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Abstract: The aim of this paper is to propose tools to adapt and parameterize the Material Requirement 

Planning (MRP) method under lead time uncertainty. We study multi-level assembly systems with one 

type of finished products and several types of components. We consider that each component has a fixed 

unit inventory cost and the finished product has a backlogging cost per unit of time. The lead times of 

components are discrete random variables, and the costumer’s demand of the finished product is known. 

A general mathematical model for supply planning of multi-level assembly systems is presented. A 

Genetic Algorithm (GA) method is proposed to minimize the sum of the average inventory holding cost 

for components and the average backlogging and inventory holding costs for the finished product. 
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1. INTRODUCTION AND RELATED PUBLICATIONS 

For assembly systems, the lead times of components may 

be an uncertain parameter; it is rarely deterministic and 

mostly has a variable value. This unpredictability may be 

caused by economic conditions (changes in costs increase 

in prices of raw materials, etc.) and to technical problems 

(machines breakdowns, limited capacity, delay of 

transport, etc.).  

The literature review identified different types of supply 

variability. Wazed et al. (2009) identified the major factors 

of uncertainty in a real manufacturing environment as 

demand, supplier lead time, quality and capacity. Several 

states of the art in the field of MRP parameterization under 

uncertainties (Dolgui et al. (2013), Dolgui and Prodhon 

(2007), Damand et al. (2011), Koh et al. (2002) and Guide 

and Srivasta (2000)) studied and analyzed their 

consequences. Various techniques such as safety stocks 

and safety lead times are used by planners to control the 

supply variability in order to lead the better anticipation of 

uncertainties (Van Kampen Tim et al. (2010)). 

For example Koh and Saad (2007) specified how the 

safety lead time is especially helpful in handling supply 

uncertainties, such as late delivery. Molinder (1997) 

proved that a high level of lead time variability and 

demand variability has a strong effect both on the level of 

optimal safety lead times and optimal safety stocks. 

Dolgui et al. (2008) studied the MRP parameterization 

problem for assembly systems under uncertainties, in 

particular, for the control of component inventories for 

two-level assembly systems with random component 

procurement times. They explained that lead time 

uncertainties seem to be insufficiently studied for a long 

time, favoring the study of demand uncertainties. 

The aim of this study is to investigate the effectiveness of 

lead times in the presence of supply variability. We are 

interested in a one period model demand for multi-level 

assembly systems under a fixed demand and uncertainty of 

components lead times. 

The rest of paper is organized as follows. Firstly, we 

present a short review of previous work relating to the 

optimization of assembling systems under uncertainties for 

a one period model demand (section 2). The problem 

description is presented in section 3. The analytical model 

is proposed in section 4. In section 5, we present the 

optimization algorithm which is used to find the order 

release dates which minimize the expected value of the 

total cost. Some results are shown in sections 5 and 6. 

Finally, we outline the work done in the conclusion and 

give some perspectives of future research. 

In this paper, a multi-level assembly system with 

stochastic lead times at each level is studied. We focus on 

the problem of MRP parameterization under lead time 

uncertainties. It continues the work of several authors (Ben 

Ammar et al. (2012), Hnaien et al. (2009), Dolgui et al. 

2008, Hnaien et al.2007 and Ould Louly et al. (2002)). 

In the literature few researchers have considered lead times 

as discrete random variables. In papers Dolgui et al. (1995) 

and Dolgui (2001), authors proposed an approach based on 

the coupling of simulation models and an integer linear 

programming. A model is considered for one level 

assembly systems under constant demand and for 

stochastic lead times. The lot for lot policy was employed 

and several types of finished products were considered. 

Each finished product is assembled using various types of 

components. Holding cost for each item was considered.  

The suggested approach is applied to calculate the number 

of components of each type to be ordered at the beginning 

of each period as well as the number of products to be 

assembled during each period. 
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Dolgui et al. (2009) and Ould Louly et al. (2008) studied 

multi-period one-level assembly systems under 

components lead times uncertainties. The demand was 

considered as deterministic and the capacity of the 

assembly system was assumed unlimited. They used a 

generalization of discrete Newsboy model proposed in the 

paper Ould Louly and Dolgui (2002) to minimize the 

average inventory holding cost for components while 

maintaining a high customer service level for the finished 

product. The same problem was solved by a Branch and 

Bound approach in Ould Louly and al (2008a). 

Tang and Grubbström (2003) studied a two-level assembly 

system with stochastic lead times for components and 

fixed demand for the finished product. The due date is 

assumed to be known and the process time for components 

at level one is also stochastic. The Laplace transform 

procedure was proposed to minimize the total backlogging 

and inventory holding costs. The optimal safety lead times, 

which are the difference between planned and expected 

lead times are determined. The same problem was treated 

by Hnaien et al. (2009). A GA is suggested to find the 

release dates for the components at level 2 and to minimize 

the total expected cost which equals to the sum of the 

inventory holding costs for components and the 

backlogging cost for the finished product. In the paper of 

Fallah-Jamshidi et al. (2011), the same problem is 

considered but within a multi-objective context. For 

minimizing both costs at the same time, authors reinforce 

the GA with a developed evolutionary algorithm, called 

the Electromagnetism-like Mechanism.  

In the paper Ben Ammar et al. (2010), authors study the 

same problem but for multi-level assembly systems. The 

main aim is to find the values of planned lead times which 

minimize the sum of the average component holding cost 

and the average finished product backlogging and holding 

costs. They proposed a simulation model coupled with a 

GA which Hnaien et al. (2009) used in their studies. To 

validate their model, they compared, for two-level 

assembly systems, their approach with a mathematical 

model coupled with the same GA. The last approach 

appears more accurate, efficient and to converge faster 

than the simulation model coupled with the same GA. 

However, the simulation model allows the study of multi-

level assembly systems. 

2. PROBLEM DESCRIPTION 

To get closer to the industrial methods of planning, we 

consider a discrete temporal environment. The figure (1) 

shows that the finished product is produced from 

components themselves obtained from other components. 

We limit our study into a single period. We assume that 

the demand D for the finished product is deterministic and 

known as well as its due date T. A unit backlogging cost 

and a unit inventory holding cost for the finished products, 

and a unit inventory cost for each component are 

considered. Actual lead times are modelled as independent 

random discrete variables with known probability 

distributions. 

 

Fig. 1. A multi-level assembly system. 

The following notations are used in this paper: 

Table 1.  Notation 

Parameters 

  Due date for the finished product 

  
Demand for the finished product, without loss of 

generality, let     

  Level in a bill of material (BOM),         

     Component   of level   of BOM 

   Number of types of components of level   

     Set of the “sons” of       in a BOM tree 

     Random lead time for component      

     Maximum value of     ; each      varies in [      ] 

     The longest time between the release date for 

component      and  . It is equal to the maximum 

value of ∑      
 
    ; ∑      

 
    varies in [  

∑      
 
       ] ,    [     ]                 

     Unit holding cost for component      

  Unit backlogging cost of the finished product 

  Unit inventory holding cost for the finished product 

Variables 

     

Decision variable: release date for component 

     (this type of variable is defined only for 

components at level  ) 

Functions 

 ⟦ ⟧ Expected value 

    ( ) Cumulative distribution function of       

 ( ) The recursive function used to calculate  ⟦ ⟧ 
value 

In this model, the MRP system is considered as a push-

system. Thus, for each level, when all the necessary 

components are available, level   delivers the components 

to level     with a random discrete lead time. When the 

semi-finished product arrives at the final level (level 0), it 

undergoes the necessary operations and afterwards the 
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finished product is delivered to the customer in order to 

satisfy the demand  . It is assumed that each component 

of level m is used to assemble only one type of component 

at level    . 

We use the following notations to simplify several 

expressions: 

   Assembly date for        : 

          
           

(         ) 

   Assembly date for        : 

          
           

(         ),           

   Assembly date for the finished product: 

       
        

(         ) 

   Maximum between     and the due date   : 

   
     (     ) 

   Minimum between     and the due date   : 

   
     (     ) 

     ∑    

  

   

 

   ∑    

  

   

   

 ∑  

  

   

 ∑(     ∑       
           

)

  

   

 

 〈 〉 :     (   ) 

 〈 〉 :     (   ) 

3. MATHEMATICAL MODEL 

The objective is to find the component release dates at 

level   in order to minimize the expected value of the 

total cost which equals to the sum of the inventory holding 

cost for components and the backlogging and inventory 

holding costs for the finished product (Fig. 2). 

Proposition 1 

An explicit form for the total cost is the following: 

 (   )    (   
   )    (     

 )  

 ∑       

  

   

 ∑∑  

  

   

   

   

     ∑∑        

  

   

 

   

 

 ∑        

  

   

  

(1) 

With 

  (                                         )  

and   (                   ). 

The complete proof was published in Ben Ammar et al. 

(2013). 

Proposition 2 

The mathematical expectation of the total cost   ⟦ ⟧ is 

given by the next expression: 
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)
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(2) 

The complete proof was published in Ben Ammar et al. 

(2013). 

 

Fig. 2. A three-level assembly system. 

 

Proposition 3 

In order to decrease the complexity of the forthcoming 

algorithms, the research space of possible solutions 

[          ] is reduced to [         

∑  ⟦     ⟧
 
   [,    [     ]                . 
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Proof 3 

By contradiction, suppose that the exists an optimal 

solution    (    
        

         
 )  with,       

   

 

           
  [          ] and       

   

 

          [     ]                       
  

[  ∑  ⟦     ⟧
 
       ]  

We demonstrate that is a dominant solution    
(    

        
         

 ) such that              , 

    
  [          ⟦    ⟧   ⟦    ⟧[ and        

    
      

      

Let  (     )   ⟦ (    )⟧   ⟦ (    )⟧ and      

    (   )   

After simplifications, we have: 

 (     )   ∑ (    ⟦   {  }   ⟧)
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It can easily be proven that for       and for   

∑ (    )
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)
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4. GENETIC ALGORITHM 

To solve the model of the problem, the Genetic Algorithm 

proposed in Ben Ammar, O. et al. (2010) and Hnaien, F. et 

al. (2009) is applied. An Elitist strategy is employed. The 

initial population is formed by individuals built by 

randomized algorithm. Crossover, mutation, selection 

procedures and local search (LS) are used to create better 

individuals (chromosomes). A fitness function is available 

to evaluate each solution. 

4.1 Perturbation 

The perturbation (Fig. 3) consists of replacing 90% of the 

solutions who have the same cost and replacing them with 

solutions undergoing a special mutation (using block 

mutation), see figure (4). Each solution 

  (                   ) undergoes a modification. 

The mutation concerns several genes             which 

are the order release dates for components             that 

needed to assemble a component       . 

5. RESULTS 

5.1 Data generation and setting 

The two proposed methods described in Section 4 have 

been coded in C++. The experiments are carried on 

computer with 2.93 GHz CPU and 4 GB of RAM. 

determine                of an individual   ; 

For each               ( ) do 

      2      (        ); 

            (        2); 

             (       ); 

 2            (      2); 

       ; 

For      à  2 do 

                   ( )              ( )    ;  

End For 

End For 

Fig. 3. Perturbation approach. 

The solution approach is tested on a randomly generated 

instance set. We created 10 instance families for two-

assembly systems. The number of components at level 2 is 

equal to [10,20, ...,100] in each family, 100 test instances 

are generated. 

 

Fig. 4. Block mutation. 

For parameters of the GA, the following values have been 

empirically chosen after preliminary tests: The population 

size is equal to 60 chromosomes, the crossing over 

probability is equal to 0.95 and the mutation probability is 

equal to 0.05. The number of generations (stop condition 

given by the maximum number of iterations) is fixed to 

1000. 

5.2 Experimental results  

Tables (2-4) show the influence of the LS, the reducing of 

the search space and the perturbation on the families of 

instances.  

The first column gives the number of components for each 

instance family. Second column is the average number of 

iterations where the best solution is found.  

On the third column, the average gap between the best 

solution in the initial population and the best solution 

found by the algorithm is given: 

+1 

5 2 3 3 2 4 1 2 3 1 

 

5 2 3 2 1 3 0 2 3 1 
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     where             the 

best solution in the population of generation 1000). 

Next column provides the average      between the result 

of the algorithm and the best solution among all versions 

of the GA (     
                    

        
     where 

         is the best known solution (BKS) found among all 

versions of the GA). Finally the average execution time 

(when the best solution is found) of the algorithm is 

reported on the last column.  

Table 2.  GA without a LS or perturbation or a RSR 

Instances Iteration 

Mean 

    

(%) 

Mean 

     from 

BKS (%) 

CPU 

Time 

(sec) 

10 383.377 60.99 0.19 0.077 

20 790.803 109.34 10.19 0.517 

30 826.203 86.90 40.18 1.068 

40 830.541 51.99 62.85 0.806 

50 844.415 59.34 34.21 1.066 

60 861.310 58.36 95.89 1.610 

70 868.987 75.55 118.86 2.139 

80 851.819 46.08 57.46 2.686 

90 884.392 42.67 72.63 3.373 

100 837.873 38.78 77.71 4.763 

 

The results of the GA combined without LS or 

perturbation or a RSR are presented on the table 2. We can 

observe that even if there is a considerable improvement of 

the initial population, the average gap from the Best 

Known Solution is very large. The average gap on all the 

instances is 63%. When the space of research is reduced 

(table 3), the improvement is very important; the total 

average gap is no more than 10% and the average number 

of iterations where the best solution is found is 

significantly reduced by 49.11%. 

Table 3.  GA combined with a RSR 

Instances Iteration 
Mean 

    (%) 

Mean 

     
from 

BKS (%) 

CPU 

Time 

(sec) 

10 98.096 1.89 0.00 0.008 

20 537.632 15.74 1.87 0.141 

30 462.932 15.78 4.44 0.238 

40 441.831 8.35 10.15 0.987 

50 352.059 5.30 8.40 1.057 

60 351.624 6.97 52.31 0.593 

70 340.999 8.03 63.54 0.831 

80 466.987 10.45 10.60 1.415 

90 535.24 10.25 6.54 2.269 

100 473.633 8.84 8.60 2.184 

 

We can state by the table 4 that, the inclusion of 

perturbation improves considerably the solution quality: 

the total average gap from the best known solutions on all 

instances is 0.08%. But the average number of iterations 

where the best solution is found is more than 395 

generations. 

Finally, almost all the best known solutions are obtained 

when the use of the RSR is combined with the perturbation 

and with le LS (table 5). The total average gap is also less 

than of 0.01%. The average number of iterations where the 

best solution is found is significantly reduced to 113.80. 

Table 4.  GA combined with perturbation and LS but 

without a RSR 

Instances Iteration 
Mean 

    (%) 

Mean 

     from 

BKS (%) 

CPU 

Time 

(sec) 

10 36.016 59.67 0.00 0.010 

20 91.007 133.49 0.00 0.083 

30 144.038 161.19 0.00 0.243 

40 225.257 147.25 0.01 0.264 

50 530.231 112.87 0.23 0.776 

60 363.227 170.19 0.01 0.861 

70 417.974 196.10 0.01 1.307 

80 675.254 141.42 0.16 2.399 

90 709.28 140.65 0.10 3.293 

100 754.048 144.13 0.28 4.501 

 

We can also see on the tables 2-5 that even on the largest 

instances, the mean execution time of the GA is less than 5 

seconds. 

Table 5.  GA combined with perturbation, RSR and LS 

Instances Iteration 

Mean 

    

(%) 

Mean 

     
from 

BKS (%) 

CPU 

Time 

(sec) 

10 15.436 2.20 0.00 0.002 

20 45.05 8.59 0.00 0.015 

30 51.567 8.89 0.00 0.042 

40 85.584 0.09 0.00 0.255 

50 156.958 3.31 0.08 0.050 

60 68.979 8.05 0.00 0.157 

70 72.504 9.61 0.00 0.231 

80 119.782 1.58 0.08 0.500 

90 226.911 2.25 0.01 1.060 

100 295.269 1.50 0.01 1.321 

 

6. CONCLUSIONS 

The paper deals with the modeling and optimization of 

multi-level assembly systems under uncertainty of 

components lead times and a fixed demand, more precisely 

to determinate planned lead times when the component 

procurement times are independent and identically 

distributed discrete random variables. 

Our future work will focus on the analysis of the 

correlation between the number of levels and the number 

of components in the level   of the nomenclature.  
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The main objective will be to use this general 

mathematical model and different proposed techniques to 

parameterize MRP system, in particular, planned lead 

times, when such a company deals with uncertainties of 

production and supply lead times. 
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