
An Event-Triggered Consensus Control
with Sampled-Data Mechanism for

Multi-agent Systems ?

Feng Zhou ∗,∗∗ Zhiwu Huang ∗,∗∗ Weirong Liu ∗,∗∗ Liran Li ∗,∗∗

Jun Peng ∗,∗∗ Xiaoyong Zhang ∗,∗∗

∗ School of Information Science and Engineering,Central South
University, Changsha, HUNAN 410075 China (e-mail:

hzw@csu.edu.cn)
∗∗Hunan Engineering Laboratory for Advanced Control and Intelligent

Automation Changsha, Hunan, 410075, China

Abstract: In this paper, an event-triggered control strategy with sampled-data mechanism is
proposed to address the consensus problem for multi-agent system. The states of each agent are
obtained periodically instead of continuous detection by using sampling technology. Rather than
traditional Lyapunov technique, the system stability is analyzed by introducing a disagreement
vector whose convergence is proved by contraction mapping, and a necessary condition about
the upper bound of sampling period is derived under which systems could achieve consensus.
Simulations results are presented to show the effectiveness of proposed event-triggered control
strategy with sampled data mechanism compared to the basic one.
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1. INTRODUCTION

Event-triggered control of multi-agent systems has been a
hot issue and attracted a great number of attentions (Mazo
& Tabuada, 2011; Heemels et al., 2008; Wang & Lemmon,
2011(a)). Event-triggered control is an alternative method
to time-triggered control. The unique feature of it is that
the control signal is updated only when a specific event
occurs. The generation of this event is predefined by the
requirement of stability and performance. Compared to
traditional time-triggered control, event-triggered control
presents a better performance and actuates more efficiency
in many applications (Astrom & Bernhardsson, 2002);
Meng & Chen, 2012). Therefore, there has been an in-
creasing interest in the improvement and application of
event-triggered control (Lunze & Lemmon, 2010; Astrom,
2008).

Over last few years, event-triggered control has been
widely used in cooperative control of multi-agent systems
((Tang et al., 2011; Wang & Lemmon, 2011(b); Tallapra-
gada & Chopra, 2013), especially in consensus problems.
An event-triggered real-scheduling of consensus control is
designed by Tabuada (2007), where controller actuation is
updated when event condition is triggered. Based on this
method, a centralized and a decentralized consensus event-
triggered consensus strategies are developed with a specific
threshold consists of local information (Dimarogonas &
Johansson, 2009; Dimarogonas & Frazzoli, 2012). Seyboth
et al. (2013) proposed a new event-triggered strategy in
which each agent broadcasts its actual state to neighbors
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only when its own trigger condition is violated, in which
the threshold is a function of time. This approach pre-
serves the decentralized character and do not require the
continuous information of neighbors.

Recently, a new method named self-triggered control is
proposed. It is an extension of event-triggered control and
has been considered in many cases (Heemels & Johansson,
2012; Anta & Tabuada, 2010; Almeida at al. 2010). The
greatest feature is that the next triggering time is com-
puted in advance, no information of neighbors is required
until the next event occurs. But an important precondition
of using self-triggered control is that the system models
must be given, because the predicted deadline depends on
system model.

Nowadays, a new trend of integrating event-triggered
control with sampled-data control is widely discussed in
the world, because the continuous measurement of state
is hardly achieved. It is more realistic to approximate the
continuous supervision by a high fast rate sampling due to
sensors intermittent working mechanism. Combining the
benefits of both event-triggered control and sampled-data
control, some results have been proposed.

Peng & Han (2013) proposed an event-triggered strategy
and control co-design for sampled-data control systems
to determine whether or not to transmit the sampled
data. A strategy called period event-triggered control is
presented by striking a balance between sampled-data
control and event-triggered control (Heemels et al. 2011).
Meng & Chen (2013) proposed an event triggering scheme
which is designed based on a quadratic Lyapunov function.
An sampled-data event detector is introduced to drive
the states to their initial average. It is worth to note
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that existing results on event-triggered strategies mostly
used a Lyapunov-based triggering condition and adopt a
Lyapunov-type argument. It is known to all, Lyapunov
function is hard to select, even sometimes could not be
found. If the threshold of event condition is a function of
time or other tuning parameters instead of a function of
local information, the simple quadratic Lyapunov function
is no longer suitable. In addition, how large the sampling
period could be chosen to guarantee the stability and act
a well performance is the most concerning.

In this paper, an event-triggered strategy with sampled-
data mechanism is proposed. Different from previous
event-triggered methods, the trigger function is not de-
signed by Lyapunov technique which could intrinsically
guarantee the global asymptotic stability of system. It
only depends on each agents own sampled state. A dis-
agreement error is introduced to describe the difference
between current state and final steady state. The system
consensus stability is proved by presenting the convergence
of the disagreement vector sequence. Moreover, a necessary
condition about the upper bound of sampling period is
derived to guarantee the asymptotic convergence.

The rest of this paper is organized as follows. Section 2
presents some mathematical preliminaries and the problem
formulation in this paper. A basic event-triggered control
law is also discussed in this part. An event-triggered
control upon sampled data is presented in section 3. In
section 4, some simulation results are provided. Section 5
concludes the paper.

2. PRELIMINARIES

In this section some facts about graph theory used in this
paper are reviewed and could be found in Godsil and Royle
(2001), the problem statement is also given.

2.1 Graph Theory and Problem Statement

For a graph G with N nodes V = {1, 2, . . . , N} and edge
set E = {(i, j) ∈ V × V |i, j adjacent} ,the Laplacian ma-
trix L is defined as L = D−A , where D is the degree ma-
trix and A is the adjacency matrix of G. The set of neigh-
bors of the node i is denoted by Ni = {j ∈ V : (i, j) ∈ E}
.For connected graphs, L has exactly one zero eigenvalue
λ1(G) and the smallest non-zero eigenvalue λ2(G) is called
algebraic connectivity.

Consider the multi-agent system consisting of N agents
with single-integrator dynamic

ẋi(t) = ui(t), (1)

where xi denotes the state of agent i, ui denotes the control
input for each agent. The consensus control laws are given
by

ui = −
∑
j∈Ni

aij(xi − xj) (2)

In this paper, the above control law is redefined so as to
take into account event-triggered strategies. For each i,
and t ≥ 0, a measurement error ei(t) is introduced, The
discrete time instants where the events are triggered are
defined as when the condition f (ei (t)) = 0 holds. The
sequence of event-triggered execution time is denoted by
ti0, t

i
1, . . . .

For the sequence of events ti0, t
i
1, . . . , the state value of

agent i is a piecewise constant function x̂i(t) = xi(t
i
k), t ∈[

tik, t
i
k+1

)
, x̂i(t) is the latest trigger value of the state, and

sent to the neighbor at every trigger time. The control law
will update immediately with the state, thus the control
law could be redefined as

u(t) = −Lx̂(t) (3)

2.2 A Basic Event-triggered Control

In this part, a basic event-triggered control strategy on
fixed and directed graph is derived from Seyboth et
al(2013) in which the graph is only undirected. And a
useful theorem is presented first.

Lemma 1. Suppose L is the Laplacian matrix of a directed,
strongly connected graph G. Then for all t ≥ 0 and all

vectors υ ∈ RN , with 1Tυ = 0, L
(
Ĝ
)

= 1
2

(
L+ LT

)
it

holds that ∥∥e−Ltυ∥∥ ≤ e−λ2(Ĝ)t ‖υ‖
Proof: since the graph G is a strongly connected graph,
it is diagonalizable with an orthogonal matrix H. As
HTLH = 1

2H
T (L+ LT )H = HTL(Ĝ)H,

e−Ltυ = Hdiag(1, e−λ2(G)t, ..., e−λN (G)t)HTυ

= Hdiag(1, e−λ2(Ĝ)t, ..., e−λN (Ĝ)t)HTυ

As 1Tυ = 0, so∥∥e−Ltυ∥∥ =
∥∥∥Hdiag(0, e−λ2(Ĝ)t, ..., e−λN (Ĝ)t)HTυ

∥∥∥
≤ ‖H‖

∥∥∥diag(0, e−λ2(Ĝ)t, ..., e−λN (Ĝ)t)
∥∥∥∥∥HT

∥∥ ‖υ‖
= e−λ2(Ĝ)t ‖υ‖

Consider the system (1) with control law (3), we define the
measurement error for each agent as

ei(t) = x̂i(t)− xi(t) (4)

and denote the stack vector e(t) = [e1(t), e2(t), . . . , eN (t)]
T

.
With the event trigger strategy, the closed-loop system
changes to

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)) (5)

The trigger function is given by

fi(ei(t)) = ‖ei(t)‖ − ce−αt (6)

with c > 0, λ2(G) > α > 0. It is obvious that the trigger
condition of each agent have nothing to do with neighbors
information. Whether agent i should be triggered depends
solely on its own state. If agent i is triggered, its current
state will be transmitted to neighbors to update the
control law. Otherwise the latest triggered state is used
to control the system.

The task is to prove the convergence of the proposed
event-triggered consensus law. According to Olfati-Saber
(2004), since G is strongly connected and balanced, the
state vector x can be decomposed as x (t) = 1 · a + δ(t),
where a = Ave(x) is an invariant quantity and δ is called
the disagreement vector and 1T δ = 0, 1 is the vector of
ones.

Then
δ̇(t) = ẋ(t) = −L(x(t) + e(t))

= −L(1a+ δ(t) + e(t))
= −L(δ(t) + e(t))

(7)
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The analytical solution of the disagreement dynamics can
be calculated as

δ (t) = e−Ltδ (0)−
∫ t

0

e−L(t−τ)Le (τ) dτ (8)

The disagreement vector is bounded by

‖δ (t)‖ ≤
∥∥e−Ltδ (0)

∥∥+

∫ t

0

∥∥∥e−L(t−τ)Le (τ)
∥∥∥dτ (9)

Applying Theorem 1,

‖δ (t)‖ ≤ e−λ2(G)t ‖δ (0)‖+

∫ t

0

e−λ2(Ĝ)(t−τ) ‖L‖ ‖e (τ)‖dτ

(10)
From the trigger condition, it is known that ‖ei(t)‖ ≤
ce−αt, so ‖e(t)‖ ≤

√
Nce−αt, solving the integration leads

to

‖δ (t)‖ ≤ e−λ2(G)t ‖δ (0)‖+
‖L‖
√
Nc

λ2(G)− α

(
e−αt − e−λ2(Ĝ)t

)
(11)

since λ2(G) > α > 0, the analysis above could guarantee
the multi-agent system convergence to a desired formation
asymptotically for t→∞ with ‖δ(t)‖ → 0.

Now it remains to show Zeno behavior is excluded. It
must be proven that there is an inter-event time between
two adjacent trigger times lower-bounded by a positive
constant. Thus there will not be an accumulation point of
events.

With the definition of measurement error, ėi(t) = −ẋi(t).
Observe that

‖ėi(t)‖ ≤ ‖ẋi(t)‖ ≤ ‖ẋ (t)‖ = ‖Lx̂(t)‖
≤ ‖L‖ ‖x̂(t)‖ (12)

As x̂(t) is a piecewise constant, and for any t between the
latest trigger time t∗ and the next event time for agent i

‖ei(t)‖ ≤
∫ t

t∗
‖ẋ(t)‖dτ

≤
∫ t

t∗
‖L‖ ‖x̂(t)‖ dτ

≤ ‖L‖ ‖x̂(t)‖ (t− t∗)

(13)

A new trigger event will not be executed until ‖ei (t)‖ >
ce−αt . Hence, a lower bound T = t− t∗ on the inter-event
time is given by

‖L‖ ‖x̂(t)‖ eαt
∗
T = ce−αT (14)

Thus, we conclude that the lower bounded inter-event time
T is positive.

3. A NEW EVENT-TRIGGERED CONTROL WITH
SAMPLED-DATA MECHANISM

Event-triggered formulations require the constant moni-
toring of a trigger condition. Such continuous state de-
tection and continuous trigger condition checking will be
hardly accomplished. In this part, we integrate the sam-
pled data with event-triggered strategy to relax this re-
quirement. The introduction of the sampled state measure-
ment renders the state of each agent obtained by periodic
sampling,and the event detector is worked only at each
sample time.

Each agent consists of a typical structure with an event
triggered control upon sampled data as shown in Fig. 1,

Fig. 1. Conceptual framework of proposed sampled-data
based event-triggered control.

where and an event generator is located between the sensor
and the controller. The event generator detects errors
between current and latest sampled data. Whether or not
the sampled data should be sent to neighbors is determined
by a specified threshold. If an agents threshold is violated
or its neighbor is triggered, the control signal is updated
by the newest sampled data, otherwise the control signal
is held by a zero-order hold (ZOH) operator.

It is defined that tik is the kth event instant for agent i and
h is the sampling period for all agents synchronized by a
timer. The event condition for agent i has the following
form∥∥ei(tik + nh)

∥∥ =
∥∥xi(tik)− xi

(
tik + nh

)∥∥ ≤ ce−α(tik+nh)

(15)
ti0 = 0 is the initial time, and all measurements xi(t

i
k) are

from the sample states xi(mh), that is to say, the event
is only triggered at sampling time. This means that the
inter-event time

{
tik+1 − tik

}
is lower bounded by sampling

period h.

Remark 1. The advantages of the event condition in (15)
are obvious. First, the event detectors are distributed, each
agent only needs its own state to decide the trigger time,
the actuator can be triggered asynchronously. Second,
the sampled event detector can remarkably reduce sensor
energy consumption and network communications as the
condition is only checked at discrete sampling times.
Finally, the sampled event detector guarantees that the
next trigger time is at least one period later. It should be
specially noted that when c ≤ 0 , the condition is triggered
at every sampling time , the event-triggered control turns
into a sampled-data control.

The topology is also assumed to be fixed and directed.
Under the control law given in the previous section, the
closed-loop system for agent i can be obtained as

ẋi(t) = −
∑
j∈Ni

(xi(t
i
k)− xj(tjk′)) (16)

where tjk′ = max
{
t|t ∈

{
tjk, k = 0, 1, . . .

}
, t ≤ tik + nh

}
.

Notice that for t ∈
[
tik + nh, tik + nh+ h

)
,

xi(t
i
k) = xi(t

i
k + nh) + ei(t

i
k + nh)

xj(t
j
k′) = xj(t

i
k + nh) + ej(t

i
k + nh)

(17)

The equation (16) above can be written in stack vector
form as follow for t ∈ [mh,mh+ h)

ẋ(t) = −L(x(mh) + e(mh)) (18)

Similar to equation (7),
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δ̇(t) = ẋ(t) = −L(x(mh) + e(mh))
= −L(1a+ δ(mh) + e(mh))
= −L(δ(mh) + e(mh))

(19)

Then solve this equation∫ t

0

δ(s)ds =

∫ h

0

−L(δ(0) + e(0))ds+∫ 2h

h

−L(δ(h) + e(h))ds+ · · ·

+

∫ t

mh

−L(δ(mh) + e(mh))ds

(20)

where mh < t < (m+ 1)h

The solution is

δ(t) = δ(mh) +

∫ t

mh

−L(δ(mh) + e(mh))ds

= (1− (t−mh)L)δ(mh)− (t−mh)Le(mh)
(21)

and δ(mh) = (1− hL)δ ((m− 1)h)− hLe ((m− 1)h)

To solve the sequence, the equation of δ(mh) only de-
pends on its initial value and measurement errors of every
sampling time. And all of these are known constants.

δ(mh) = (1− hL)mδ(0)− hLe ((m− 1)h)
− · · · − (1− hL)m−1−nhLe (nh)− · · ·
− (1− hL)m−1hLe (0)

(22)

Then the bound is calculated to be
‖δ(mh)‖ ≤ ‖(1− hL)mδ(0)‖+ ‖hLe ((m− 1)h)‖

+ ‖(1− hL)hLe ((m− 2)h)‖
+ · · ·+

∥∥(1− hL)m−1hLe (0)
∥∥

≤ ‖(1− hL)m‖ ‖δ(0)‖+ ‖hL‖ ‖e ((m− 1)h)‖
+ · · ·+

∥∥(1− hL)m−1−nhL
∥∥ ‖e (nh)‖+ · · ·

+
∥∥(1− hL)m−1hL

∥∥ ‖e (0)‖
(23)

The purpose is to prove the asymptotic convergence of
all agents, that is to say, lim

t→∞
‖δ(t)‖ = 0 should be

guaranteed. So

‖δ(t)‖ → 0⇔ ‖δ(mh)‖ → 0

⇔
{
‖(1− hL)m‖ ‖δ(0)‖ → 0,∥∥(1− hL)m−1−nhL

∥∥ ‖e (nh)‖ → 0.
(24)

As t→∞,we have m→∞, ‖e(mh)‖ ≤
√
Nce−αmh → 0,,

and ‖δ(0)‖ , ‖e (mh)‖ are constants. The only solution
could guarantee the condition (24) is

|I − hL|m → 0⇔ |I − hL| < 1

Hence, the following theorem can be concluded.

Theorem 1. Consider a multi-agent system consisted of
one-order integrators over a directed graph with the pro-
tocol in (2) and triggered by event condition (6). Then
all agents converges together asymptotically if |I − hL| <
1⇒ 0 < h < mini=(1,2...,n)

2Re(λi)

|λi|2
.

Remark 2. According to Xie et al.(2009a), the maximum
sampling period to solve the consensus problem and guar-

antee the stability is minλ∈Λ+(L)
2Re(λ)

|λ|2 this is consistent

with our results. If the topology is undirected, the period
limitation can be obtained as 2/λn. In other words, when
the sampling period is 2/λn, the system must trigger at
every sampling instant, otherwise the system will not be
stable.

4. SIMULATION RESULTS

In order to illustrate the effectiveness of the proposed
event-triggered control with sampled data, we compare
it to the basic event-triggered implementation of (6). It
is supposed that all initial parameters of the simulation
are the same. Consider a network of three agents whose
Laplacain matrix is given by

L =

[
1 0 −1
−1 1 0
0 −1 1

]
The eigenvalues of the matrix are (0, 1.5± 0.886i), then
the upper bound of period h is equal to 1. The sampling
period h for all agents are chosen as h = 0.2 within
the upper bound. The initial condition are chosen to
x1 = [0, 7], x2 = [2, 1], x3 = [3, 5]. For the simulation,
the threshold used is 0.8e−0.3t.

For the basic event-triggered control, the simulation result-
s are shown in Fig. 2-4. It can be seen in Fig.2 that each
agent converges to the consensus point. Fig.3 describes
the evolution of state as it reaches consensus. Fig.4 shows
the norm of measurement error ‖ei(t)‖ for each agent. We
compare it to the proposed event-triggered control upon
sampled data whose simulations are shown in Fig. 5-7.

From Fig.2 and Fig.5, it is seen that both of two event-
triggered strategies reach consensus at their weighted
average. Due to introducing the sampled data into event-
triggered control, the node trajectory in fig. 5 is not as
smooth as the one displayed in fig.2. but it does not affect
the consensus of nodes. By comparing Fig.3 and Fig.6, It
is shown that the convergence time in proposed method is
nearly the same as the basic event-triggered method, about
6s in both Fig.3 and Fig.6.The only minor difference is that
the oscillations of proposed method are a little larger than
the basic one.

An obvious difference in two strategies is exhibited by
Fig.4 and Fig.7. It can be found that the event condition is
triggered more intensive with basic event-triggered method
than with proposed one, which means the number of
control updates is greatly reduced by our method. Another
obvious difference is in Fig.7 : the event is not triggered
even though the measurement error ‖ei(t)‖ surpasses the
threshold until the next sampling time for the proposed
method. In this figure, Though the measurement error
‖e1‖ at 5.1s is beyond the error threshold, the control
action isn’t triggered until to 5.2s. Because the trigger
condition is only verified at sampling time. The detector
is not active between periods even when the threshold is
violated and the event is not triggered until next sampling
time 5.2s, as h = 0.2 ,but the reduction of control action
does not affect the consensus convergence if theorem 3
is satisfied. As a summary, the event-triggered control
upon sampled data exhibits a similarly good convergence
performance in consensus control while greatly reducing
the resource consumption.

5. CONCLUSION

In this paper, we have proposed an event-triggered control
with sampled-data mechanism to make multi-agent sys-
tems consensus, which combines the benefits of sampled-
data control and event-triggered control. A disagreement
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Fig. 2. Consensus result with basic event-triggered control.

Fig. 3. Evolution of each state with basic event-triggered
control.

Fig. 4. Evolution of Measurement error with basic event-
triggered control.

vector is introduced to provide another method rather
than seeking Lyapunov funcion to prove the asymptotical-
ly convergence. Through the simulations, we get that there
is hardly a difference between the basic event-triggered
consensus control and proposed method, while the pro-
posed method remarkably reduces the updates. An upper

Fig. 5. Consensus result with proposed event-triggered
control.

Fig. 6. Evolution of each state with proposed event-
triggered control.

Fig. 7. Evolution of Measurement error with proposed
event-triggered control.

bound of sampling period is derived according to the sta-
bility condition. The future work is to extend the proposed
method to multi-agent system with communication delay
and disturbances.
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