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Abstract:
Electric Vehicle (EV) navigation system normally requires multiple charging in a long origin
destination (OD) trip, which makes it different from the traditional vehicle navigation system.
Fast charging is an ideal charging solution in multiple charging because of its high charging
efficiency, rapid transient response and short charging time. However, EVs fast charging at
on-peak hours may lead to overloading of distribution system. To solve the problem above,
a real-time pricing (RTP) policy, as one of the main thrusts for load shaving application,
should be introduced, which will bring new challenges in EV navigation systems due to the
characteristic of time-dependence. In this paper, we address an optimization problem for EV
navigation systems under the RTP policy with the consideration of both charging and routing.
By using the EV arrival states and the traffic parameters, the original traffic network can be
extended to a feasible state graph. An Improved Chrono-SPT (ICS) algorithm is provided
to derive the optimal decision sequence, which provides an optimal routing and charging
policy. Furthermore, a Simplify-Charge-Control (SCC) algorithm is also presented to reduce
the computation complexity of the ICS algorithm. Simulations show the effectiveness of both
ICS and SCC algorithms and the computation complexity of SCC algorithm is much simplified
within acceptable deviation of optimal cost under approximation pricing (AP) than that in ICS
algorithm.

Keywords: Electric Vehicle Navigation, Charging Control, Minimal cost routing.

1. INTRODUCTION

In advanced traveler information systems, recent efforts
have been made in developing a new navigation concept
called “eco-routing”, which finds a route that requires
the least amount of fuel (Boriboonsomsin et al. (2012)).
However, for electric vehicles (EVs), eco-routing, mainly
focusing on finding a minimum energy path, can’t express
the driving cost accurately because the cost is affected
not only by energy consumption but also by charging
price, especially when the price is time-dependent, e.g.,
real-time pricing (RTP). Compared with the traditional
navigation systems, EV navigation systems under RTP
policy consider a coupled situation to derive the lowest
cost for the long origin destination (OD) trip, that is,
both where to charge and how much to charge are decided
simultaneously. It becomes a joint charging and routing
problem rather than a common shortest path routing
problem, which bring new challenges in EV navigation
systems.

In literature, EV navigation has been studied in some
works. For example, Sachenbacher et al. (2011) studied
a energy-optimal routing problem with the consideration
of recuperation, battery limitation, etc.. The same prob-
lem was considered by Artmeier et al. (2010). Both of
them formulate EV routing as a constrained shortest path
problem with hard and soft constraints. They focus on the
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navigating in only one-charge distance and take EVs as
traditional vehicles with capacity limitation and recuper-
ation. Bessler and Grønbæk (2012) discussed an routing
policy towards optimal charging plan, where matching
energy supply and demand is an auxiliary service providing
to grid operator. Stein et al. (2013) presented a minimum
delay time of an OD trip from EV drivers’ point of view. By
using intention-aware method, the system can accurately
predict the congestion at charging stations and a path with
minimum delay time is given. However, it only focuses on
the multiple charging problem of the waiting/delay time.

In this paper, we address a minimum-cost path problem
under RTP with multiple charging in a long distance
OD trip. The optimal cost problem with a travel-time
limitation is formulated as a dynamic programming, which
couples the optimal path problem with a charging control
problem. According to the EV arrival states and the traffic
parameters, we transform the the original traffic to a fea-
sible state graph, where an improved Chrono-SPT (ICS)
algorithm is provided to derive the minimum cost path.
Since the navigation systems mostly operate on embedded
devices and drivers commonly expect a rapid response, the
computation complexity of algorithm is strictly restricted.
In order to reduce the computation complexity, a simplify-
charge-control (SCC) algorithm is designed, utilizing the
characteristic of charging in a constant price interval. By
simulation, it’s easy to see the SCC algorithm can greatly
reduce the computation complexity within acceptable de-
viation of optimal cost under approximation pricing (AP).

The following sections are organized as follows: A detailed
system modeling is presented in Section 2. In Section 3,
the problem is formulated in a dynamic programming. To
solve the problem, an ICS algorithm and a SCC algorithm
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are derived in Section 4. Simulations are given in Section
5. Finally, the conclusion is made in Section 6.

2. SYSTEM MODEL

Symbol physical means
kc The constant charging rate.
tsi The arrival time of node i.
tui The arrival time of the successor node

decided at node i.
tci The charging times at node i.
τ lij The travel times of link (i, j).

plij The EV’s power at link (i, j).

vlij The average speed at link (i, j).

dlij The distance of link (i, j).

elij The energy consumed at link (i, j).
p(t) The real time electricity prices.
pod The path from origin to destination.
c(sk, uk) The charging cost at kth stage.
Cpod The cost of path pod.
C(s1, sk) The cost between state s1 to sk.
Vn Thwe minimal cost of the first n stages.

Sfij(x) Feasible state set of state x link(i, j).
FS(i) The link set originate from node i.
x = (i, tsi , e

s
i ) The feasible arrival state of node i.

sk = (vsk, t
s
vs
k
, esvs

k
) The state variable at the kth stage.

uk = (vuk , t
u
vu
k

) The decision variable at the kth stage.

Γ = {λ1, λ2, . . . λr} The price changing time set.
T = {td1, t

d
2, . . . , t

d
q} The discrete time instant set.

E = {ed1, e
d
2, . . . , e

d
p} The discrete energy set of interval

[ebas, ereg ].

Table 1. Nomenclature Table

Consider a long origin destination trip from origin node
to destination node. Due to the limit of cruise range, EVs
have to drive from one charging station to another in order
to arrive at the destination eventually. We assume there
is an optimal path between two charging stations within
one distance-per-charge, which is the basic part of a path
from origin to destination.

Fig. 1. An OD trip example.

The trip can be abstracted as a network topology G =
(N,A), as shown in Figure 1. In the network, N (|N | = n)
is the set of nodes, which includes all en-route charging
stations, origin nodes o, and destination node d. A (|A| =
m) is the set of links, which denotes the optimal path
between two stations. In the network, we denote sk =
(i, tsi , e

s
i ) as the states when EVs arrive at station i, where

tsi is the arrival time, esi
1 is the energy left. Let uk = (j, tuj )

be the control decision, based on the state sk, where j is
the successor node of node i, tuj is the arrival time of node
j. The nomenclature is presented in Table 1.

2.1 Fast Charging

The fast charging process can be modeled as a linear func-
tion. According to the data from Eaton whose products
are based on CHAdeMO and SAE Combo standards, fast
1 esi is the amount of energy left in battery, whose units are Joules.

chargers can recharge the batteries to 80% capacity in
as little as 30 minutes(Eaton (2013)). The charge rate is
approximately constant when state of charge (SoC 2 ) is
less than 80% and drop steeply when SoC is greater than
80%. In order to saving time, we assume the drivers will
not charge any more when SoC is greater than 80%, and
define the associate energy in battery as ereg, (ereg < ecap).
On the other hand, batteries discharge excessively will
shorten the cycle lives significantly. We define the associate
energy in battery as ebas. Suppose the energy in interval
[ebas, ereg] can be dispersed as E = {ed1, ed2, . . . , edp}, where

ed1 = ebas, e
d
p = ereg respectively. The energy left when

arriving at intermediate node i is esi , e
s
i ∈ E.

Suppose the current state is s = (i, tsi , e
s
i ). We define

e′i
s

= esi + kc · tci , where e′i
s

is energy left in battery when
EV leaves node i; kc is constant charging rate; tci is time
charged at station i. So the energy recharged at station
i is e′s − es = kc · tci . When the decision based on the
current state is (j, tuj ), the charged time can be expressed

as tci = tuj − τ lij − tsi , where τ lij is the travel times of link
(i, j). Above all, the energy recharge at node i can be
expressed by kc · tci = kc · (tuj − τ lij − tsi ).

2.2 Link Energy Consumption

Link energy consumption is a parameter used to express
the energy consumed on the links, which limit the decision-
s. In the network shown in Figure 1, energy consumption
of link (i, j) can be calculated using link distance dlij and

link travel times τ lij . According to the power-speed curve
of Tesla Roadster (TeslaMotors (2008)), the total power
can be expressed as a function of speed, even though some
components are not speed-dependent.

We assume that the power function of link (i, j) is plij =

g(vlij), where vlij is the speed of EVs at link (i, j). Then the

energy consumption of link (i, j) is elij = plij · τ lij = g(vlij) ·
τ lij , where vlij = dij/τij . In all, the link energy consumption

can be expressed as elij = f(dlij , τ
l
ij), which is an important

limiting condition of decision making.

2.3 Real-time Electricity Pricing

Real-time electricity pricing is one category of time-based
electricity pricing, which is used to reflect dynamic cost
of generation and motivate load shifting. Empirically, the
real-time prices fluctuate by an order of magnitude from
low-demand night-time hours to high-demand afternoons.
According to the statistical analysis of the real-time prices
used by Illinois Power Company from January 2007 to
December 2009(Mohsenian-Rad and Leon-Garcia (2010)),
the electricity prices fluctuate in a small interval during
the off-peak or on-peak period, while fluctuate varied
violently in hourly at boundary hours. In this paper, we
assume there is a price predictor unit, which estimates
the upcoming prices of 24 hours by applying a weighted
averaging filter to past prices. And we will solve the
minimum cost problem based on the prediction.

Referring to the instance of Illinois Power Company hourly
varying RTP prices, we model RTP prices as a step

2 SoC is the equivalent of a fuel gauge for the battery pack in
a EV, whose units are percentage points. It can be expressed as
SoC = es/ecap in this paper.
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function p(t), whose definition domain is discreted as
T = {td1, td2, . . . , tdq}, where tdq is the latest arrival time
set by drivers. There is a price changing time instant set
Γ = {λ1, λ2, . . . , λr}, where the price is constant in the
half closed price interval, e.g., the price is constant in
the interval [λn, λn+1). In the price changing time instant
set Γ, ∀λn, λn+1 ∈ Γ, min{λn+1 − λn} ≥ 1h, i.e., all the
constant price intervals are equal or longer than one hour.

2.4 The Cost of Intermediate Stations

The cost at intermediate stations is determined by time
to charge and the energy recharged. On condition that the
arrival state of node i is sk = (i, tsi , e

s
i ) and the decision

is uk = (j, tuj ), the charging cost at node i based on the
arrival state and decision can be expressed as

c(sk, uk) =
∫ tuj−τ l

ij

ts
i

p(t) · kc · dt.

According the description in 2.3, the constant price inter-
vals are all larger than one hours, while the fast charging
time is less than half an hour. So the charging period
should be in one or two adjacent price intervals. The
charging cost of node i based on state sk = (i, tsi , e

s
i ) and

uk = (j, tuj ) can be expressed as follows:

c(sk, uk) =


kc · p(tsi ) · (tuj − tsi − τ lij)

λn ≤ tsi ≤ tuj ≤ λn+1

kc · [p(tsi ) · (λn − tsi ) + p(tuj ) · (tsi − λn)]
λn−1 ≤ tsi ≤ λn ≤ tuj ≤ λn+1

(1)
where λn−1, λn, λn+1 ∈ Γ.

3. PROBLEM FORMULATION

Consider a minimum cost path problem under RTP pricing
in a discrete time set T . Suppose EVs depart from origin
node with a full charged battery at time tso, t

s
o ∈ T . The

traffic network G = (N,A) is shown in Figure 1. The
RTP prices is modeled as a step function p(t) with a price
changing time instant set Γ = {λ1, λ2, . . . , λr}. A dynamic
programming formulation is given below.

3.1 State Variables

We define state variables at intermediate nodes sk =
(vsk, t

s
vs
k
, esvs

k
) as the starting state of the kth stage, i.e., the

states when EVs arrive at charging station vsk. In the state
variable above, vsk ∈ N , tsvs

i
∈ T , ebasic ≤ esvs

k
≤ ereg, Since

that EVs depart from origin with full charged battery
ecap at time tso, the starting state is s1 = (o, tso, ecap),
where ecap ≥ ereg. Since less energy left when arriving
at destination will lead to less cost, the state variable at
destination node d at the beginning of Kth stage, can be
expressed as sK = (d, tsd, ebas), where tsd ≤ tdq ,

3.2 Decision Variables

Based on current state sk = (vsk, t
s
vs
k
, esvs

k
) and global

network information, EVs make decision uk = (vuk , t
u
vu
k
),

where vuk is the successor node, tuvu
k

is the arrival time at

the successor node. The relationship of state and decision
variables can be expressed as follows:

vsk+1 = vuk ; tsvs
k+1

= tuvu
k

esvs
k+1

= esvs
k

+ (tuvu
k
− tsvs

k
− τ lvs

k
vu
k
) · kc − elvs

k
vu
k

(2)

Due to the energy limitation in state variable, ebas ≤ esvs
k
≤

ereg, k > 1, the energy in battery when departing from vsk
should be large enough to arrive at the successor station
vui , i.e.,

elvs
k
vu
k

+ ebas ≤ esvs
k

+ kc · (tuvu
k
− tsvs

k
− τ lvs

k
vu
k
) ≤ ereg (3)

Some specific definitions should be given based on the state
of origin and destination nodes. We define that the decision
at origin node is u1 = (vu1 , t

u
vu1

), where tuvu1 = t1 +τ lovu1 . The

decision at the (K − 1)th stage is uK−1 = (d, tud), where
tud ≤ tdq .

3.3 Recursive Value Equation

During the travel from origin to destination with the
starting state s1, there is a decision sequence U =
{u1, . . . , uK−1}, and a state sequence S = {s1, . . . , sK}
correspondingly. The path from origin to destination can
be defined as follows:

Definition 1. A path between the origin and destination
for starting state s1 is a sequence of ordered triplets.

pod = ((vs1, t
s
vs1
, esvs1 ), (vs2, t

s
vs2
, esvs2 ), . . . , (vsK , t

s
vs
K
, esvs

K
))

Considering the relationship of state variables and the
decision variables in Equation (2), the state sk can be
calculated by the sequence (s1, u1, . . . , uk−1). Then the
path can be expressed by the decision variables as well:

pod = ((vs1, t
s
vs1
, esvs1 ), (vu1 , t

u
1 ), . . . , (vuK−1, t

u
K−1))

Since the cost of slow charge is much cheaper than fast
charge, EVs depart from origin with full charged battery,
and arrive at destination with the least energy left, the
cost of the path can be expressed as the sum of the cost
at intermediate nodes.

Cpod =
∑

k∈{2,3,...K−1}

c(sk, uk)

where c(sk, uk) is modeled in Equation (1), the rela-
tionship of decision and state variables are modeled in
Equation (2), and the decision variables are subject to
Inequality (3).

In all, the minimum path problem can be translated to find
the optimal decision sequences based the starting state.

U∗= arg min
u

∑
k∈{2,3,...K−1}

c(sk, uk)

Define the value function of sequence (s1, u1, . . . , un), n ≤
K − 1 as Vn

∆
= min

∑
k∈{2,3,...,n}

c(sk, uk), the cost of se-

quences (s1, u1, . . . , un, un+1) can be rewritten as follows:

Vn+1 = min
∑

k∈{2,3...n+1}

c(sk, uk)

= min{c(sn+1, un+1) + min
∑

k∈{2,3...n}

c(sk, uk)}

= min{c(sn+1, un+1) + Vn}
(4)

Note that the discussion given above is based on the state
variables, e.g., Vn denotes the cost between s1 and sn
implicitly.
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4. JOINT CHARGING AND ROUTING
OPTIMIZATION

In this section, we transform the original problem into a
classical shortest path problem by extending the origin
traffic network to a feasible state graph based on several
definitions. An ICS algorithm is present based on the
feasible state graph. In order to simplify the computation
complexity, a simplified state graph and a SCC algorithm
are present using the property of charging control in
constant price intervals.

4.1 Feasible State Graph

In this paragraph, the feasible state graph is structured
based on the definitions below. The process of extending
the origin traffic network to feasible state graph is demon-
strated in Figure 2.

Suppose there is a traffic network G = (N,A) shown in
Figure 2(a). The labels pasted on the links are link travel
times and link energy consumption, e.g., (60, 10) on link
(1,2) mean that the link travel time is 60 minutes and
the link energy consumption is 10kWh. Suppose there is a
battery with a capacity of 20kWh on the EV, the charging
rate is 30kW (recharge the battery to 80% of capacity
within 30 minutes), and EV will leave the charging station
no latter than the time when the battery is recharged to
80% of capacity. Suppose the EV start the trip from node 1
to node 6 at time t = 0:00 with a full charged battery, i.e.,
the starting state is x1 = (1, 0:00, 20), several definitions
based on the traffic network are given as follows:

Definition 2. In network G = (N,A), ∀i ∈ N , define the

forward link set FS(i)
∆
= {(i, j)|(i, j) ∈ A}. For example

in Figure 2(a), FS(2) = {(2, 3), (2, 4)}.
Definition 3. Suppose the current state is x = (i, tsi , e

s
i ),

the feasible states set of x under link (i, j) ∈ FS(i) can be

defined as Sfij(x)
∆
= {(j, tsj , esj)| tsj = tsi + τ lij +

esj+elij−e
s
i

kc
,

esj ∈ {edm|ebas ≤ edm ≤ ereg− elij}}. Specially, when i is the

origin node, tsj = tsi + τ lij , e
s
j = ecap − elij . For example, in

Figure 2(a) the feasible state set of x = (2, 1:00, 10) under

link (2, 4) is Sf24 = {(4, 2:10, 4), (4, 2:12, 5)}, specially

Sf12 = {(2, 1:00, 10)}.
Definition 4. For the given starting feasible state x =

(o, tso, ecap), we define Sx1 = ∪
oi∈FS(o)

Sfoi(x); Sx2 = ∪
ij∈FS(i)

Sfij(x), x = (i, tsi , e
s
i ), x ∈ Sx2 ; Sxk+1 = ∪

ij∈FS(i)
Sfij(x),

x = (i, tsi , e
s
i ), x ∈ Sxk . The feasible state graph R = (V,E)

can be defined as V = {x = |x ∈ Sxk , k ∈ N+}, E =

{(x, x′)|x = (i, tsi , e
s
i ), x

′ ∈ Sfij(x), ij ∈ FS(i)}.

Based on the definitions above, the feasible state graph
can be structured. Since the EV depart with a full charged
battery, i.e., it is unnecessary to recharge at node 1, the
state when arriving at node 2 is (2, 1:00, 10), where the
arrival time is 1:00, energy left in battery is 10kWh. For
link (2,3), limited by the stop discharging energy and the
leaving energy assumption, the leaving energy should be
in interval [14, 18]. Disperse the energy in every 1 kWh,

the feasible arrival states at node 3 is Sf23(x2) = {x1
3 =

(3, 2:08, 4), x2
3 = (3, 2:10, 5), x3

3 = (3, 2:12, 6)}. Similarly

Sf24(x2) = {x1
4 = (4, 2:10, 4), x2

4 = (4, 2:12, 4)}, Sf35(x1
3) =

Sf35(x2
3) = Sf35(x1

3) = {x1
5 = (5, 3:30, 4), x2

5 = (5, 3:32, 5)},

Sf45(x1
4) = Sf45(x2

4) = {x3
5 = (5, 3:32, 4), x4

5 = (5, 3:34, 5)}.
Select the feasible states from previous feasible state sets,
and structure new feasible state sets based on the selected
feasible states. The feasible state graph can be structured
by iterating the steps above. The feasible state graph
R = (V,E) extended from G = (N,A) is shown in Figure
2(b).

(a) A traffic
network.

(b) Feasible state graph.

Fig. 2. An example of structuring a feasible state graph.

4.2 Improved Chrono-SPT Algorithm

Similar to the process transforming origin traffic network
into feasible state graph, an improved chrono-SPT (Di-
al (1969)) algorithm is designed. In ICS algorithm, the
minimal cost charging and routing policy can be searched
chronologically in a classical shortest path algorithm man-
ner, and the feasible state graph can be formed simultane-
ously.

In ICS algorithm, we use a bucket-list B = {Btso ,

. . .,Bts
i
,. . .,Bts

d
}, tsd ≤ tdq , to efficiently perform the selec-

tion operations, where Bts
i

denotes the bucket containing
the feasible states to be visited at the time instant tsi ,
tsi ∈ T . In our notation, A(x) indicates the feasible state
ahead of the current node x in R, while C(x) associated
with state x denotes the the cost between the starting state
s1 and the current state x.

We describe the typical algorithm iteration about state
x = (i, tsi , e

s
i ) and x′ = (j, tsj , e

s
j) in Algorithm 1, where Bh

denotes the current non-empty bucket. In the initial steps,
we initialize B1 = {(o, tdo, ecap)} according to departing
state variable s1 = (o, tdo, ecap), while the other bucket are
all empty. The initial cost label of starting state, C(s1), is
zero. The stop condition is verified when all the buckets
are empty (when this happens, the minimum of the labels
associated with each feasible states gives the optimum
path cost from origin to destination).

In the algorithm above, lines 4 ∼ 8 and lines 11 ∼ 13 are
the feasible states graph initialization, the refresh steps
are steps of classical shortest path searching algorithm in
order to mark the minimum cost path from starting state
to current state. In refresh steps, the original cost label
will be refreshed if the current cost is smaller. When the
algorithm stops, the feasible states graph is formed, where
the feasible states are marked with the minimal cost labels
between starting state and current state. Search the min-
imal cost label of the possible arrival states when arriving
destination node, the optimal charging and routing policy
can be rebuilt in a backward recursive manner.
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Algorithm 1: Improved Chrono-STP Algorithm
∗ main iteration ∗

1: select x = (i, tsi , e
s
i ) from Bts

i
;

2: Bts
i
← Bts

i
\{(i, tsi , e

s
i )};

3: for each (i, j) ∈ FS(i)
4: elij = f(dlij , τ

l
ij);

5: if ereg − elij ≥ ebas then
6 if i = 1 then
7: tsj = tsi + τ lij ;

8: c(x, x′) = 0;
9: refresh steps;
10: else
11: for each esj ∈ {e

d
m|edm ∈ E,

ebas ≤ edm ≤ ereg − elij}
12: tsj = tsi + τ lij + (esj + elij − e

s
i )/kc;

13: c(x, x′) =
∫ tsj−τlij
ts
i

p(t) · kc · dt;
14: refresh steps;
15: end for
16: end if
17: end if
18: end for

∗ refresh steps ∗
if C(x) + c(x, x′) < C(x′) then
C(x′) = C(x) + c(x, x′);
A(x′) = x;

if x′ ∈ Bts
j
then

Bts
j

= Bts
j
∪ x′;

end if
end if

It is easy to prove that the ICS algorithm is correct and it
runs in O(|E|) time, where E denotes the links in feasible
state graph R implicitly generated by the ICS algorithm.
Suppose Ej(ij) = {edm|edm ∈ E, ed1 ≤ edm ≤ edp− elij} in line
11, ∀j ∈ N, ij ∈ FS(i), such that max ‖Ej(ij)‖ ≤ p, i.e.,
E ≤ mp2. In the worst case the algorithm time complexity
is O(mp2).

Since navigation systems mainly operate on embedded de-
vices with a low computation power and drivers commonly
expect a rapid response, the computation complexity of
algorithm is strictly restricted. In order to reduce the com-
putation complexity, a simplify-charge-control algorithm is
design in the following section.

4.3 Simplify-charge-control Algorithm

In this section, a simplify-charging-control algorithm are
designed using the characteristic of charging in a constant
price interval.

Theorem 1. In traffic network G = (N,A) and feasible
state graph R = (V,E), suppose link (i, j) ∈ A, j 6= d,
i.e., j is not the destination node. Feasible states at node
i and j are x = (i, tsi , e

s
i ), y = (j, tsj , e

s
j), y

′ = (j, t′
s
j , e
′s
j),

where x, y, y′ ∈ V . Charging control strategies are denoted
by links (x, y), (x, y′) ∈ E. Suppose λn ≤ tsi < tsj < t′

s
j <

λn+1, if e′
s
j ≤ min

jk∈FS(j)
{eljk + ebas}, the charging control

strategies at state x can be dominated by the minimal
charge-control strategy.

Proof. Since esj = (tsj − tsi − τ lij) ·kc+ esi − elij , e′
s
j = (t′

s
j −

tsi − τ lij) · kc + esi − elij , and t′
s
j > tsj , then e′

s
j > esj . Since

e′
s
j ≤ min

jk∈FS(j)
{eljk + ebas}, then esj < min

jk∈FS(j)
{eljk + ebas},

i.e., charging at state y is necessary if j 6= d. The energy
left in battery is e = esj + kc · (t − tsj), where e is the

energy left in battery, t is the time. When time t = t′
s
j ,

e = esi +kc · (t′sj − tsi − τ lij)− elij = e′
s
j , state y turns into y′

at time t′
s
j after charging, i.e., the charging strategies at

state x can be dominated by the minimal charging control
strategy.

According to Theorem 1, the feasible state graph in Figure
2(b) can be simplified at state x2, when λn−1 = 0:00,
λn = 3:00, λn+1 = 6:00. The simplified graph shows in
Figure 3.

Fig. 3. An example of Simplified graph.

Empirically, the larger the constant price interval is, the
more links in feasible state graph can be simplified. Ac-
cording to the data from Illinois Power Company, even
though the RTP prices varies hourly, the fluctuation is quit
small during off-peak and on-peak period. In this way, we
approximate the real-time prices using their average price
when the fluctuation in adjacent hours is small. Associated
with the approximation pricing, a new price changing time
instant set Γ′ = {λ1, λ2, . . . , λr′} is obtained.

According to the process of structuring the simplified
graph above, a simplify-charge-control algorithm is de-
signed. In SCC algorithm, only the changes are present
corresponding lines 11 ∼ 14 in ICS algorithm.

Algorithm 2: Simplify-Charge-Control Algorithm
∗ Corresponding to lines 11∼ 14 in Algorithm 1 ∗

1: if λn ≤ tsi ≤ λn+1 then
2: e′sj = esi + kc · (λn+1 − tsi − τ

l
ij)− e

l
ij ;

3: if e′sj > ereg − elij then
4: esj = ebas;

5: tsj = tsi + τ lij + (ebas + elij − e
s
i )/kc;

6: c(x, x′) = p(t) · (ebas + elij − e
s
i );

7: refresh steps;
8: elseif ebas ≤ e′sj ≤ ereg − elij then
9: esj = ebas;

10: tsj = tsi + τ lij + (ebas + elij − e
s
i )/kc;

11: c(x, x′) = p(tsi ) · (ebas + elij − e
s
i );

12: refresh steps;
13: for each esj ∈ {e

d
m|edm ∈ E, e′

s
j ≤ edm ≤ ereg − elij}

14: tsj = tsi + τ lij + (edm + elij − e
s
i )/kc;

15: c(x, x′) =
∫ tsj−τlij
ts
i

p(t) · kc · dt;
16: refresh steps;
17: end for
18: else
19: for eachesj ∈ {e

d
m|edm ∈ E, ebas ≤ edm ≤ ereg − elij}

20: tsj = tsi + τ lij + (esj + elij − e
s
i )/kc;

21: c(x, x′) =
∫ tsj−τlij
ts
i

p(t) · kc · dt;
22: refresh steps;
23: end for
24: end if
25: end if

In SCC algorithm, e′
s
j is a level used to determine the

feasible state within the same constant price interval
[λn, λn+1). For the possible charge-control strategies of
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state x in constant interval, they can be dominated by
the minimal charg-control strategy.

Suppose the simplified graph is R′ = (v′, E′), the feasible
state graph is R = (V,E). Similar to ICS algorithm,
the computation complexity of SCC algorithm is O(|E′|).
However |E′| � |E| especially under approximated real-
time prices.

5. SIMULATION

In this section, we simulate the ICS and SCC algorithms
in a traffic network with 19 nodes and 42 links. According
to the technical parameters of current EVs, we assume
the battery has a capacity of 20kW·h, the stop-discharge
energy is 4kWh, and the cruise range is 150km. The link
distances are randomly selected between 60km and 120km,
the link travel times are selected between 40min and 80min
subject to the limitation that link energy consumption
should be less than 12kWh so that the EVs departure
from fast charging station with 80% SoC can reach the
next charging station. The RTP and AP are given based
on the data of Illinois Power Company on 15 December
2009, shown as in Figure 4.

Fig. 4. The real-time prices and approximated prices in
simulation.

In order to evaluate the accuracy and the computation
complexity of algorithms, we calculate the minimum cost
and the links of feasible state graph and simplified graph
under RTP and AP. We simulate with different departure
time, which locate at different part of the RTP. For the
same departure time, we repeat the simulation in five
different traffic conditions. The accurate optimal cost in
ICS algorithm under RTP (the blue solid), the cost in
SCC algorithm under RTP (the red solid), and the cost in
SCC algorithm under AP (the green solid) are expressed
in Figure 5. In the lines above, the cost in SCC algorithm
under RTP coincide with the accurate optimal cost, and
the cost in SCC algorithm under AP deviates the optimal
cost slightly.

Fig. 5. Minimum cost and the average deviation rate.

Since the computation complexity is O(|E|), we compare
the link quantity of feasible state graph and simplified
graph in Figure 6. The link amount in SCC algorithm
under RTP is about 90% of that in ICS algorithm under
RTP, while link amount in SCC algorithm under AP is

Fig. 6. Link quantity and the average simplification rate.

about 50% of that in ICS algorithm under RTP. According
to the simulation results, the SCC algorithm under AP
can simplify the computation complexity greatly within
an acceptable deviation rate of optimal cost.

6. CONCLUSION

In this work, we study an EV navigation system, which
aims to find the optimal charging and routing policy dur-
ing a long OD trip under RTP. The ICS and SCC algo-
rithm are designed. Simulations show that SCC algorithm
under AP can simplify the computation complexity greatly
within a acceptable deviation rate of optimal cost.
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