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Abstract: The intention of the paper is to demonstrate the beauty of geometric interpretations
in robust control. We emphasize Klein’s approach, i.e., the view in which geometry should be
defined as the study of transformations and of the objects that transformations leave unchanged,
or invariant. We demonstrate through the examples of the basic control tasks that a natural
framework to formulate different control problems is the world that contains as points the
equivalence classes determined by the stabilizable plants and whose natural motions are the
Möbius transforms. Transformations of certain hyperbolic spaces put light into the relations
of the different approaches, provide a common background of robust control design techniques
and suggest a unified strategy for problem solutions. Besides the educative value a merit of
the presentation for control engineers might be a unified view on the robust control problems
that reveals the main structure of the problem at hand and give a skeleton for the algorithmic
development.

1. INTRODUCTION AND MOTIVATION

Geometry is one of the richest areas for mathematical
exploration. The visual aspects of the subject make explo-
ration and experimentation natural and intuitive. At the
same time, the abstractions developed to explain geomet-
ric patterns and connections make the approach extremely
powerful and applicable to a wide variety of situations.

In the nineteenth century development of the Bolyai-
Lobachevsky geometry, as the first instance of non-
euclidean geometries, had a great impact on the evolution
of mathematical thinking. Non-Euclidean geometry has
turned out to be more than just a logical curiosity, and
many of its basic features continue to play important roles
in several branches of mathematics and its applications.

The non-Euclidean world is something that escapes our
everyday view and its rules and behaviors are only made
accessible by some auxiliary tools, the so called models,
that help our imagination and understanding. It happens
that the main building blocks of these models has a certain
relevance for systems and control theory as well, see, e.g.,
Helton [1980, 1982], Khargonekar and Tannenbaum [1985],
Hassibi et al. [1999], Allen and Healy [2003].

Early approaches of the H∞ theory were formulated in
the frequency domain, and the solution of multivariate
interpolation problems played the central role. The con-
struction amounts to finding solutions to Nevanlinna-Pick
interpolation problems, which is related, at a mathemati-
cal level, to the Schwarz lemma. The later is a statement
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on the relationship between the properties of analyticity
and a hyperbolic metric on the disk. In these develop-
ments rational inner functions (finite Blaschke products)
are central objects and, due to the time invariant setting,
a characterization of shift invariant subspaces in terms of
(rational) inner functions – a Krein space generalization
of the Beuerling–Lax theorem – was the main ingredient
of the approach, see, e.g., Helton [1978, 1987].

All these topics involves an advanced mathematical ma-
chinery in which often the underlying geometrical ideas
remain hidden. The aim of the paper is to highlight some
of these geometric governing principles that facilitate the
solution of these problems. We try to avoid the technical
details which can be found in the cited references.

In many of Euclid’s theorems, he moves parts of figures
on top of other figures. Felix Klein, in the late 1800s,
developed an axiomatic basis for Euclidean geometry that
started with the notion of an existing set of transforma-
tions and he proposed that geometry should be defined
as the study of transformations (symmetries) and of the
objects that transformations leave unchanged, or invari-
ant. This view has come to be known as the Erlanger
Program. The set of symmetries of an object has a very
nice algebraic structure: they form a group. By studying
this algebraic structure, we can gain deeper insight into
the geometry of the figures under consideration. Another
advantage of Klein’s approach is that it allows us to relate
different geometries. In this paper we put an emphasize on
this concept of the geometry and its direct applicability to
control problems.

Section 2 lists some basic features of hyperbolic geometry
relevant to our presentation. We are not going to elaborate
the hyperbolic geometry in details, just highlight some
facts illustrated through the Poincaré disc model of this ge-
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ometry. For a more detailed elaboration of the subject, see,
e.g., Gans [1973], Kelly [1981], Anderson [2005]. Section
3 presents the Klein view through the projective matrix
space. The material is based on Schwarz and Zaks [1981,
1985]. The relevance of this model to control problems is
detailed in Section 4.

2. ELEMENTS OF HYPERBOLIC GEOMETRY

To visualize hyperbolic geometry, we have to resort to
a model. In the Poincaré model the hyperbolic plane is
the unit disk, and points are Euclidean points. Lines are
portions of circles intersecting the disk and meeting the
boundary at right angles. The angles for the model are
the same as Euclidean angles. A model with the property
that angles are faithfully represented is called a conformal
model. A hyperbolic circle is drawn as a Euclidean circle,
but its center becomes lopsided toward the outer edge of
the unit disk.

Since the reciprocal has a problem at z = 0, the complex
plane is extended to the Riemann sphere (one-point com-

pactification) denoted by Ĉ = C + {∞}. Given a matrix

M =

(
a b
c d

)
with det(M) = ad − bc = 1 one can define

a special fractional-linear transformation of the Riemann
sphere, the Möbius transformation, as µM (z) = az+b

cz+d .
Every Möbius transformation is a bijection of the Riemann
sphere and they form a group, i.e., µM ◦ µN = µMN and
µ−1
M = µM−1 .

The geometrical meaning of the parameters a, b, c, d is
not so easy to determine, even if we normalize them to
ad− bc = 1. Define the cross ratio as

%(p; q, r, s) =
(p− q)
(p− s)

(r − s)
(r − q)

.

Then the Möbius transformation can be written in the
cross ratio form µM (z) = %(z; z0, z1, z2) with

z0 = −b/a, z1 = (d− b)/(a− c), z2 = −d/c.
Three points determine the Möbius transformation: given
(z0, z1, z2) defining a cross ratio, the corresponding Möbius
transformation is µM (z) = m z−z0

z−z2 with

M =

(
m −mz0

1 −z2

)
, m =

z1 − z2

z1 − z0
.

The cross ratio is invariant under the Möbius transforma-
tion: %(z0; z1, z2, z3) = %(w0;w1, w2, w3) if wi = µM (zi).

Möbius tranformations that map the unit disc D onto
itself form a subgroup, the hyperbolic group. They can be
written as Vα,θ(z) = eiθBα(z) where α ∈ D and Bα(z) =
z−α
1−ᾱz is an elementary Blaschke function. Substitution

reveals that Bα(α) = 0, Bα(α1) = 1 and Bα(α∞) = ∞,
where α1 = 1+α

1+ᾱ and α∞ = 1
ᾱ . Note that α∞ is the point

symmetric to α with respect to the unit circle. |Bα(z)| = 1
on the unit circle |z| = 1 and |z| < 1 ⇒ |Bα(z)| < 1 and
|z| > 1⇒ |Bα(z)| > 1.

Four points lie on the same circle (line) if and only if
their cross ratio is a real number. Thus, if the points
z1, z2 are inside the unit disk, and ω0, ω1 (omega points)
are on on the unit circle, then the function dH(z1, z2) =
| log(%(z1, ω0, z2, ω1))| is a candidate to measure the dis-
tance. Indeed: %(0,−1, r, 1) = 1−r

1+r , i.e., dH(0, r) = log 1+r
1−r .

Observe that the map r 7→ 1+r
1−r sends the interval [0, 1) to

[1,∞). Since the points 0, z lie on a diameter, it’s omega
points are given by ± z

|z| . Thus

dH(0, z) = | log(%(0,− z

|z|
, z,

z

|z|
))| = log(

1 + |z|
1− |z|

).

The hyperbolic translation z−z1
1−z̄1z takes z1 7→ 0 and z2 7→

z2−z1
1−z̄1z2 . Then the general formula follows as:

dH(z1, z2) = 2 arctanh | z2 − z1

1− z̄1z2
|. (1)

We often prefer to use the pseudo-hyperbolic distance
pH(u, v) = | v−u1−ūv | since it is algebraic whereas the expres-
sion for dH is not. The main difference is that the pseudo-
hyperbolic distance is not additive along geodesics.

Hyperbolic geometry has no preferred points, but in the
Poincaré disk model, however, the origin has a very special
role. Similarly for diameters, especially the one on the real
axis. Since hyperbolic distance is based on cross ratios, and
cross ratios are invariant under Möbius transformations,
we can measure distances between points by moving their
lines into a special position using a hyperbolic isometry.
In general: any geometric property of a configuration of
points which is invariant under a hyperbolic isometry, may
be reliably investigated after the data has been moved into
a convenient position in the model. This is the idea that
will be used in the solution of basic control problems, too.

2.1 Extension to operator balls

For the Hilbert spaces K,H consider the open unit ball B
of all linear bounded operators from K to H (L(K,H)).
The map h : B 7→ H is holomorphic on B if the Fréchet
derivative of h at x exists as a bounded complex linear map
of K into H for each x ∈ B. Invertible holomorphic maps
from B onto B are called biholomorphic automorphisms.

In this setting the operator valued Blaschke functions

BA(X) = N
−1/2
A (A+X)(1 +A∗X)−1N

1/2
A∗ ,

with NA = I − AA∗ are biholomorphic automorphisms
of B (B−1

A = B−A). Then BA(X)∗ = BA∗(X
∗) and

‖BA(X)‖ ≤ B‖A‖(‖X‖). Moreover, every biholomor-
phic mapping h is of the form h = Bh(0)(UXV ) =
UB−h−1(0)(X)V , where U and V are unitary operators.
The metric defined as

ρ(A,B) = ln
1 + ‖B−A(B)‖
1− ‖B−A(B)‖

= arctanh(‖B−A(B)‖)

is invariant with respect to biholomorphic automorphisms
and provides an extension of the Poincaré disk model of
the hyperbolic geometry to the operator ball. For details
see, e.g., Harris [1973], Khatskevich [1984], Ostrovskii et al.
[2009].

3. THE KLEIN VIEW OF GEOMETRY

We have already described the hyperbolic geometry using
the Poincaré disk model defined on {z ∈ C : |z| < 1}
and we can introduce a half plane model on {z ∈ C :
Im(z) > 0} by using a Möbius transformation, the Cayley

map c : Ĉ→ Ĉ defined by c(z) =
z − i
z + i

, to convert between
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the two models. Note that lines in the Poincaré disc model
passing through 1 are in one-to-one correspondence with
the lines that are vertical rays in the upper half plane
model.

Another model is the Hyperboloid (Minkowski) model
where the points lie on the upper sheet of a hiperboloid,
i.e., H = {(x, y, z) | z2 = 1 + x2 + y2 ≥ 1}. We can map
D to H by stereographic projection from Z ′ = (0, 0,−1)
using the map given by

m(x, y) = (
2x

1− x2 − y2
,

2y

1− x2 − y2
,

1 + x2 + y2

1− x2 − y2
),

m−1(x, y, z =
√

1 + x2 + y2) = (
x

z
,
y

z
).

The lines of the model are the intersections of H with
planes through the origin. This model is related to special
relativity and it is also of considerable significance in ge-
ometry. The group for the Minkowski model is isomorphic
to a subgroup of the projective group P(2) which shows
that hyperbolic geometry is related to projective geometry.

3.1 Projective Matrix Space

Considering the ring Mn(C) of the complex matrices and
the set Mn

(2n,n)(C) of the pairs P1, P2 ∈ Mn(C) with

rank

(
P1

P2

)
= n, we can define the equivalence relation:(

P1

P2

)
∼=
(
Q1

Q2

)
if and only if there exists R ∈ GLn(C)

such that

(
P1

P2

)
=

(
Q1

Q2

)
R. Then the equivalence classes

P are considered as the points of the projective space P.
Accordingly we introduce the map i fromMn

(2n,n)(C) to the

space P such that P = i

{(
P1

P2

)}
and

{(
P1

P2

)}
= i−1(P ).

P is called finite if, for any

(
P1

P2

)
∈ i−1(P ), det(P1) 6= 0

and Pf denotes the set of finite points. While the points
of P correspond to linear subspaces of a fixed dimension,

finite points are related to graph subspaces

(
I
P

)
of the

linear operators P ∈Mn(C).

We consider the action of nonsingular matrices on P

(projectivity), i.e., for S =

(
A B
C D

)
∈ GL2n(C) and P ∈ P

the map defined by PS = i(PS) where PS = S

(
P1

P2

)
. The

projectivities of P form a group under composition.

Then the matrix Möbius transformation

MS(P ) = (C +DP )(A+BP )−1

is the restriction of the projectivity S to the finite points
of the space, i.e., MS operates on Pf .

On the set of the points the Euclidean distance can be
defined as d(P ,Q) = ‖P − Q‖. Then the projectivities
that keep this distance invariant are

S = λ

(
U1 0
U2P0 U2

)
,

where P0 is an arbitrary matrix and U1, U2 are unitary.

Using the Hermitian form defined as

He(P, r) =

(
I
P

)∗
H̃e(r)

(
I
P

)
, He(r) =

(
−r2I 0

0 I

)
,

for r > 0, we can introduce the Euclidean circle as

γe(0, r) =

{
P ∈ Pf : P = i

(
I
P

)
, He(P, r) = 0

}
.

In analogy to the one dimensional case we denote by D
the Euclidean unit disc, i.e., D = {P : d(O,P ) < 1} and
by D̄ its closure. Note that this is exactly the contractive
matrix ball in Mn(C).

Let J =

(
−I 0
0 I

)
. Then, a non–Euclidean geometry can

be defined by using the J -unitary matrices Π ∈ M2n(C),
i.e., Π∗JΠ = J . These matrices form a group.

Setting

D− =

{
P ∈ Pf : P = i

(
P1

P2

)
,−P ∗1 P1 + P ∗2 P2 < 0

}
,

note that D− = D and every P ∈ D− has a representant
that can be completed to a J –unitary matrix P̃ .

If P and Q are in D− with P̃ and Q̃ the corresponding

J –unitary matrices we can set R̃ =

(
R1 R3

R2 R4

)
= P̃ ∗J Q̃.

The pseudo–chordal distance is defined as

Ψ(P ,Q) =
%(P ,Q)

[1 + %2(P ,Q)]1/2
,

where %(P ,Q) = ‖R2‖, which is a metric 1 on D−.

The projectivity S maps D− onto itself and keeps the
pseudo–chordal distance invariant (non–Euclidean mo-

tions) if and only if the corresponding matrices S̃ are of

the form S̃ = λT̃ , T̃ ∗J T̃ = J , where λ 6= 0.

In analogy to the scalar case, for any pair of points in D−,
we define the non–Euclidean distance Eh(P ,Q) by

Eh(P ,Q) =
1

2
log

1 + Ψ(P ,Q)

1−Ψ(P ,Q)
.

For arbitrary

(
P1

P2

)
∈Mn

2n,n(C) we set

Hh(P1, P2, r) =

(
P1

P2

)∗
H̃h(r)

(
P1

P2

)
with H̃h(r) =

(
− sinh2(r)I 0

0 cosh2(r)I

)
, 0 < r <∞.

The non–Euclidean circle γh(0, r) and the corresponding
non–Euclidean disk D−h (0, r) are defined as:

γh(0, r) =

{
P : P = i

(
P1

P2

)
, Hh(P1, P2, r) = 0

}
,

D−h (0, r) =

{
P : P = i

(
P1

P2

)
, Hh(P1, P2, r) < 0

}
.

Both lie in D−. For re = tanh(rh), 0 < re < 1 we obtain
γe(0, re) = γh(0, rh) and D−e (0, re) = D−h (0, rh).

1 For n = 1 this is the classical pseudo–chordal distance, i.e.,
Ψ(z, w) = |w − z|/|1− z̄w|.
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Let M ∈ D− and M be the corresponding J –unitary

matrix. Then S = M

(
U1 0
0 U2

)
, with U1 and U2 arbitrary

unitary matrices, is the non–Euclidean motion that maps
0 into M . The circle γh(M, r) with radius 0 < r < ∞,
and the disk D−h (M, r) are defined as maps of γh(0, r) and

0 ∈ D−h (0, r) under this non–Euclidean motion.

The Hermitian diameter lh of D− is defined by

lh =

{
P : P = i

(
P3

P4

)
, P ∗4 P3 − P ∗3 P4 = 0

}
.

The non–Euclidean straight lines are defined as the maps
of lh under non–Euclidean motions.

4. ROBUST CONTROL AND HYPERBOLIC
GEOMETRY

The common tool in formulating robust feedback control
problems is to use system interconnections that can be
described as linear fractional transforms (LFTs), as a
general framework to include the rational dependencies
that occur. It is apparent that Möbius transformations are
special LFTs. The set of stabilizing controllers for a given
plant and the set of all suboptimal H∞ can be expressed
by using certain Möbius transformations. In what follows
the common background of these transformations and
their relations with the hyperbolic geometries will be
highlighted.

Even the system P is unbounded, through its coprime
factorization P = NM−1, with M,N suitable bounded

causal operators, the associated graph P = Πξ =

(
M
N

)
ξ

is formulated in terms of bounded with ξ ∈ Hp (a suitable
Hilbert space) operators. We are not very restrictive if it is
assumed that there exists a double coprime factorization,
i.e., P = NM−1 = M̃−1Ñ and causal bounded U, V, Ũ
and Ṽ such that(

Ṽ −Ũ
−Ñ M̃

)(
M U
N V

)
=

(
I 0
0 I

)
, (2)

an assumption which is often made when setting the
stabilization problem, see, e.g., Vidyasagar [1985]. Recall

that

(
M
N

)
and

(
U
V

)
are determined only up to outer, i.e.,

stable with stable inverse, factors S and S′.

It is not hard to make the connection with the construction
presented in the previous section: plants P , represented by

P = {
(
M
N

)
}, are the finite points Pf while the controllers

K = UV −1 in a feedback connection are described by the

inverse relation (inverse graph), i.e., K = {
(
U
V

)
}. Well-

posedness (feedback stability) of the pair (P,K) means

that the matrix ΞP =

(
M U
N V

)
has a bounded causal

inverse. Stable plants Q form a subset of the finite points,

i.e., those for which

(
I
Q

)
∈ i−1(Q). It is obvious that the

zero plant is stabilized by the entire stable set, and only
by that set. Since the image of 0 under the projectivity

defined by ΞP is the plant P , it follows that the stabilizing

controllers are described by by ΠP

(
Q
I

)
∼
(
K
I

)
, i.e..

Kstab = {K | K = (U +MQ)(V +NQ)−1, Q stable}
which is the well-known Youla parametrization

To emphasize this point we reformulate the standard
stability result as follows:

Proposition 4.1. The plant P has a double coprime factor-
ization if and only if there is a projectivity defined by an
outer Ξ with Ξ11 invertible such that MΞ(P ) = 0. Then
all stabilizing controllers are given by K = ML∗Ξ−1L(Q),

Q stable, where L =

(
0 I
I 0

)
.

The proof is straightforward and it is omitted for brevity.

4.1 Linear relations and LFTs

If P is partitioned as P =

(
Pzw Pzu
Pyw Pyu

)
then, provided that

the corresponding inverses exists, a lower and an upper
LFT is defined as Fl(P,K) = Pzw+PzuK(I−PyuK)−1Pyw
and Fu(P,∆) = Pyu +Pyw∆(I −Pzw∆)−1Pzu. P is called
the coefficient matrix of the LFT.

Möbius transformations Z ′ = MΣ(Z) relate two graph
subspaces, GZ and GZ′ , through the projectivity Xi, i.e.,
GZ′ = ΞGZ and inherit the group structure of the linear
operators, i.e., MΞ2

◦MΞ1
= MΞ2Ξ1

.

It turns out that LFTs can be obtained in the same
way as the Möbius transformations, by performing some
interchange in the signal spaces and by considering linear
relations instead of the linear operators, Shmulyan [1976,
1980].

If X and Y are two sets, a relation T ⊂ X × Y is defined
as a set of pairs (x, y) ∈ T , where x ∈ X, y ∈ Y . If
X and Y are linear spaces (X ⊕ Y = X × Y ) a linear
relation T is a linear subspace of X ⊕ Y . If x ∈ dom(T )
then T (x) = {y ∈ Y : (x, y) ∈ T} and correspondingly if
y ∈ ran(T ), then T−1(y) = {x ∈ X : (x, y) ∈ T}.
Let T ⊂ X × Y and R ⊂ Y × Z be linear relations. Then
the product RT ⊂ X × Z is the linear relation defined by

RT = {{x, z} ∈ X × Z : {x, y} ∈ T, {y, z} ∈ R} .
An operator P : X 7→ Y is equivalent to a special relation,
the graph subspace GP . For details see, e.g., Arens [1961].

With X = Xw ⊕Xu and Y = Yz ⊕Yy consider L = X ⊕Y
and L̃ = (Yy ⊕ Xu) ⊕ (Xw ⊕ Yz). Observe that we have

L̃ = ΠlL with a permutation matrix Πl. Thus every linear
operator P : X 7→ Y induces a relation RP ⊂ L̃ through
its graph subspace, i.e.,

RP = ΠlGP ∼

Pyw Pyu
0 Iu
Iw 0
Pzw Pzu

 , (3)

called scattering transformation. It turns out that evalu-
ating this relation on the graph subspaces GK , i.e., on the
linear operators K : Yy 7→ Xu, we obtain a graph subspace
GF = RTGK that corresponds to the linear operator
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F : Xy 7→ Yz, provided that (I − PyuK) is boundedly in-
vertible. This map is exactly the lower LFT F = Fl(P,K).
Analogously, by considering another permutation Πr, one
can obtain the expression of the upper LFT.

This construction extends the linearization trick already
encountered for the Möbius transforms to the LFTs: on
the level of equivalence classes, the map is linear while
on the level of the representants the map is rational
(Möbius, LFT). Moreover, the group structure on the
representants is also present, however, the familiar matrix
product should be changed to the more complex Redheffer
(star) product, see, e.g., Zhou and Doyle [1999], that
reflects the composition of the relations.

Note, that in this construction Πl is a projectivity that
sends a finite point P to a possible not finite R, cor-
responding to the subspace RP . If the image is also a
finite point, then the representant can be obtained by the
Möbius transform P̂ = MΠl

(P ) which is the Potapov-
Ginsbourg transformation. P is in the domain of this

transformation if

(
Pyw Pyu

0 Iu

)
is invertible.

The relation Fl(P,K) = MP̂ (K), if it exists, between an
LFT and a Möbius transformations has the advantage to
use a more accessible operation (matrix product) instead
of the star product for the factorizations that possibly
simplify a given problem. This fact was widely exploited
in the solution of the robust control problems, see, e.g.,
the factorization approach of Ball et al. [1991] or in the so
called chain scattering-approach of Kimura [1997].

We conclude this section with an example that shows how
suitable projectivities can reveal the basic structure of
a control problem. We are to apply Proposition 4.1 for
the stabilization problem related to LFTs, i.e., to find all
internally stabilizing controllers K that makes Fl(P,K)
bounded. Even this is a known result, its geometric inter-
pretation remains hidden. The novelty here is to show the
role of the projectivity in the solution of the problem.

Proposition 4.2. The stabilization problem is solvable if
and only if there is an outer Ξ with Ξ11 invertible such that

MΞ(P ) = S is stable and

(
0 0
0 K

)
= ML∗Ξ−1L(

(
0 0
0 Q

)
), Q

stable. Then S can be chosen to be a model matching type,

i.e., S =

(
Szw Szu
Syw 0

)
.

The proof is by construction: under the stabilizabil-
ity assumption, i.e., there is a stabilizing controller(

0 0
0 K

)
for P , the double coprime factorization, with

K = k̃−1
uu k̃uy = kuyk

−1
yy , has the special structure

Iw 0 0 0

0 k̃uu 0 −k̃uy
−nzw −ñzu Iz ñzuK
−ñyw −ñyu 0 m̃yy


 Iw 0 0 0
Knyw muu 0 kuy
nzw nzu Iz 0
nyw nyu 0 kyy

 = I.

Compare this general fact with Green [1992]. Thus the

projectivity Ξs =


Iw 0 0 0

0 k̃uu 0 −k̃uy
0 0 Iz 0
0 −ñyu 0 m̃yy

 has the property

required by the proposition, with MΞs
(P ) =

(
nzw nzu
ñyw 0

)
.

Actually one has Fl(P,K) = nzw + nzuqñyw, where q is
the Youla parameter of K. The details are simple algebraic
computations and are left out. Note that P is either
stabilized by any of the stabilizing controllers of the inner
loop Pyu or it is not stabilizable at all.

4.2 The H∞ problem

In this section we consider the suboptimal normalized H∞
problem, i.e., we seek all controllers K that internally
stabilize the loop and achieve ‖Fl(P,K)‖ < 1. While the
conclusions of the section remain valid for much larger
classes, including infinite dimensional LTI or LTV systems,
we consider here only the finite dimensional LTI case, i.e.,
systems having a state space description.

We have already seen that it is enough to consider stable

generalized plants of type P =

(
nzw nzu
ñyw 0

)
. There are

basically two type of strategies, relevant for this paper,
to solve the problem. Both methods assume either left
or right invertibility of P . The first uses the scattering
approach by augmenting the plant, if necessary, to obtain
a well defined Potapov-Ginsburg transform P̂ , Ball et al.
[1991], Kimura [1997]. Then a J-inner outer factorization

P̂ = Θ̂aR̂, with a block tridiagonal structure of the
outer factor that corresponds to the structure of the
augmentation, solves the problem. The controllers are
given by MR̂−1(Ha) with

Ha =

(
0 0
0 H

)
, ‖H‖ < 1,

while the closed loop is given by MΘ̂a
(Ha). Recall that Θa

is an inner function, thus

Fl(P,K) = MΘ̂a
(Ha) = Fl(Θa, Ha) < 1. (4)

For the details on J-inner and J-lossless functions see Dym
[1989] and Kimura [1997].

The second approach, see Green et al. [1990], Green [1992],
instead of augmentation uses two J-spectral factorizations.
We briefly sketch the geometric content of the method: let
us start from the scattering form, i.e.,(
y
u

)
=

(
ñyw 0

0 Iu

)
ξ = P̂yuξ,

(
w
z

)
=

(
Iw 0
nzw nzu

)
ξ = P̂wzξ,

under the constraints z = Fl(P, q)w = Fqw and u = qy.

We generically use the notation Jpq for

(
−Ip 0

0 Iq

)
. Then,

if we have the J-spectral factorizations

P̂ ∗wzJwzP̂wz = V ∗r JwuVr, P̂yuV
−1
r Jwu(?)∗ = WrJyuW

∗
r ,

with Vr,Wr outer, i.e., Φr = P̂wzV
−1
r is J-lossless and

Ψr = W−1P̂yuV
−1
r is co-J-lossless, respectively. The first

observation is that from (?)JwzΦr ξ̃ = (?)Jwuξ̃ < 0 with

ξ̃ = V ξ and using (−q Iu) P̂yuξ = (−qñyw Iu) ξ = 0

one has ξ̃⊥Jwu(?) > 0, i.e., (−q Iu) P̂yuV
−1
r Jwu(?) >

0. Then we have that (−q Iu)WrJyu(?) > 0 which is

equivalent to (?)JyuW
−1
r

(
Iy
q

)
< 0, which provides the

desired controllers. The notation (?) stands for the adjoint
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of the corresponding left (right) hand side of the J-
product. It turns out that for the considered class existence
of the desired factorization is actually equivalent to the
solvability of the problem.

In the original presentation an important part of the result
is missing, namely that the closed loop is provided by
an inner function Θ, whose scattered representation is(

Ψr

Φr

)
. The existence of this function follows from the fact

that (?)JwzΦr ξ̃ < 0 ⇔ (?)JyuΨr ξ̃ < 0 implies equality
of the two indefinite quadratic form, see Bognár [1974],
Shmulyan [1978]. It follows that ‖w‖2 − ‖z‖2 = ‖y′‖2 −
‖u′‖2, i.e., ‖w‖2 + ‖u′‖2 = ‖z‖2 + ‖y′‖2.

Thus the projectivity Ξh = Πldiag(W−1
r , I) maps the

original plant P to Θ, moreover Fl(P, q) = Fl(Θ, h), with
q = MWr

(h) on ‖h‖ < 1. Thus, we can continue the series
of prototype configurations related to significant control
problems that can be achieved with suitable projectivities:

Proposition 4.3. The suboptimal H∞ problem is solv-
able if and only if there is a projectivity Ξh such that
MΞh

(P ) = Θ is an inner function.

To conclude this section we return to formula (4). Since
the closed loop system is parametrized naturally by con-
tractions Ha through a hyperbolic motion it is natural to
consider a hyperbolic distance, introduced as in subsection
2.1, that relates directly controllers with the closed loop
plant.

5. CONCLUSIONS

The paper emphasizes Klein’s approach to geometry and
demonstrates that a natural framework to formulate dif-
ferent control problems is the world that contains as points
equivalence classes determined by stabilizable plants and
whose natural motions are the Möbius transforms. The
fact that any geometric property of a configuration, which
is invariant under a hyperbolic motion, may be reliably in-
vestigated after the data has been moved into a convenient
position in the model, facilitates considerably the solution
of the problems. This method provides a common back-
ground of robust control design techniques and suggests a
unified strategy for problem solutions.

Besides the educative value a merit of the presentation for
control engineers might be a unified view on the robust
control problems that reveals the main structure of the
problem at hand and give a skeleton for the algorithmic
development.
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