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Abstract: This paper proposes a method for interpolating two (or more) polytopic control Lyapunov
functions (CLFs) for discrete–time linear systems subject to polytopic constraints, thereby combining
different control objectives. The corresponding interpolated CLF is used for synthesis of a stabilizing
controller by on–line optimization. Recursive feasibility and computational efficiency of the resulting
optimization problem are established under suitable assumptions. The proposed method offers a smooth
transient between different polytopic CLFs, while guaranteeing stability and constraints satisfaction.
Moreover, it can also be designed such that it automatically yields a desired, optimal control law, within
a region around the equilibrium. An illustrative example is presented to demonstrate the effectiveness of
the developed synthesis method.

1. INTRODUCTION

Given a discrete–time linear system with state and input con-
straints, there exist controller design methods to achieve spe-
cific goals. However, most of the time it is difficult to achieve
multiple goals with one controller. For example, a controller
which is optimal in terms of frequency domain response or time
domain response is normally quite aggressive. Therefore, in the
presence of constraints, such an optimal controller can only be
applied for a small set of states around the desired equilibrium,
i.e., for the corresponding maximal admissible invariant set.
On the other hand, a controller that has a large admissible set
usually results in a slower time domain response and does not
necessarily meet the specifications at the equilibrium. There-
fore, there is a need for a solution that can combine different
controllers or, even better, different controller synthesis objec-
tives.

A possible solution is to use different design objectives to ob-
tain suitable controllers for different goals, and then combine
or merge the pre–designed controllers into a single controller.
A simple way to combine the pre–designed controllers is to
switch between different controllers, resulting in a piecewise
affine (PWA) controllers defined over polytopic state–space
partitions. A PWA controller can be synthesized using ex-
plicit model predictive control (MPC) [Bemporad et al., 2002],
[Tøndel et al., 2003], overlapping contractive sets [Blanchini
et al., 2008], [Spinu et al., 2011] or hybrid polytopic partitions
[Spinu and Lazar, 2012]. However, switching between different
controllers can lead to discontinuous control laws, which might
result in noise and distortion. Therefore, it is of interest to
reduce complexity and to guarantee a smooth transient of the
control law from one region to another.

Interpolation techniques can be used to combine pre–designed,
different controllers in a smooth way. In [Gutman and Cwikel,
1986], a controller valid within a polyhedral contractive set
is obtained by interpolating between the pre–designed control
inputs at the vertices and at the origin. More recently, this
approach was generalized to interpolation between controllers
defined for the boundary of two different polytopic invariant

sets. In this approach [Nguyen et al., 2011b,a, 2013], the in-
terpolation coefficients are optimized such that the resulting
interpolation–based controller is as close as possible to the
(optimal) controller that corresponds to the inner polyhedral
invariant set. Interpolation techniques for pre–designed con-
trollers can also be found in [Pluymers et al., 2005], where
the controller is obtained as a convex combination of multiple
controllers that are valid within different admissible sets. In
common, these solutions interpolate between some existing,
pre–designed controllers. Therefore, performance and robust-
ness of the corresponding interpolated controllers is inherited
from the pre–designed controllers used for interpolation, which
may be a limiting factor.

The limitation of interpolating pre–designed controllers can be
circumvented by combining different controller synthesis ob-
jectives at the design level. This leads to the idea of combining
different control Lyapunov functions (CLFs) which are asso-
ciated with different control objectives. [Andrieu and Prieur,
2010] proposed a method for uniting two CLFs for continuous–
time dynamical systems. Later, [Grammatico et al., 2013, 2014]
proposed a merging procedure between two CLFs using R–
composition, which was introduced in [Balestrino et al., 2012].
A controller can then be synthesized using the resulting, merged
CLF. This method is able to offer a smooth transient be-
tween different CLFs using gradient–type merging, if a control–
sharing property holds for the different CLFs.

In this paper we also take a CLF approach for dealing with
different controller synthesis objectives, while focusing on the
setting of discrete–time dynamical systems. More specifically,
we consider discrete–time linear systems subject to polytopic
state and input constraints. Further more, we assume that two
polyhedral CLFs, associated with different design objectives,
are available. Then, we provide an analytic characterization of a
corresponding interpolated function and we show how to use it
as a parameterized CLF. Stabilizing controller synthesis method
based on the parameterized CLF is formulated as an optimiza-
tion problem. Recursive feasibility of this optimization problem
is proven and, under an additional property called contractivity–
sharing, it is shown that the problem can be formulated as
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a single linear program (LP) or quadratic program (QP). An
illustrative example is used to demonstrate the effectiveness of
the proposed synthesis method.

2. PRELIMINARIES

2.1 Notation

Let R and Z denote the set of real numbers and the set of
integer numbers, respectively. The notation Z(c1,c2] denotes the
set S = {k ∈ Z|c1 < k ≤ c2}. Let Rn×m denote the set
of real n × m matrices. For a matrix Z ∈ Rn×m, [Z]ij ∈ R
denotes the element on the i-th row and the j-th column of Z,
[Z]i• ∈ R1×m denotes the i-th row of Z and [Z]•j ∈ Rn×1

denotes the j-th column of Z. Let 1n denote a vector in Rn×1

with [1n]i = 1 for all i ∈ Z[1,n]. For a vector x ∈ Rn, let
‖x‖p denote the p-norm of x, and let ‖x‖ denote an arbitrary
norm of x. For a set S, let ∂S denote its boundary and intS
denote its interior. For a λ ∈ R and a set S ∈ Rn, let
λS := {z|∃x ∈ S : z = λx}.

2.2 Control Lyapunov functions and gauge functions

Consider a linear discrete-time system:
x(k + 1) = Ax(k) +Bu(k), k ∈ Z+. (1)

The domain of x is X = {x ∈ Rn|HXx ≤ 1hX} and the domain
of u is U = {u ∈ Rm|HUu ≤ 1hU}, where hX and hU are the
numbers of hyperplanes of the polytopes X and U, respectively.
Definition 2.1. A positive definite function V (x) is a control
Lyapunov function (CLF) for system (1) in a set S if for all
x ∈ S, there exists a control law u ∈ U such that Ax+Bu ∈ S
and V (Ax+Bu) ≤ ρV (x), for some 0 ≤ ρ < 1.
Definition 2.2. [Blanchini and Miani, 2008] A proper C-set is
a convex and compact subset of Rn including the origin as an
interior point.
Definition 2.3. [Blanchini and Miani, 2008] Given a proper C-
set S, its gauge function ΨS(x) : Rn → R+ is defined as
ΨS(x) = inf{λ ≥ 0 : x ∈ λS}.
Lemma 2.4. Given two proper C-sets S1 and S2, the following
statements are equivalent:

(i) S1 ⊆ S2.
(ii) ΨS1(x) ≥ ΨS2(x) for all x ∈ Rn.

For a proof of Lemma 2.4, the interested reader is referred to
[Lazar et al., 2013] and the references therein.

2.3 Constrained control λ-contractive sets

Definition 2.5. A proper C-set S ⊆ X is constrained control λ-
contractive for system (1) if and only if for all x ∈ S, there
exists a u ∈ U such that Ax + Bu ∈ λS, where 0 ≤ λ ≤ 1.
If λ = 1 then the set is constrained control invariant for
system (1).
Proposition 2.6. If a proper C-set S is constrained control λ-
contractive for system (1) then µS is also constrained control
λ-contractive for system (1) for all 0 ≤ µ ≤ 1.
Proposition 2.7. Let S be a constrained control λ-contractive
proper C-set for system (1) and let ΨS(x) denote the gauge
function of S. Then ΨS(x) is a set–induced CLF for system (1).

Definition 2.8. Define Ωλ as the set of all constrained control
λ-contractive sets for system (1). A set P̃ is said to be the
maximal constrained control λ-contractive set for system (1)
if P̃ ∈ Ωλ and S ⊆ P̃ for all S ∈ Ωλ.

2.4 Admissible constrained control λ-contractive sets

The only difference with respect to the previous definitions is
that now a pre–designed controller is applied to the system.
Therefore, admissibility of the pre–designed controller is now
introduced.
Definition 2.9. A proper C-set S ⊆ X is admissible constrained
control λ-contractive for system (1) in closed–loop with a
controller u = uS(x) if and only if for all x ∈ S it holds
that uS(x) ∈ U and Ax + BuS(x) ∈ λS. If λ = 1 then the
set is admissible constrained control invariant for system (1) in
closed loop with controller u = uS(x).
Definition 2.10. Define Γλ as the set of all admissible con-
strained control λ-contractive sets for system (1) with a given
stabilizing controller u = uQ(x). A set Q̃ is said to be the
maximal admissible constrained control λ-contractive set for
system (1) with a feedback controller u = uQ(x) if Q̃ ∈ Γλ
and S ⊆ Q̃ for all S ∈ Γλ.

3. PROBLEM STATEMENT

Assume that we have two different control objectives for sys-
tem (1). One is to minimize a predefined cost function J(x, u)
and the other is to maximize the region of attraction for the
resulting closed–loop system. Two polytopic sets Q and P,
which correspond to two set–induced CLFs are designed to
achieve the objectives separately. It should be noted that these
two control objectives are just for the purpose of demonstration.
The proposed method works for any two polytopic CLFs in
general.

For the first objective, let uQ(x) : Rn → Rm be a stabilizing
controller that minimizes a predefined cost function J(x, u).
Let

Q = {x ∈ X|HQx ≤ 1hQ} (2)
be a polytopic approximation of the maximal admissible con-
strained control λQ-contractive set for system (1) in closed loop
with controller uQ(x), where 0 ≤ λQ ≤ 1. The set Q is
normally small and cannot cover all the possible operational
states. There is a need for another controller that is admissible
outside the set Q.

For the second objective, in order to maximize the region of
attraction of the resulting closed–loop system, the set P is cho-
sen as a polytopic approximation of the maximal constrained
control λP-contractive set for system (1), where 0 ≤ λP ≤ λQ.
It follows that Q ⊆ P. The set P can be represented as

P = {x ∈ X|HPx ≤ 1hP}. (3)
Due to the constrained control contractive property of P, there
exists a stabilizing control law uP(x) : Rn → Rm such that
for all x ∈ P, it holds that uP(x) ∈ U and Ax + BuP(x) ∈
λΨP(x)P.

The two different CLFs can be used separately for controller
synthesis, which yields the different controllers uP(x) and
uQ(x). These controllers can then be combined by a switching
rule, or by interpolation between the controllers of the two sets
[Nguyen et al., 2011b, 2013]. As explained in the introduction,
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the performance of the resulting controllers of both methods is
limited by the performance of the existing controllers.

Different from the above–mentioned approaches, in this paper
we aim to first merge the two designed CLFs ΨQ(x) and ΨP(x)
in a smooth way, a priori to controller synthesis. The controller
is then synthesized from the resulting interpolated CLF.

4. INTERPOLATION OF CLFS

In this section, we propose a method to synthesize a controller
from a changing–shape CLF, which is the interpolation of
the original CLFs ΨP(x) and ΨQ(x). The method is called
interpolation of CLFs (iCLFs).

4.1 Interpolation–based sets

As each candidate control Lyapunov function has its corre-
sponding family of sublevel sets, interpolation of CLFs can be
characterized via the interpolation of the corresponding sub-
level sets, as follows. First, define the interpolation–based set

Θ(α) := {x ∈ P|αΨP(x) + (1− α)ΨQ(x) ≤ 1}, (4)
where α ∈ R[0,1].

To construct an interpolation–based set, we first divide the set
P into a conic partition. Define a conic region:

C(p,q) := {x ∈ P|[HP]p•x− [HP]r•x ≥ 0 ∀r ∈ Z[1,hP],

[HQ]q•x− [HQ]s•x ≥ 0 ∀s ∈ Z[1,hQ]}.
(5)

Define the following set of pairs of indexes:
I := {(p, q) ∈ Z[1,hP] × Z[1,hQ]|C(p,q) 6= {0n}}. (6)

Define nl := cardI , which is the cardinal number of I , or in
other words, nl is the number of elements of I . Let I(l) denote
the l-th element of I . Define the following partition of the set
P:

P =
⋃
l

Pl, where Pl := CI(l), l ∈ Z[1,nl]. (7)

Let the facets of P in a conic region Pl, l ∈ Z[1,nl], be
represented as [Hc

P]lx ≤ 1. Similarly, let the facets of Q in a
conic partition Pl, l ∈ Z[1,nl], be represented as [Hc

Q]lx ≤ 1.

In a conic region Pl, it then holds that:
αΨP(x) + (1− α)ΨQ(x) = α[Hc

P]lx+ (1− α)[Hc
Q]lx. (8)

Therefore, the facet of Θ(α) in Pl can be represented as
[HΘ(α)]lx ≤ 1, where:

[HΘ(α)]l = α[Hc
P]l + (1− α)[Hc

Q]l. (9)

As a result, the gauge function of Θ(α) in Pl is:
[HΘ(α)]lx = α[Hc

P]lx+ (1− α)[Hc
Q]lx. (10)

Therefore, combining all the conic regions, the gauge function
of Θ(α) is:

ΨΘ(α)(x) = αΨP(x) + (1− α)ΨQ(x). (11)

Given two polytopic sets P and Q, the illustration of the conic
partition and Θ(α) is given in Figure 1 for some values of
α ∈ Z[0,1]. It is important to note that the number of facets
of Θ(α) is always nl, for all α ∈ R(0,1).

The following Lemmas establish certain useful properties of the
interpolation–based set (4).
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Fig. 1. Illustration of the sets P (green), Q (yellow) and Θ(α)
(gradient colors) for some values of α ∈ Z[0,1].

Lemma 4.1. The following statements are equivalent:

(i) 0 ≤ α2 < α1 ≤ 1.
(ii) Θ(α2) ⊂ Θ(α1).

Proof. (i)⇒(ii). For all x ∈ Rn, we have:

ΨΘ(α2)(x)−ΨΘ(α1)(x) = (α2ΨP(x) + (1− α2)ΨQ(x))

− (α1ΨP(x) + (1− α1)ΨQ(x))

= (α1 − α2)(ΨQ(x)−ΨP(x)).
(12)

From the result of Lemma 2.4, we have ΨQ(x) − ΨP(x) ≥ 0
for all x ∈ P since Q ⊂ P. Therefore, if α2 < α1 then
ΨΘ(α2)(x) ≥ ΨΘ(α1)(x), which means Θ(α2) ⊆ Θ(α1) due
to the result of Lemma 2.4.

For all x ∈ Θ(α1)\Q, it holds that ΨQ(x) − ΨP(x) >
0, resulting in ΨΘ(α2)(x) > ΨΘ(α1)(x). We conclude that
Θ(α2) ⊂ Θ(α1).

(ii)⇒(i). Since Θ(α2) ⊂ Θ(α1), there exists an x ∈ Θ(α1)\Q
such that ΨΘ(α2)(x) > ΨΘ(α1)(x). From (12) we conclude that
α2 < α1. �
Lemma 4.2. For any x ∈ P\Q, if ΨΘ(α1)(x) ≤ σ < 1 then
there exists an α2 such that 0 < α2 < α1 and ΨΘ(α2)(x) = 1.

Proof. From
ΨΘ(α1)(x) = α1ΨP(x) + (1− α1)ΨQ(x) ≤ σ, (13)

we have:

α1 ≥
ΨQ(x)− σ

ΨQ(x)−ΨP(x)
. (14)

Let

α2 =
ΨQ(x)− 1

ΨQ(x)−ΨP(x)
, (15)

which is equivalent to ΨΘ(α2)(x) = 1. We have α2 > 0 since
ΨQ(x) > 1 ≥ ΨP(x) for all x ∈ P\Q.

Taking the difference between (15) and (14) we have:

∆α = α1 − α2 ≥
1− σ

ΨQ(x)−ΨP(x)
. (16)

Since σ < 1 and ΨQ(x) > ΨP(x), it holds that α2 < α1. �

From Lemma 4.2, we know that for any x ∈ P\Q, there exists
a minimal α corresponding to ΨΘ(α)(x) = 1, which means that
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x is on the boundary of Θ(α). Denote this unique α as α∗(x),
which is a function of x:

α∗(x) =
ΨQ(x)− 1

ΨQ(x)−ΨP(x)
. (17)

4.2 Interpolation of CLFs

For any x ∈ P\Q, we would like to compute a control law u
such that α is minimized, since smaller α means that x is closer
to Q. To guarantee stability, we introduce a parameterized
control Lyapunov function [Lazar and Gielen, 2013]:

V (x, α) = ΨΘ(α)(x). (18)

To compute a control law u that minimizes the next step set
Θ(α+) and guarantees stability, the following optimization
problem is proposed:
Problem 4.3. Given x and α

min
α+,u

α+

subject to:
0 ≤ α+ ≤ 1,

HUu ≤ 1hU ,

V (Ax+Bu, α+) ≤ ρV (x, α),

where λP ≤ ρ < 1.

Let x(0) be the initial state and α(0) = 1. At discrete time
k > 0, Problem 4.3 is solved for x := x(k) and α := α(k) to
obtain α+ and u. Then let α(k + 1) := α+ and u(k) := u.
Theorem 4.4. Problem 4.3 is recursively feasible and the result-
ing control law guarantees asymptotic stability for the closed–
loop system for all initial states x(0) ∈ P.

Proof. For all initial states x(0) ∈ P, Problem 4.3 is feasi-
ble with a trivial solution α(1) = 1 due to the constrained
control contractive property of P. Now we will prove that if
Problem 4.3 is feasible for x(k− 1) then it is feasible for x(k),
for all k ≥ 1.

Since Q ⊂ P, from the results of Lemma 2.4 it holds for all
x ∈ P that:

ΨP(x) ≤ ΨQ(x). (19)

Let α(k) := α+ be the solution of Problem 4.3 for given x(k−
1) and α(k− 1). As V (x(k), α(k)) is a convex combination of
ΨP(x(k)) and ΨQ(x(k)), it follows that

ΨP(x(k)) ≤ V (x(k), α(k)) ≤ ΨQ(x(k)). (20)

Since x(k) ∈ P and P is constrained control λP-contractive,
there exists a control law u′(k) ∈ U such that

ΨP(Ax(k) +Bu′(k)) ≤ λPΨP(x(k)). (21)

It follows from (20) and (21) that
ΨP(Ax(k) +Bu′(k)) ≤ λPV (x(k), α(k))

≤ ρV (x(k), α(k)). (22)

If u(k) = u′(k) and α(k + 1) = 1, then
V (x(k + 1), α(k + 1)) = V (Ax(k) +Bu′(k), 1)

= ΨP(Ax(k) +Bu′(k))

≤ ρV (x(k), α(k)). (23)

Therefore, u = u′(k) and α+ = 1 is a feasible solution for
Problem 4.3 for x := x(k) and α+ := α(k). The recursive
feasibility of the Problem is proved.

Due to the recursive feasibility of the Problem, for all x(k) ∈ P
there exists a control law u(k) ∈ U and α(k + 1) ∈ R[0,1] such
that

ΨP(x(k)) ≤ V (x(k), α(k)) ≤ ΨQ(x(k)), (24)
and

V (x(k + 1), α(k + 1)) ≤ ρV (x(k), α(k)). (25)

Therefore, V (x(k), α(k)) is a parameterized Lyapunov func-
tion in P and hence guarantees asymptotic stability for sys-
tem (1) in closed–loop with the controller obtained from Prob-
lem 4.3, for all initial states x(0) ∈ P, in accordance with
[Lazar and Gielen, 2013, Theorem 3.1]. �

Problem 4.3 is a bilinear program. The objective function is a
continuous and convex function of a scalar variable α+, which
takes value in the interval [0, 1]. Problem 4.3 is always feasible
for α+ = 1, due to the constrained control contractive property
of P. Therefore, it can be solved by the bisection method,
which allows reduction of a bilinear program to a sequence of
linear programs or quadratic programs, depending on the cost
function J(x, u), i.e., if the cost is linear, then each problem is
an LP and if the cost is quadratic then each problem is a QP.
It should be noted that the first LP/QP, which corresponds to
α+ = 1, is always feasible. Therefore, the bisection procedure
can be stopped after any number of iterations, depending on the
available computational time.
Remark 4.5. If ρ is chosen such that ρ ≥ λQ then α+ = 0 and
u = uQ(x) is a feasible solution for Problem 4.3 when x ∈ Q.
Therefore, the optimal controller uQ(x) is yielded when x ∈ Q.

5. CONTRACTIVITY–SHARING

Solving a bilinear program using bisection can be computation-
ally expensive if the optimum is sought for. However, under
some certain properties of the two sets P and Q, the compu-
tational load can be considerably reduced. The contractivity–
sharing property of the two sets is introduced next for this
purpose.

5.1 Contractivity–sharing

Definition 5.1. Given two sets S1 and S2 such that S2 ⊂ S1 ⊆
X, the set S1 is 1-step constrained control contractive towards
the set S2 if for any x ∈ S1, there exists a control law u ∈ U
such that Ax+Bu ∈ S2.
Definition 5.2. (Contractivity–sharing) The sets P and Q have
the contractivity–sharing property if there exists a sequence of
interpolation–based sets Θ(αj), j ∈ Z[1,nj ] such that:

(1) Θ(α1) = P, or equivalently α1 = 1.
(2) Θ(αnj

) = Q, or equivalently αnj
= 0.

(3) Θ(αj+1) ⊂ Θ(αj), or equivalently αj+1 < αj , for all
j ∈ Z[1,nj−1].

(4) Θ(αj) is 1-step constrained control contractive towards
Θ(αj+1), for all j ∈ Z[1,nj−1].

It should be noted that the contractivity–sharing property does
not always hold. Therefore, the following algorithm is proposed
to verify the contractivity–sharing property of two polytopic
constrained control λ-contractive sets:
Algorithm 5.3. Given two proper C-polytopic sets P and Q,
recall the conic partition as defined in (7).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2300



(1) Denote all the vertices of all conic regions as xi1, where i is
the index of the ray (see Figure 1). Let α1 := 1. Initialize
j := 1.

(2) Solve the following optimization problem for x := xij :
Problem 5.4. Given x:

min
α+,u

α+

subject to:
0 ≤ α+ < α∗(x),

HUu ≤ 1hU ,

ΨΘ(α+)(Ax+Bu) ≤ 1.

The control law u and α+ are obtained. Let uij := u,
αij+1 := α+ and αj+1 = maxi α

i
j+1.

(3) There are three conditions for termination:
• If Problem 5.4 is infeasible for any xij , then P and Q

do not have the contractivity–sharing property.
• If αj+1 = 0 then P and Q have the contractivity–

sharing property.
• If the predefined maximum number of iterations is

reached then the test fails and no conclusion can be
drawn.

If none of the termination conditions is satisfied, let
j := j + 1 and go back to step 2.

Algorithm 5.3 is just a sufficient check and it requires solving
a number of optimization problems. For future work, we would
like to derive an algebraic condition to verify the contractivity–
sharing property.
Remark 5.5. The relation of the contractivity–sharing prop-
erty with the control–sharing property introduced in [Gram-
matico et al., 2013] is discussed in this remark. To begin with,
the control–sharing property concerns continuous–time dynam-
ical systems, while the contractivity–sharing property con-
cerns discrete–time dynamical systems. Moreover, the control–
sharing property requires the existence of a control law such
that both of the CLFs have a negative gradient. Therefore,
a corresponding property of the control–sharing property for
discrete–time dynamics should require the existence of a con-
trol law such that both CLFs decrease in one step. However,
with the contractivity–sharing property, this is not necessarily
the case, as one of the two CLFs can still increase in one
step. Therefore, the contractivity–sharing property is less con-
servative than the obvious correspondent of the control–sharing
property for discrete–time dynamics. This is to be expected,
as usually, the discrete-time setting allows for relaxations of
the standard assumptions employed by Lyapunov methods for
continuous-time dynamical systems, see, e.g., [Lazar, 2006].

5.2 Interpolation of CLFs with contractivity–sharing

If P and Q have the contractivity–sharing property, Problem 4.3
can be replaced by Problem 5.4. At time k > 0, Problem 5.4 is
solved for x := x(k) to obtain the control law u and α+. Let
u(k) := u. Since α+ is minimized, it follows that α∗(Ax(k) +
Bu(k)) = α+.
Theorem 5.6. If P and Q have the contractivity–sharing prop-
erty then Problem 5.4 is recursively feasible and the resulting
control law guarantees asymptotic stability for the closed–loop
system for all initial states x(0) ∈ P.

Proof. For any x(k) ∈ P\Q, there exists a j such that
αj+1 < α∗(x(k)) ≤ αj . Since Θ(αj) is 1-step constrained

control contractive towards Θ(αj+1), there exists u(k) such
that α∗(Ax(k) + Bu(k)) ≤ αj+1 < α∗(x(k)). Therefore,
Problem 5.4 is recursively feasible and the sequence α∗(x(k))
reaches 0 in at most nj steps.

When α∗(x(k)) = 0, the state x(k) is in Q. By minimizing the
cost function J(x(k), u(k)), the optimal controller uQ(x(k)) is
yielded, which ensures stability for all x(k) ∈ Q. Therefore the
control law obtained from Problem 4.3 guarantees asymptotic
stability for system (1) for all initial states x(0) ∈ P. �

If P and Q have the contractivity–sharing property then the
property can be exploited to avoid bisection. Instead of mini-
mizing α∗(Ax+ Bu), we can search for a feasible suboptimal
solution that satisfies α∗(Ax+Bu) < α∗(x). Due to the result
of Lemma 4.2, this means that there exists a σ < 1 such that:

ΨΘ(α∗(x))(Ax+Bu) = σ < 1. (26)

We can fix a σ < 1 and minimize the cost function J(x, u) as
follows:
Problem 5.7. Given x:

min
u
J(x, u)

subject to:
HUu ≤ 1hU ,

ΨΘ(α∗(x))(Ax+Bu) ≤ σ.

Problem 5.7 is just one single LP/QP, if the cost is lin-
ear/quadratic, which requires less computational demand than
the bisection procedure. It returns a suboptimal solution α∗, but
J(x, u) is minimized, which means that the resulting controller
is kept as close as possible to the optimal controller uQ(x).

6. ILLUSTRATIVE EXAMPLE

The method is illustrated with a discrete-time double integrator:

x(k + 1) =

(
1 Ts
0 1

)
x(k) +

(
T 2
s

2
Ts

)
u(k), (27)

where Ts = 1s is the sampling time.

The constraints are
(
−8
−8

)
≤ x ≤

(
8
8

)
and −1 ≤ u ≤ 1.

The optimal controller uQ(x) is an LQR controller that mini-
mizes the cost function
J(x, u) = xTQx+uTRu+(Ax+Bu)TPN (Ax+Bu), (28)

where Q =

(
1 0
0 1

)
, R = 0.01, and PN is the solution of the

discrete-time algebraic Riccati equation.

The set P is computed as the maximal constrained control
contractive set for the system with the contraction rate λP =
0.98. The set Q is computed as the maximal admissible control
invariant set for the system in closed loop with controller
uQ(x). The computations are made using the procedure in
[Blanchini and Miani, 2008, Section 5.3].

The simulation results of the iCLFs method for the discrete-
time double integrator are shown in Figure 2. The simulation
results of the interpolation of pre–designed controllers method
[Nguyen et al., 2013] are also plotted for comparison. It can be
seen that the iCLFs method exploits better the available range of
admissible control inputs. As a result, the response of the iCLFs
method is faster than that of the interpolation of pre–designed
controllers method, for the considered initial condition.
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(a) State space trajectory
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Fig. 2. Simulation results for discrete-time double integrator.

7. CONCLUSIONS

This paper proposed a method for interpolating different poly-
topic CLFs for linear discrete–time systems with polytopic state
and input constraints. It was shown how the resulting interpo-
lated function can be used as a parameterized CLF. A stabiliz-
ing controller was synthesized from the parameterized CLF by
an optimization problem, which was proven to be recursively
feasible. It was shown that the resulting controllers guarantees
stability and constraints satisfaction. A desired optimal control
law can be automatically yielded within a region around the
equilibrium. Computational demand was discussed, and it was
shown that under an additional property named contractivity–
sharing, the optimization problem can be reformulated as a
single LP/QP. The effectiveness of the proposed method was
demonstrated by an illustrative example.
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