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Abstract: This paper studies a distributed consensus tracking control problem for a class of
stochastic linear multi-agent systems subject to two types of attacks. The problem boils down to
how to achieve robust consensus tracking of multi-agent systems with switching connected and
disconnected directed topologies under attacks. The attacks on the edges instead of nodes lead
to the loss of consensus tracking security. Based on a multi-step design procedure for designing a
distributed secure algorithm, sufficient conditions on robust mean-square exponential consensus
tracking are derived via the idea of average dwell time switching between some stable and
unstable subsystems obtained from graph theory analysis. An applicaton to a practical power
system is considered. It is proved that each distributed generator (DG) modeled as an agent
in a microgrid can successfully synchronize their terminal voltage amplitude to a prespecified
reference value under these two types of attacks.
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1. INTRODUCTION

Distributed cooperative control has received increasing
attention from various scientific communities due to its
broad applications in real-world multi-agent systems, such
as transportation, multi-vehicle systems, sensor networks
and so on (e.g. see [1, 2, 3], just name a few). The main
idea behind this is to obtain an emerging behavior using
only local information interactions to eventually achieve an
agreement. Surveys of most recent advances can be found
in [3, 4]. As an effective consensus seeking approach, con-
sensus tracking problem has attracted important interest
[5, 6, 7, 8]. By employing a variable structure approach, [5]
investigated the consensus tracking problem for both first
and second-order multi-agent systems. The cooperative
output regulation problem was addressed in [6] via an
internal model method. An identifier-dependent consensus
tracking protocol was developed in [7] to achieve robust
consensus tracking. Note that the above results mostly
focus on multi-agent systems with only single/double-
integrator dynamics.

Multi-agent systems usually evolve in uncertain real-world
communication environments, like networks with random
noises. In reality, the agents might be subject to some
Gaussian white noises with certain noise intensity. In this
case, the agents are not only affected by the interaction
among neighboring agents, but also by its own intrin-
sic stochastic dynamics. Consensus problems with noise
communications have been studied (e.g., see [9, 10], just
name a few), while few results on consensus tracking were
published, especially for high-order linear multi-agent sys-
tems. Recently, a distributed tracking control scheme with
distributed estimators has been proposed in [10] to achieve
stochastic consensus tracking.
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The system security of multi-agent systems is an interest-
ing and important problem. Multi-agent systems, like all
large-scale spatially distributed systems, are vulnerable to
cyber attacks due to the development of network infor-
mation and communication technologies. Typically, there
are two different attack scenarios in a multi-agent system:
dynamic behavior (or closed-loop dynamics) of the agents
and communication among the agents. Both of these at-
tacks can dramatically affect the consensus properties of
the whole team of agents. Some of the literature concerning
this problem has been reported [11, 12, 13, 14, 15]. The
authors in [11] studied the design of distributed attack (or
fault) detection via a branks of unknown input observers
(UIO) for network systems. In [12], a consensus problem
was considered for networked multi-agent systems with
adversaries. Under the assumption that the network is
complete. An attack detection and identification algorithm
based on distributed filter was investigated for cyber-
physical systems in [14]. In reality, it is more general to
consider the second attack scenario that only a number of
edges are attacked in the multi-agent systems. In such a
case, it is important to study how to design an effective
cyber-security control algorithm.

In this paper, a distributed cyber-security control problem
is addressed for stochastic linear multi-agent systems un-
der two types of attacks. Relating to the communications
(more specifically the connectivity of the communication
links) among the agents, the attacks on the edges may lead
to the loss of consensus tracking security. By assuming
that the paralyzed topologies can be recovered into any
connected topologies after a communication restoration
mechanism, sufficient conditions on robust mean-square
exponential consensus tracking are established if the at-
tack frequency and unavailability length rate of different
attacks satisfy certain conditions. A multi-step design pro-
cedure is developed for designing the distributed algorith-
m. Moreover, an application to power system is given to
show the effectiveness of the proposed method.
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2. NOTATION AND PRELIMINARIES

Graph theory[16]: Let G = {V, E , A} represent a connected
directed graph of order n with the set of nodes V =
{v1, v2, · · · , vn}, E ∈ V × V is the set of edges and
A = [aij ] ∈ Rn×n denotes the adjacency matrix of G,
where aij > 0 if and only if (j, i) ∈ E else aij = 0.
The node indexes belong to a finite index set N =
{1, 2, · · · , n} . An edge of G is an ordered pair (i, j) ∈ E
if agent j can be directly supplied with information from
agent i. The set of neighbors of node vi is denoted by
N = {vi ∈ V , (vi, vj) ∈ E}. Graph G contains a directed
spanning tree if there is a node which can reach all the
other nodes through a directed path. A matrix A = [aij ] ∈
Rn×n denotes the adjacency matrix of G, where aij > 0 if
and only if (j, i) ∈ E else aij = 0. The Laplacian matrix
of a graph G is defined as L(A) = D − A ∈ Rn×n, where

D = [dii] is a diagonal matrix with dii =
∑N

j=1 aij .

Lemma 1. Denote the Laplacian matrix L = [lij ] where

lij =


n∑

k=1,k ̸=i

aik i = j

−aij i ̸= j.

Then, the following statements are true:

(i) Zero is a simple eigenvalue of L, and 1n is the corre-
sponding eigenvector, that is L1n = 0.

(ii) If G has a directed spanning tree, then the eigenvalue
0 is algebraically simple for its Laplacian matrix, and all
the other eigenvalues have positive real parts.

Lemma 2. [8] Suppose that matrix A = [aij ] ∈ Rn×n has
aij ≤ 0 for all i ̸= j, i, j ∈ {1, · · · , n}. Then, the following
statements are equivalent:

1) A is a nonsingular M -matrix.

2) There exists a positive definite diagonal matrix Θ =
diag{θ−1

1 , θ−1
2 , · · · , θ−1

n } such that Q = ATΘ+ΘA > 0.

3) All the eigenvalues of A have positive real parts.

3. PROBLEM FORMULATION

Consider a class of Itô stochastic linear multi-agent sys-
tems with the ith agent described as

dxi(t) = [Axi(t) +Bui(t)] dt+ f(xi(t), t)dwi(t), (1)

where xi(t) ∈ Rl is the system state, ui(t) ∈ Rp is
the control input, i = 1, 2, · · · , n,, wi(t) denotes a one-
dimensional Brownian motion satisfying E {dwi(t)} = 0
and E

{
dw2

i (t)
}
= dt, f : Rl × [0,+∞) → R is a contin-

uously differentiable function, and A and B are constant
matrices with compatible dimensions. For simplification,
let f(xi(t), t) = (f1(xi(t), t), f2(xi(t), t), . . . , fl(xi(t), t))

T .

The objective is to design a distributed protocol ui(t) for
system (1) such that all the followers track the leader under
two types of attacks. The leader for consensus tracking,
labeled as i = 0, is generated as

dx0(t) = Ax0(t)dt+ f(x0(t), t)dw0(t), (2)

where x0(t) ∈ Rl is the state of the leader.
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Fig. 1. Examples of the network topology under
connectivity-maintained attacks.
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Fig. 2. Examples of the network topology under
connectivity-broken attacks.

Consider the information exchange between the n agents
and the leader. A diagonal matrix ∆ = diag{Λ1, Λ2, · · · ,
Λn} is used to represent the access of agents to the desired
trajectory. If Λi, i ∈ {1, 2, · · · , n} is equal to 1, then the ith
agent has access to the desired trajectory, and 0 otherwise.
For further analysis, we denote a matrix H as H = L+∆,
which is named as the information-exchange matrix.

Assumption 1. The pair (A,B) is stabilizable.

Assumption 2. There exists a constant ρ > 0, such that

∥ f(y, t)− f(z, t) ∥≤ ρ ∥ y − z ∥; ∀y, z ∈ Rl, t ≥ 0. (3)

In this paper, we consider attacks on the links but not on
the nodes. That is, an attack removes or adds edges instead
of nodes in the network. It is known that an edge can fail
either due to a random fault or a strategic attack. We will
consider the attacks on the edges which may cause the loss
of consensus tracking security. To start, let us define two
types of attacks.

Definition 1. (Connectivity-maintained attacks) Under
connectivity-maintained attacks, the original network
topology with a directed spanning tree still possesses a
directed spanning tree, even though the topology changes
due to link failures or creation of new links.

Definition 2. (Connectivity-broken attacks) Under con-
nectivity-broken attacks, the original network topology
with a directed spanning tree become disconnected due
to attack-caused link failures.

Examples of the network topology under the two types of
attacks are shown in Figs. 1 and 2.

Remark 1. Definition 1 implies that each possible topol-
ogy with a directed spanning tree provides the possibil-
ity to guarantee consensus tracking of the overall multi-
agent systems, while in Definition 2, each topology under
connectivity-broken attacks without any directed spanning
trees will bring negative inf luence and might totally de-
stroy the consensus tracking performance.

4. ROBUST MEAN-SQUARE EXPONENTIAL
CONSENSUS TRACKING UNDER

CONNECTIVITY-MAINTAINED/BROKEN ATTACKS

A switching signal σ(t) : [0, ∞) → Ξ = {1, 2, · · · ,m,m+
1, · · · , l}, m ≥ 1, l ≥ 2 is introduced to describe the
evolution of the underlying topologies subject to them and
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b (b = l−m) connectivity-maintained/broken attacks, re-
spectively. Let Gσ(t) be the interaction graph of system (1)
at time t ≥ 0. Obviously, {G1,G2, · · · ,Gm,Gm+1, · · · ,Gl}
denote the set of all possible directed interaction graph-
s under these two types of attacks. The information-
exchange matrix for consensus tracking is denoted as
H1,H2, · · · ,Hm,Hm+1, · · · ,Hl. Corresponding to the switch-
ing signal σ(t), we have the switching sequence {(i0, t0),
(i1, t1), · · · , (ik, tk), · · · , k = 0, 1, 2, ..., Z}, which means
that the ithk subsystem is activated when t ∈ [tk, tk+1)
under which each of the possible topologies are all time-
invariant.

For notational convenience, some notations are introduced,
which will be used later for system (1) subject to both
connectivity-maintained/broken attacks. First, the index
set Ξ of the switching signal σ(t) is divided into two subsets
Ξm and Ξb (Ξm ∪ Ξb = Ξ), where Ξm and Ξb are used to
index the sets of the connectivity-maintained/broken at-
tacks, respectively. Furthermore, Tm and Tb denote the to-
tal activation time of the connectivity-maintained/broken
attacks on the time interval [t0, t), respectively. Denoting
tk (k = 0, 1, 2, ..., Z) as the switching instants in [t0, t),
and letting tZ+1 = t, one gets

Tm(t0, t) =
Z∑

k=0,
σ(tk)∈Ξm

(tk+1 − tk), (4)

Tb(t0, t) =

Z∑
k=0,

σ(tk)∈Ξb

(tk+1 − tk). (5)

From Definitions 1 and 2, the following assumptions hold.

Assumption 3. Each possible communication topology
Gσ(t), σ(t) ∈ Ξm under the connectivity-maintained at-
tacks contains a directed spanning tree with the leader
as the root, while all the other paralyzed topology Gσ(t),
σ(t) ∈ Ξb under the connectivity-broken attacks does not
contain any directed spanning trees.

Assumption 4. The paralyzed topology Gσ(t), σ(t) ∈ Ξb

can be recovered into any of the possible connectivity-
maintained topologies Gσ(t), σ(t) ∈ Ξm after a communi-
cation restoration mechanism (e.g., the sensing devices are
able to recover through some backup or repairing efforts).

Remark 2. The paralyzed topology Gσ(t), σ(t) ∈ Ξb can
be recovered into any of possible connectivity-maintained
topology Gσ(t), σ(t) ∈ Ξm through the internal recov-
ery/tolerance capacities of the system or repairing efforts,
even though it may take a short period of time.

Based on Lemma 2 and Assumption 3, the following lemma
can be obtained.

Lemma 3. Suppose that Assumption 3 holds. Then, there
exist positive definite diagonal matrices Θσ(t) = diag{θ−1

σ(t),1,

· · · , θ−1
σ(t),n}, σ(t) ∈ Ξm, such that the symmetric positive

definite matrix Qσ(t) = HT
σ(t)Θσ(t)+Θσ(t)Hσ(t) > 0, where

θσ(t) = [θσ(t),1, θσ(t),2, · · · , θσ(t),n] = H−1
σ(t)1n.

To achieve consensus tracking, the following distributed
consensus tracking protocol is proposed for system (1)

under these connectivity-maintained/broken attacks as

ui(t) =

 γK{
n∑

j=1

a
σ(t)
ij (xj(t)− xi(t))

+Λ
σ(t)
i (x0(t)− xi(t))}, σ(t) ∈ Ξ,

(6)

where Ξ = (Ξm ∪ Ξb), a
σ(t)
ij is the adjacency element of

Gσ(t), Λ
σ(t)
i is equal to 1 when agent i has access to the

leader, and 0 otherwise, and γ > 0 denotes the scalar
coupling strength gain and K is the feedback controller
gain matrix.

Denote the consensus tracking error as ei(t) = xi(t)−x0(t)
and the stochastic error as ωi(t) = wi(t) − w0(t). Then,
combining (1), (2), with (6) gives the following switched
stochastic closed-loop error system in a compact form as

dei(t) =

{
[(In ⊗A)e(t)− γ(Hσ(t) ⊗BK)e(t)]dt

+f̃(x(t), t)dw(t), σ(t) ∈ Ξ.
(7)

Next, two concepts on mean-square exponential consensus
tracking and average dwell time (ADT) are introduced.

Definition 3. The proposed distributed protocol (6)
is said to solve the robust, mean-square, exponential,
consensus tracking problem for system (1) under the
connectivity-maintained/broken attacks if there exist a
scalar κ > 0 and a decay rate λ > 0 such that the solution
of (7) satisfies

E{∥xi(t)− x0(t)∥2} ≤ κe−λ(t−t0) ∥xi(t0)− x0(t0)∥2 . (8)

Definition 4. [17] For a switching signal σ(t) ∈ Ξ and
T2 > T1 ≥ 0, let Na(T1, T2) denote the number of σ(t)
over [T1, T2). If there exist N0 ≥ 0 and Ta > 0 such
that Na(T1, T2) ≤ N0 + (T2 − T1)/Ta holds, then Ta and
N0 are called the average dwell time and the chattering
bound, respectively. As commonly used in the literature,
for simplicity here, we choose N0 = 0 in this paper.

Inspired by the above definition of ADT in [17] and
controller failure in [18], we will introduce the following
new definitions to study consensus tracking security under
the connectivity-maintained/broken attacks.

Definition 5. (Connectivity-broken attack frequency) For
a switching signal σ(t) ∈ Ξ and ∀T2 > T1 ≥ 0, let
Nf (T1, T2) denote the number of connectivity-broken at-

tacks over (T1, T2). Ff (T1, T2) =
Nf (T1,T2)
T2−T1

is defined as the

connectivity-broken attack frequency over (T1, T2).

Definition 6. (Connectivity-broken attack length rate)
For a switching signal σ(t) ∈ Ξ and ∀t > 0, Tm and Tb

defined in (4) and (5) represent the total activation time of
the connectivity-maintained/broken attacks during [t0, t),

respectively. Tb(t0,t)
t−t0

is defined as the connectivity-broken

length rate over [t0, t).

Before moving on, a multi-step design procedure is devel-
oped for selecting the control parameters of the distributed
consensus tracking protocol (6).

Algorithm 1. Under Assumptions 1-4, a distributed con-
sensus tracking protocol (6) can be constructed as follows.

(1) Solve an LMI

AP + PAT − cθ̃0BBT + ρ2P + βP < 0, (9)
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to get a matrix P > 0 and scalars β, c > 0. In (9), ρ sat-

isfies Assumption 2 and θ̃0 = mins,i θs,i, s ∈ {1, · · · ,m},
i = 1, 2, · · · , n is defined in Lemma 3.

(2) Solve an LMI

AP + PAT + εBBT + ρ2P − αP < 0, (10)

to get scalars ε, α > 0.

(3) Design the feedback gain matrix K of (6) as

K = BTP−1. (11)

(4) Choose the coupling strength γ satisfying:

ε/
∣∣λ̄0

∣∣ ≥ γ ≥ c/λ0, (12)

where ε and c are defined in (9) and (10), λ0 =
min{λmin(Qσ(t)), σ(t) ∈ Ξm} and λ̄0 = min{λmin(H

T
σ(t) +

Hσ(t)) : σ(t) ∈ Ξb}, respectively.

Theorem 1. Consider a class of Itô stochastic linear
multi-agent system (1) which are subject to connectivity-
maintained/broken attacks. Suppose Assumptions 1-4
hold and the LMIs (9) and (10) have feasible solutions.
Then under the distributed protocol (6) constructed by
Algorithm 1, the agents modeled by (1) can achieve ro-
bust mean-square exponential consensus tracking for the
switching signal σ(t), σ(t) ∈ Ξ, provided that the following
two conditions are satisfied:

1. For a positive constant η∗ ∈ (0, β), the connectivity-
broken attack length rate of attacks satisfies:

Tb(t0, t)

t− t0
≤ β − η∗

α+ β
. (13)

2. For a positive constant η ∈ (0, η∗), the connectivity-
broken attack frequency Ff (t0, t) for the whole time inter-
val satisfies:

Ff (t0, t) =
Nf (t0, t)

t− t0
≤ F ∗

f =
η∗ − η

2 ln(µ)
, (14)

where µ = θ̄0
θ̃0

≥ 1, θ̃0 = mins,i θs,i, θ̄0 = maxs,i θs,i,

s ∈ {1,···,m}, i = 1, 2,···, n.
Moreover, the state decay estimation of consensus tracking
error is given as

E{∥ei(t)∥2} ≤ φe−η(t−t0)E{∥ei(t0)∥2}, (15)

where φ = b
a , b = max{λmax(θ

−1
s,i P

−1), λmax(P
−1)}, a

= min{λmin(θ
−1
s,i P

−1), λmin(P
−1)}, s ∈ {1,···,m}, i =

1, 2,···, n.
Proof: The following piecewise multiple Lyapunov

functional candidate is chosen for the switched stochastic
closed-loop error system (7) under the switching signal
σ(t) ∈ Ξ = (Ξm ∪ Ξb):

V (σ(t), t) =

{
eT (t)(Θσ(t) ⊗ P−1)e(t), σ(t) ∈ Ξm,
eT (t)(In ⊗ P−1)e(t), σ(t) ∈ Ξb.

(16)

The detailed proof procedure is given as follows.

Step (I): The multi-agent system (1) is subject to m
connectivity-maintained attacks denoted by a switching
signal σ(t) ∈ Ξm.

When σ(t) ∈ Ξm, it follows from the Itô formula that the
stochastic derivative of (16) along system (7) is given by

d(V (σ(t), t) =LV (σ(t), t)dt+ 2eT (t)(Θσ(t) ⊗ P−1)

×f̃(x(t), t)dw(t), (17)

where the infinitesimal generator LVm(t) is

LV (σ(t), t) = 2eT (t)(Θσ(t) ⊗ P−1)[(In ⊗A)

−γ(Hσ(t) ⊗BK)e(t)] + f̃T (x(t), t)

×(Θσ(t) ⊗ P−1)f̃(x(t), t). (18)

According to Algorithm 1 and Assumption 2, substituting
(11) into (18) yields

LV (σ(t), t) = 2eT (t)(Θσ(t) ⊗ P−1A)e(t)− 2γeT (t)

×(Θσ(t)Hσ(t) ⊗ P−1BBTP−1)e(t)

+f̃T (x(t), t)(Θσ(t) ⊗ P−1)f̃(x(t), t)

≤ eT (t)(Θσ(t) ⊗ P−1A+Θσ(t) ⊗ATP−1

+ρ2P−1)e(t)− γeT (t)[(Θσ(t)Hσ(t)

+HT
σ(t)Θσ(t))⊗ P−1BBTP−1]e(t). (19)

Let ς(t) = (ςT1 (t),···, ςTn (t))T , where ςi(t) = P−1ei(t), i =
1,···, n. Obviously, e(t) = (In⊗P )ς(t). It thus follows from
Assumption 3, Lemma 3, and (19) that

LV (σ(t), t) = ςT (t)[Θσ(t) ⊗ (AP + PAT + ρ2P )]ς(t)

−γςT (t)(Qσ(t) ⊗BBT )ς(t)

≤ ςT (t)[Θσ(t) ⊗ (AP + PAT + ρ2P )]ς(t)

−γλ0ς
T (t)(I ⊗BBT )ς(t), (20)

where λ0 = min{λmin(Qσ(t)) : σ(t) ∈ Ξm} with Qσ(t)

defined in Lemma 3. Since γ > c
λ0

in Algorithm 1, the

expression in (20) can be rewritten as

LV (σ(t), t)≤ ςT (t)[Θσ(t) ⊗ (AP + PAT + ρ2P )]ς(t)

−cςT (t)(Θσ(t) ⊗BBT )ς(t)

≤ ςT (t)[Θσ(t) ⊗ (AP + PAT + ρ2P

−cθ̃0BBT )]ς(t)

≤−βςT (t)(Θσ(t) ⊗ P )ς(t)

=−βeT (t)(Θσ(t) ⊗ P−1)e(t). (21)

where θ̃0 = mins,i θs,i, s ∈ {1, · · · ,m}, i = 1, 2, · · · , n.
Combining (17) to (21) leads to

d(V (σ(t), t))≤−βV (σ(t), t)dt+ 2eT (t)(Θσ(t) ⊗ P−1)

×f̃(x(t), t)dw(t). (22)

Integrating both sides of (22) over t ∈ [tk, tk+1) and then
taking expectation yield

E{Vm(t)} ≤ e−β(t−tk)E{Vm(tk)}. (23)

Step (II): The multi-agent system (1) is subject to the b
connectivity-broken attacks.

When σ(t) ∈ Ξb, the stochastic derivative of (16) along
system (7) is shown in (21) with the infinitesimal generator
LV (σ(t), t) is is given by
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LV (σ(t), t) = eT (t)[In ⊗ (P−1A+ATP−1)]e(t) (24)

− 2γeT (t)(In ⊗ P−1)(In ⊗BK)e(t)

+ f̃T (x(t), t)(In ⊗ P−1)f̃(x(t), t)dw(t).

Similar to (19)-(21) in Step (I), it follows from Algorithm
1 that

LV (σ(t), t)≤ ςT (t)[In ⊗ (AP + PAT + ρ2P )]ς(t)

− γςT (t)[(Hσ(t) +HT
σ(t))⊗BBT ]ς(t)

≤ ςT (t)[In ⊗ (AP + PAT + ρ2P )]ς(t)

+γ
∣∣λ̄0

∣∣ ςT (t)[In ⊗BBT ]ς(t)

≤ ςT (t)[In ⊗ (AP + PAT + ρ2P + εBBT )]ς(t),

where ε ≥ γ
∣∣λ̄0

∣∣ and λ̄0 = min{λmin(H
T
σ(t) + Hσ(t)).

Based on the design (10) in Algorithm (1), it is not difficult
to obtain

LV (σ(t), t)≤ αeT (t)(In ⊗ P−1)e(t). (25)

Similar to (21) to (23), it follows from (25) that

E{V (σ(t), t)} ≤ eα(t−tk)E{V (σ(t0), t0)}. (26)

Step (III): Synthesizing the above circumstances (I)-(II)
into one, during the period [tk, t) , t ∈ [tk, tk+1), it is true
from (23) and (26) that under the switching signal σ(t) ∈
Ξ = (Ξm ∪ Ξb),

E{V (σ(t), t)}

≤
{
e−β(t−tk)E{Vm(σ(tk), tk)}, σ(t) ∈ Ξm,

eα(t−tk)E{Vb(σ(tk), tk)}, σ(t) ∈ Ξb.
(27)

Therefore, it further yields for t ∈ [tk, tk+1),

E{V (e(t), σ(t))} ≤ eαTm(tk,t)−βTm̄(tk,t)E{V (e(tk), σ(tk))}.
(28)

When t = tk, we assume that the switching signal σ(tk)
is activated during t ∈ [tk, tk+1) , and σ(tk−1) is identified
at the switching instant tk−1. Besides, it is assumed that
for system (1), there is no jump in the state xi(t) at the
switching instant, i.e., xi(tk) = xi(t

−
k ). Thus, it follows

from (16) that

E{V (e(tk), σ(tk))} ≤ µE{V (e(t−k ), σ(t
−
k ))}. (29)

For the whole switching interval, (28) and (29) give

E{V (e(t), σ(t))}
≤ µeαTm(tk,t)−βTb(tk,t)E{V (e(t−k ), σ(t

−
k ))}

≤ µeαTm(tk−1,t)−βTb(tk−1,t)E{V (e(tk−1), σ(tk−1))}
≤ · · · ≤ µNσ(t)(t0,t)eαTm(t0,t)−βTb(t0,t)V (e(t0), σ(t0))

= eNσ(t)(t0,t) ln(µ)+αTm(t0,t)−βTb(t0,t)V (e(t0), σ(t0)).(30)

Based on the condition (13), it holds that

−βTm(t0, t) + αTb(t0, t) ≤ −η∗(t− t0). (31)

From the condition (14), it is clear that

eNσ(t)(t0,t) ln(µ) ≤ e2Nf (t0,t) ln(µ) ≤ e(η
∗−η)(t−t0). (32)

Hence, it follows from (30)-(32) that

E{V (e(t), σ(t))} ≤ e−η(t−t0)E{V (e(t0), σ(t0))}. (33)

Combining (16) with (33) yields

E{∥ei(t)∥2} ≤ φe−η(t−t0)E{∥ei(t0)∥2}, (34)

where φ = b
a as shown in Theorem 1.

According to (34), one concludes that ei(t) → 0 as
t → +∞, which means that xi(t) → x0(t), as t → +∞.
Thus, the proposed protocol (6)can solve the consensus
tracking problem for (1) under the two types of attacks.
This completes the proof. 2

5. SIMULATIONS: APPLICATION IN POWER
SYSTEMS UNDER TWO TYPES OF ATTACKS

In this section, a practical power system example is pro-
vided to demonstrate the effectiveness of the results. A
microgrid can be regarded as a multi-agent system, where
each DG is an agent. In such a case, the distributed coop-
erative secondary control of microgrids can be formulated
as a consensus tracking problem, where all DGs try to
synchronize their terminal voltage amplitude to a reference
value. However, this system is vulnerable to cyber attacks
as the communication lines connected among the different
DGs might be subject to attacks.

The following six DGs are presented to describe the
communication network of a microgrid under two types
of attacks, respectively. Figs. 3 and 4 show the com-
munication topologies under two different connectivity-
maintained/broken attacks, respectively. The parameters
of the DGs, lines, and loads are adopted from [15]. The
goal is to design a distributed algorithm such that yi → y0

ẏi =Ayi +Bui,

ẏ0 =Ay0, (35)

where yi = [vo,magi, v̇o,magi]
T , i = 1, 2, · · · 6, y0 =

[vref , 0]
T , B = [0, 1]T , and A =

[
0 1
0 0

]
.

According to Algorithm 1, some simple calculations give
θ̃0 = 2, µ = 1.5, λ0 = 0.2039, and λ̄0 = −0.4142. In
simulations, constructing the distributed controller (11)

(1)

1 4

3 52 6

0

(2)

1 4

3 5

0

2 6

Fig. 3. Topologies under connectivity-maintained attacks

(4)

1 4

3 5

0

2 6

(3)

1 4

3 52 6

0

Fig. 4. Topologies under connectivity-broken attacks
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Fig. 5. (a), (b), and (c) represent DG output voltage
magnitudes under connectivity-maintained attacks,
connectivity-broken attacks, and a mix of two types
of attacks. (d) shows the switching signal σ(t).

with parameters ρ = 0.1, α = 5.2, and β = 1.6 yields
K = [0.82621, 1.0185] and µ = 1.5. It is assumed that
the microgird is islanded from the main grid at t = 0,
while the secondary control is active. Figs. 5 show the
DG terminal voltage amplitudes under different attacks
and the reference voltage value is set to 1 p.u. Fig.
5 (a) implies that the distributed control can regulate
the DG terminal voltage amplitude to a reference value
under the connectivity-maintained attacks, while Fig. 5 (b)
shows that it fails under the connectivity-broken attacks.
Fortunately, Fig. 5 (c) presents that under a mix of the
connectivity-maintained/broken attacks, it works if the
conditions in Theorem 1 are satisfied. Fig. 5 (d) shows the
switching singal σ(t) ∈ Ξ, which implies that the above
conditions (13) and (14) are satisfied.

6. CONCLUSIONS

In this paper, a distributed coordinated cyber-security
control problem is studied for stochastic linear multi-
agent systems under connectivity-maintained/broken at-
tacks. We formulate this problem from the perspective of
switching systems subject to connected and disconnected
topologies caused by attacks. A mild assumption is needed
where only each possible topology by the connectivity-
maintained attacks contains a directed spanning tree with
the leader as the root. Under a multi-step distributed algo-
rithm, sufficient conditions on exponential convergence are
established via the tools from M-matrix, switched system
theory, and graph theory. A practical power system ex-
ample is studied to show the effectiveness of the proposed
method.
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