameters. 

Least- squares parameter estimation leads to, 

 

  
Where   is a column vector of measured output data is   is 

the design matrix. 
 

C. Stage 3- Steepest Descent Optimisation 

    In Mendel 2004, the derivatives for an IT2 FLS when 

making use of the KM algorithm to type- reduce the FLS 

were derived. In this paper, following similar procedures, we 

derive the steepest descent algorithm for an IT2 FLS but this 

time using the NT method of defuzzification. The 

disadvantage of using this type of defuzzification is that the 

measure of output uncertainty we get when using the KM 

algorithm is absent. All derivations may be found in the 

Appendix. We summarise our final answers in this section. 

For the particular antecedent or consequent parameter 𝜏, its 
update formula is: 
 
 
 
 

Where  ̂ is the model output and   is the real output. The 

challenge is to find the derivatives of   with respect to the 

design parameter we wish to update.  

 

(i) Antecedent Parameters 

The update formula for the antecedent parameters (Gaussian 

primary MF of fixed mean and uncertain spread) is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
  is the  th parameter of the  th antecedent of the  th rule. 

for          ,           and         . 

 

(ii) Consequent Parameters 

 

 

 

    is the  th consequent parameter of the  th rule, for 

           and          .  

 

(iii) Manual Adjustment 

     When validating the elicited model, some data points may 

fall way off outside the error band (10%). To improve 

generalization, the response surface close to where there is 

‘output outlier’ is adjusted manually. This technique involves 

feeding in the input of this ‘outlier’ and then adjusting the 

fired rules values in an iterative way until the difference 

between the predicted and the real output at this ‘outlier’ 

point is reduced as much as possible. For example in fig. 7c1, 

predicted output was way more than the real output for one of 

the data points (outside the error band). We took that data 

point and fed it into the trained model. We checked for rules 

which were fired and adjusted the MFs in each input space so 

that the particular rules which were fired have less firing 

strength. Since we were using a Gaussian primary MF, we 

reduced the spread of the some input space components so 

that the fired rules have less firing strength. This was done on 

a trial and error basis. It should be emphasized that the 

manual adjustment which may slightly reduce the overall 

performance of the system with respect to the training data 

may be necessary as we are concerned primarily with 

eliciting a model with excellent generalization capabilities 

 

IV. RESULTS 

 

    The proposed modelling framework is tested with a real 

world engineering application associated with the mechanical 

property prediction of hot rolled steels. The performance 

index considered to evaluate the obtained fuzzy models is the 

root square-mean error        defined by (18): 
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Fig. 7. Performances of the IT2-Squared framework.  

(1)  Before Manual Adjustment (2) After Manual Adjustment 

 

    The heat treatment of hot-rolled steel is a complex high 

dimensional non-linear process lacking in theoretical analysis 

which may help to accurately predict a specific mechanical 

property of steel alloys. However, there is extensive human 

knowledge. In the past, some data-driven models were 

developed to assist metallurgists to design alloys (Wang et 

al., 2012a). One of the goals of these models is to predict the 

Ultimate Tensile Strength (UTS) which is a common measure 

of metal strength. A total of 3760 data samples collected from 

the industry are used in these models and in our research. 

These data samples include 15 inputs and one output (UTS). 

12 data points which are completely removed for the initial 

data set were used for validation of the final model. The 12 

data points were used because, according to the experts, this 

is the main test of generalisation properties of any elicited 

model. Six rules (clusters) were found from data using our 

elicited framework which follows the number of clusters 

found in the literature. The input and output variables of 

interest are given in table I.  Prediction performance of our 

elicited model is shown in fig. 7. Our results are also 

compared with those available in the literature (Panoutsos et 

al., 2005 and Wang et al., 2012b). 

    The IT2-Squared framework shows consistency throughout 

the three data sets which is what is desired of a model with 

good generalization capability. There was a slight decrease in 

training and testing RMSE after adjusting the response 

surface but this is not critical as the performance is still better 

than previously elicited models as shown in table II. It should 

be noted that the main strength of the elicited model is the 

ability to generalise across the training, testing and validation 

data sets. 

 

Table I Input and Output Variables.  

 

 Input Variables Output Variable 

1 Test Depth (mm) 

Ultimate Tensile 

Strength (UTS) 

in MegaPascal 

(MPa) 

2 Size (mm) 

3 Site Number 

4 Carbon (%) 

5 Silicon (%) 

6 Manganese (%) 

7 Sulphur (%) 

8 Chromium (%) 

9 Molybdenum (%) 

10 Nickel (%) 

11 Aluminium (%) 

12 Vanadium (%) 

13 Hardening Temperature (
o
C) 

14 Cooling Medium 

15 Temperature (
o
C) 

 

 

Table II Comparison of our methods with those found in the 

Literature for the prediction of UTS of steel (RMSE).  

 

Method Training Testing Validation 

IT2_Squared 34. 45 38.76 37.34 

MOIT2FM 36.33 40.52 34.77 

IMOFM_M 46.47 45.12 49.87 

 

 

V. CONCLUSION 

 

    In this paper, a new framework for data-driven IT2 FLS is 

developed. Stages 1 and 2 of this new framework involve 

using the IT2 fuzzy clustering for finding the initial 

parameters of the antecedent MFs and then using least- 

squares to find the consequent parameters. We also showed 

how to derive the steepest descent algorithm for an IT2 FLS 

when the NT defuzzification method is used. To improve 

generalisation, we manually adjusted the response surface to 

fit in those data points that were not predicted well on a trial 

and error basis. Future works will involve automating this 

last stage of the process. 
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APPENDIX 

 

(a)   Derivatives of Antecedent Parameters 
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(b) Derivatives Consequent Parameters 
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