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1. INTRODUCTION

In recent years the control of networks, consisting of inter-
acting dynamical systems (multi agent systems) that work
together to achieve a cooperative task has increasingly
attracted researchers and produced various interesting re-
sults, see Olfati-Saber et al. [2007] for a short overview.
To optimize the network in its task we use the framework
of distributed model predictive control (DMPC). Over the
past years a variety of DMPC algorithms have been pro-
posed, see [Scattolini, 2009] and [Christofides et al., 2013]
for an overview. These DMPC algorithms vary in the way
they handle interconnectivity in coupling costs as well as in
coupling constraints. The way in which adjacent systems
(systems coupled by constraints and costs) optimize is
important to ensure the recursive feasibility of the DMPC
algorithm. A parallel optimization scheme requires either
an additional penalization of the systems’ trajectories to
guarantee the feasibility of its neighbours (see e.g. [Dun-
bar, 2007]), or each system has to solve its optimization
problem and exchange information with its neighbours
multiple times at each time step, such as in [Doan et al.,
2011]. An alternative way to ensure recursive feasibility
is to optimize sequentially, i.e. adjacent systems do not
optimize in parallel and exchange trajectories in inter-
mediate optimization steps, so that coupling constraints
are respected at all times; such sequential algorithms have
been used in DMPC schemes, e.g. by Richards and How
[2007] and Müller et al. [2012].

In this paper we discuss networks of p ≥ 2 systems which
are dynamically decoupled, but are coupled through the
objective and constraints. We follow the work presented
in Müller et al. [2012] to obtain a distributed model pre-
dictive control scheme, that we extend to be able to handle
communication failure robustly. As in Müller et al. [2012]
we use a sequential algorithm to be able to respect coupling
constraints without additional penalizing cost terms and

without the burden of intermediate communication and
multiple optimization runs for each system in each time
step as in Doan et al. [2011]. In a sequential optimization
algorithm each system will only optimize once in each time
step (as opposed to multiple times in iterative parallel
schemes) and therefore the required communication load
is reduced. In this paper we propose a way to handle the
temporary absence of communication of adjacent systems
by means of substituting the associated coupling con-
straints by constraints that restrict subsequent optimized
trajectories to be inside a tube around the last transmitted
trajectory. The size of the tube allows us to ensure the
decrease of the overall objective function in addition to
ensuring the recursive feasibility. A similar method to
handle communication failures in a DMPC scheme has
been presented in Alessio and Bemporad [2008] for linear
systems without state constraints and hence without fea-
sibility issues in absence of communication. Furthermore,
in Heidarinejad et al. [2011], a Lyapunov-based distributed
MPC scheme was presented, where communication failures
can be treated under the assumption that some Lyapunov-
based auxiliary controller is known. The control scheme
presented here can be used for decoupled, nonlinear system
dynamics, coupled pairwise through constraints.

The remainder of this paper is structured as follows:
In section 2 we present the considered setup and the
algorithm we use to solve DMPC problems, in section 3
we extend the algorithm presented in section 2 to the case
with communication failures and sketch the ideas behind
the proposed way to ensure feasibility and stability in
absence of communication. Simulation results of a collision
avoidance example are presented in section 4, and we
conclude the paper in section 5.
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1.1 Notation

For some non-negative integer q ∈ N0 let I(q) :=
{0, 1, . . . , q − 1, q}. For a real number a ∈ R we denote
its absolute value by |a|, for the real vector v ∈ Rn we

define the `p norm and `∞ norm as ‖v‖p := (
∑n
k=1 |vk|p)

1
p

and ‖v‖∞ := maxk |vk| respectively. We call a continuous,
strictly increasing function f ∈ C([0, b)) a K function, if
it satisfies f(0) = 0. If it is also unbounded we call it a
K∞ function.

The network of systems will be described by an undirected
graph G = (V,E), where V is the vertex set and E is the
edge set E ⊂ V × V . The neighbourhood set of a vertex
si ∈ V is denoted by Ni := {sj ∈ V : (sj , si) ∈ E}.

2. NETWORKS WITHOUT COMMUNICATION
FAILURE

Each agent is described by a nonlinear, discrete time
difference equation

xi[k + 1] = fi(xi[k], ui[k]) (1)

with the state xi[k] ∈ Rni and the input ui[k] ∈ Rmi
and a continuous function fi : Rni × Rmi → Rni . The
control objective is to stabilize each system’s set point x̂i
while respecting coupling constraints and optimizing some
possibly coupled performance criterion, i.e. we consider the
DMPC optimization problems

min
ui∈U

Nh
i

Ji(x
ui
i [l],ui,x

p
Ni [l]) (2)

subject to the constraints:

xuii [0|l] = xi[l] (3a)

xuii [k + 1|l] = fi(x
ui
i [k|l], ui[k]) (3b)

cii(x
ui
i [k|l]) ≤ 0 ∀ k ∈ I(Nh − 1) (3c)

cij(x
ui
i [k|l], xpi [k|l]) ≤ 0 ∀ sj ∈ Ni ∧ k ∈ I(Nh − 1) (3d)

dii(x
ui
i [Nh|l]) ≤ 0. (3e)

The input constraint set Ui is assumed to be compact in
Rm, the coupling constraints are assumed to be pairwise
equivalent, i.e. cij(xi, xj) ≡ cji(xj , xi) for all admissible
xi and xj . The functions cii and dii define the local state
constraint set Xi and the decoupled terminal constraint

set Xf
i respectively. We assume that cij(xi, xj) ≤ 0 for

xi ∈ Xf
i and xj ∈ Xf

j . In (2) and (3) we used the

shortened notation xui
i [l] = (xuii [0|l], . . . , xuii [Nh|l]) which

is the predicted state trajectory starting at xi[l] and
using ui := (ui[0], . . . , ui[Nh − 1]) as an input, whereas
xpNi [l] = {xpj [l]}sj∈Ni denotes the predicted trajectories of
all adjacent systems for which we will discuss later how to
obtain them.

In (2) the objective function itself is given by:

Ji(x
ui
i [l],ui,x

p
Ni [l]) =

Nh−1∑
k=0

Lii(x
ui
i [k|l], ui[k])

+
∑
sj∈Ni

Lij(x
ui
i [k|l], xpj [k|l]) + Fii(x

ui
i [Nh|l]), (4)

where Lii denotes the self associated stage cost, Lij de-
notes the coupling stage cost and Fii denotes the terminal
cost. It is important that there is no coupling in the
terminal cost. We assume all functions in (3) and (4) to

be locally Lipschitz continuous. For the individual terms
in (4) we assume that for all si ∈ V and all (si, sj) ∈ E
there exist γi,Γi, φi,Φi, θi,Θi, bij , Bij ∈ K∞ such that

γi(‖xi − x̂i‖2) + φ(‖ui − ûi‖2) ≤ Lii(xi, ui)
≤ Γi(‖xi − x̂i‖2) + Φ(‖ui − ûi‖2) (5a)

θ(‖xi − x̂i‖2) ≤ Fii(xi) ≤ Θ(‖xi − x̂i‖2) (5b)

0 ≤ Lij(xi, xj) ≤ bij(‖xi − x̂i‖2) + bij(‖xj − x̂j‖2) (5c)

for all xi ∈ Xi ⊆ Rni , xj ∈ Xj ⊆ Rnj , and ui ∈ Ui ⊂ Rmi .
In addition to (5) we require the coupling stage cost to
be dominated by the self associated stage costs inside the
terminal region:

Lij(xi, xj) ≤ c̃iij Lii(xi, ui) + c̃jij Ljj(xj , uj) (6)

for all xj ∈ Xf
j , xj ∈ Xf

j and ui ∈ Ui. For all si ∈ V define

c̃i :=
∑
sj∈Ni c̃

i
ij + c̃iji.

Remark 1. In (5c) we do not bound the coupling cost Lij
from below in terms of ‖xi − x̂i‖2 and ‖xj − x̂j‖2. We
allow the coupling cost to vanish for some constellation
of xi and xj . This is for example of interest for collision
avoidance constraints, where we do not penalize states that
are sufficiently far apart.

Furthermore we assume to have a local auxiliary con-

troller kloci that satisfies for all xi ∈ Xf
i

(i) the input constraints, i.e. kloci (xi) ∈ Ui,
(ii) the inequality Fii(fi(xi, k

loc
i (xi)))− Fii(xi) ≤ −(1 +

c̃i) · Lii(xi, kloci (xi)) and
(iii) renders the terminal region closed-loop invariant, i.e.

fi(xi, k
loc
i (xi)) ∈ Xf

i

The assumptions (i-iii) are standard assumptions in
the MPC context, see Mayne et al. [2000]; assump-
tion (ii) is slightly modified to enable us to compute
terminal controllers in a distributed fashion. We de-
fine the appended and shifted input sequence a(ui)[l +
1] = (ui[1|l], . . . , ui[Nh|l], kloci (xuii [Nh|l])), a2(ui)[l + 2] =
a(a(ui))[l+ 2]. Note that a(ui)[l+ 1] is an input sequence
admissible at time step l + 1 while ui = ui[l]. We neglect
the second time argument since appending the local con-
troller is only useful for the previous input sequence.

Remark 2. With (6) and the second assumption on the
terminal controller we are able to compute independent
terminal controllers and therefore to decouple the problem
inside the terminal region (see Müller et al. [2012, section
4] for a particular example). This fact will be used later to
construct feasible trajectories with previously transmitted
trajectories.

2.1 A distributed model predictive control algorithm for
networks without communication failure

In this section we present a DMPC algorithm for constant
communication topologies, which is a modification of the
first algorithm presented in Müller et al. [2012]. Systems
optimize sequentially and exchange data to ensure a de-
crease of the sum of all objective functions. In each time
step, i.e. between l + 1 and l, all optimizations have to
take place, hence we use fractions of the sampling time T
to describe the intermediate times; t = lT denotes the
continuous time instant for the discrete time instant l. We
assume to have initially feasible input sequences ui,init,
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which for example can be obtained by a centralized compu-
tation or by a suitable distributed optimization algorithm.
We assume that the initial input sequences are such that∑
si∈V Ji(x

ui,init
i [0],ui,init,x

p
Ni [0]) ≤

∑
si∈V δi(‖x̃i − x̂i‖)

for some δi ∈ K∞ and all x̃i ∈ Xf
i , for all si ∈ V ; herein

xpNi [0] = {xuj,init
j [0]}sj∈Ni . This is a technical assumption

which we need in order to prove stability and not only
asymptotic convergence of the closed loop trajectories.
Note that this assumption is not restrictive, since it is for

example satisfied if for all x̃i ∈ Xf
i , ui,init is given as an

appended sequence of the local auxiliary controller kloci .
The assumption then follows from assumption (ii) on the
local controller kloci . Since we use a sequential algorithm,
we assume to have the optimization schedule 0 = tsi1 ≤
tsi2 ≤ · · · ≤ tsiq = T − ρ, where q ≤ p is the number
of optimizations per time step determined by the paral-
lelizability of the network, i.e. time slots [ti, ti+1) in which
individual systems optimize. It is important that adjacent
systems do not optimize at the same time, otherwise the
optimization may be parallelized, hence q can be smaller
than the number of systems p.

Algorithm The algorithm itself has four different steps:

• Initialization: Every system si ∈ V evaluates x
ui,init
i [0]

and sends it to all systems in its neighbourhood
sj ∈ Ni. All neighbours sj ∈ Ni send their trajec-
tory x

uj,init
j [0] to system si, which stores them in

its local memory xpNi [0] = {xuj,init
j [0]}sj∈Ni . Define

ui,MPC = ui,init and proceed to:
• Optimization: During the time slot t ∈ [tsi +
lT, tsi+1 + lT ) system si solves its optimization prob-
lem (2)–(3) to obtain the minimizer u∗i and the asso-

ciated trajectory x
u∗i
i [l], which it sends to all neigh-

bours. System si computes

δi = Ji(x
u∗i
i [l],u∗i ,x

p
Ni [l])

− Ji(x
ui,MPC
i [l],ui,MPC ,x

p
Ni [l]). (7)

When all neighbours have returned the change in
their objective (9) i.e. δj , system si computes

`i = δi +
∑
sj∈Ni

δj . (8)

If `i ≤ 0 then system si sets ui,MPC = u∗i and sends

out x
u∗i
i [l] again.

• Refreshing: Outside of the assigned time slot t ∈
[lT, tsi + lT ) ∪ [tsi+1 + lT, (l + 1)T − ρ) system si
receives potential trajectories from its neighbours to
compute the change in objective, i.e. sj ∈ Ni sends
x∗j to si, system si computes

δi =

Nh−1∑
k=0

Lij(x
ui,MPC
i [k|l], x∗j [k|l])

− Lij(x
ui,MPC
i [k|l], xpj [k|l]) (9)

and returns δi to system sj . If system sj sends x∗j
again system si sets x[l]pj = x∗j in its local memory.

• Implementation & updating: During the time interval
t ∈ [(l + 1)T − ρ, (l + 1)T ) system si implements
ui,MPC [0] and shifts and appends all trajectories in
its local memory, its own and its neighbours’ , i.e.

xpj [l + 1] = (xpj [1|l], . . .
. . . , xpj [Nh|l], fj(x

p
j [Nh|l], k

loc
j (xpj [Nh|l]))) (10a)

and
ui,MPC = a(ui,MPC). (10b)

For this algorithm we can prove

Theorem 3. If we initialize the algorithm with feasible
initializers ui,init for all si ∈ V , then the algorithm
is recursively feasible and the resulting closed loop is
asymptotically stable with respect to the set points x̂i for
all si ∈ V .

Proof. In the following, we only sketch the proof of The-
orem 3; for more details, the interested reader is referred
to [Müller et al., 2012]. The recursive feasibility of the
algorithm is ensured by the assumption that the optimiza-
tion schedule does not allow adjacent systems to optimize
at the same time and that we use equivalent constraints
cij(xi, xj) ≡ cji(xj , xi). Therefore all intermediate trajec-
tories will be admissible for all neighbouring systems.

For the asymptotic stability we use the abstract sum of all
objectives with perfect knowledge about all states, i.e. the
function

J(xuMPC [l],uMPC [l])

=
∑
si∈V

Ji(x
ui,MPC
i [l],ui,MPC [l],x

uNi,MPC
Ni [l]) (11)

as Lyapunov function candidate with respect to the set
points. By standard MPC argumentation, we know that
at time instant t = lT we have

J(xa(uMPC)[l], a(uMPC)[l])︸ ︷︷ ︸
J0[l]

≤J(xuMPC [l − 1],uMPC [l − 1])︸ ︷︷ ︸
Je[l−1]

−

(∑
si∈V

(
Lii(x

ui,MPC
i [0|l − 1], ui,MPC [0|l − 1])

+
∑
sj∈Ni

Lij(x
ui,MPC
i [0|l − 1], x

uj,MPC
j [0|l − 1])

)
≤ Je[l − 1]−

∑
si∈V

Lii(x
ui,MPC
i [0|l − 1], ui,MPC [0|l − 1]).

(12)

We only use an optimized input sequence if it decreases
the value of the sum of all neighbours objectives. So that
at the end of the optimizations for time step l, i.e. at
t = (l + 1)T − ρ, we have

Je[l] = J0[l] +
∑
`i≤0

`i. (13)

Thus we know that the sequence Je[l] is strictly decreasing.
From here, asymptotic stability of the closed-loop system
with respect to the set points x̂i can be established as
in standard MPC stability proofs (see e.g. Mayne et al.
[2000]).

Remark 4. In the updating step each system updates its
own as well as its neighbour’s trajectories, this requires
every system to have the local controller and system
dynamics of all adjacent systems.

The presented algorithm is a modified version of algo-
rithm 1 in Müller et al. [2012] and can so far only handle
systems with perfect communication.
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3. NETWORKS WITH COMMUNICATION FAILURE

In this section we extend the previously introduced algo-
rithm to networks where communication between adjacent
systems is temporarily lost. We require the communication
to be working at the initialization. If the communication
link between two systems sα and sβ fails, we substitute
the affected coupling constraints in order to ensure that
the coupling constraints are still fulfilled. We choose a sub-
stitute constraint in such a way that even though the new
predicted trajectories cannot be transmitted and hence
cαβ and cβα in the optimization problem (2)–(3) can not
be evaluated, we can still guarantee recursive feasibility
by a local state constraint. Other than that the algorithm
presented above still works in the same way, except that
now δα and δβ can no longer be exchanged. Furthermore,
in the updating step of the algorithm, equation (10a)
to be precise, systems sα and sβ just update the last
predicted trajectory of the respective neighbour which was
successfully transmitted. As soon as the communication
between the systems sα and sβ is reestablished the systems
exchange their latest trajectories and store them in their
local memory. For clarity of presentation in the following
we will show in more detail how feasibility and stability can
still be maintained under the failure of one communication
link only; we then remark how the presented method can
be generalized to multiple communication failures.

3.1 Feasibility during communication absence

As stated above, during the absence of communication
between the two systems sα and sβ , both affected sys-
tems update the last predicted trajectory of the respective
neighbour which was successfully transmitted via (10a).
However, both systems do not have to follow their last
transmitted trajectory, they only need to stay close enough
to it that they can not make the other system’s optimiza-
tion problem become infeasible. We restrict the optimized
trajectories to be in balls around the last transmitted
trajectory. Suppose the last time instant of communication
was at Q, we define

h̃α[k|Q+ q] = max ε (14a)

subject to

cαβ(κα, κβ) ≤ 0 (14b)

for all
κα ∈ Sε(xa

q(uα,MPC)
α [k|Q+ q]) (14c)

κβ ∈ Sε(x
aq(uβ,MPC)
β [k|Q+ q]) (14d)

where Sr(y) = {x : ‖x − y‖2 ≤ r} is the ball of radius r

centred at y, and x
aq(uβ,MPC)
β is the last successfully trans-

mitted trajectory (at time Q) updated q times via (10a).

The values h̃α[k|Q+ q] can be interpreted to be the radius
of the largest ball around the last transmitted predicted
state in which states will not violate the coupling con-
straint. Since the coupling constraints are equivalent, i.e.
cij(xi, xj) ≡ cji(xj , xi), the radii will be the same as well,

i.e. h̃α[k|Q+ q] = h̃β [k|Q+ q].

We now substitute the coupling constraints cαβ(xuαi [k|Q+
q], xpβ [k|Q+ q]) ≤ 0 in (3d) at time l = Q+ q by

‖xuiα [k|Q+q]−xa
q(uα,MPC)
α [k|Q+q]‖2 ≤ hα[k|Q+q] (15)

using hα[k|Q + q] = h̃α[k|Q + q] for all k ∈ I(Nh) and
do the same for sβ to ensure that both optimization
problems remain recursively feasible without communi-
cating. Note that (15) does not use the other systems

state xβ . Nevertheless, according to the definition of h̃α
and h̃β in (14), the substitute constraint (15) guarantees
that the original coupling constraint (3d) is not violated.
Thus, even without communication between systems sα
and sβ feasibility is guaranteed. This means that when
communication is reestablished between the systems sα
and sβ , the original optimization problem (i.e. using the
original coupling constraint in (3d)) is still feasible, and
hence recursive feasibility of the presented algorithm is
guaranteed.

Remark 5. For the case of multiple connection failures for
one system we extend (14) slightly by adding all coupling
constraints, which have to be satisfied, i.e.

h̃α[k|Q+ q] = max ε (16a)

s.t. cαβi(κα, κβi) ≤ 0 ∀ i ∈ Iα (16b)

for all

κα ∈Sε(xa
q(uα,MPC)
α [k|Q+ q]) (16c)

κβi ∈Sε(x
aq(uβi,MPC)

β1
[k|Q+ q])∀ i ∈ Iα (16d)

where Iα is the set of all failing communication links at
system sα. However we will substitute all failing coupling
constraints by only one, namely (15), with hα = h̃α.

3.2 Stability at reconnection

As in the proof of Theorem 3, we consider the Lyapunov
function candidate Je[l] = J(xuMPC [l],uMPC [l]) as de-

fined in (11), but with xpβ [Q + q] = x
aq(uβ,MPC)
β [Q + q]

in Jα and xpα[Q + q] = x
aq(uα,MPC)
α [Q + q] in Jβ , for

all q ≥ 1 until the communication between systems sα
and sβ is reestablished. Note that with this definition,
inequality (12) is satisfied as long as all communication
links, apart from the one between sα and sβ , are working.
Now suppose that at some time Q + Nl with Nl ≥ 2,
connection between the systems sα and sβ is reestablished.
At this time instant the value of Jα could increase since
sα was previously using the latest successfully communi-
cated state sequence (transmitted at time Q), i.e. xpβ [Q+

k] = x
ak(uβ,MPC)
β [Q+ k] for 0 ≤ k ≤ Nl − 1, and will now

update to xpβ [Q+Nl] = x
uβ,MPC
β [Q+Nl], which is the latest

predicted trajectory for sβ at Q+Nl. While communica-
tion is working, recall that the computation of δβ in (9)
during the sα optimization step in the algorithm prevents
input sequences to be implemented if they increase the
sum of all objective functions. On the other hand, while
communication is absent, δβ and δα can not be exchanged,
so that the update of xpβ [Q+Nl] to x

uβ,MPC
β [Q+Nl] could

increase the value of Jα compared to its value when using

x
aNl (uβ,MPC)
β [Q+Nl] instead of x

uβ,MPC
β [Q+Nl] by δβ , i.e.

by ∣∣∣∣∣
Nh−1∑
k=0

Lαβ(xuα,MPCα [k|Q+Nl], x
uβ,MPC
β [k|Q+Nl])
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−Lαβ(xuα,MPCα [k|Q+Nl], x
aNl (uβ,MPC)
β [k|Q+Nl])

∣∣∣∣∣ .
(17)

The value of (17) can be bounded by using the triangle
inequality and by using the Lipschitz property of Lαβ in
the second variable; since the state xα is in a compact ball
we obtain a uniform Lipschitz constant lkαβ depending on

x
aNl (uβ,MPC)
β [k|Q + Nl] and on hβ [k|Q + Nl]. So that the

bound is termwise given by∣∣∣Lαβ(x
ui,MPC
i [k|Q+Nl], x

uβ,MPC
β [k|Q+Nl])

−Lαβ(x
ui,MPC
i [k|Q+Nl], x

aNl (uβ,MPC)
β [k|Q+Nl])

∣∣∣
≤ lkαβ

∥∥∥xuβ,MPCβ [k|Q+Nl]− x
aNl (uβ,MPC)
β [k|Q+Nl]

∥∥∥
2︸ ︷︷ ︸

≤hβ [k|Q+Nl]

.

(18)

This means that each of the values hβ [k|Q + Nl] in (15)
can be used to bound the maximal deviation of one term
in (17). The analogous holds for Jβ . Note that even though
lkαβ depends on the state of sβ and on hβ , we could easily
obtain a conservative upper bound

lαβ = max
k∈I(Nh)

lkαβ . (19)

In total, the sum over the prediction horizon (17) is
bounded by

(17) ≤
Nh−1∑
k=0

lkαβ · hβ [k|Q+Nl] (20)

As the values hβ [k|Q+Nl] are design parameters, we can, if

necessary, use a smaller value than h̃β [k|Q+Nl] (which was
needed in order to ensure feasibility) in order to keep the
maximal possible increase of the objective function after
reconnection small enough. Furthermore, as we assume
that the duration of communication failure Nl is a priori
unknown, the necessary values of hβ have to be computed
as soon as the communication fails, i.e. at time Q. We
compute them in such a way that the possible increase of
Jα at time Q+Nl is smaller than the guaranteed decrease
of Jβ at time Q and vice versa. Namely, we have to ensure
that

Nh−1∑
k=0

lkαβ · hβ [k|Q+ k]

≤ (1− ε)

Lββ(x
uβ,MPC
β [0|Q], uβ,MPC [0|Q])

+
∑
sj∈Nβ

Lβj(x
uβ,MPC
β [0|Q], xpj [0|Q])


(21)

for all k ≥ 1 and some 0 < ε < 1. If this is satisfied, it
follows that

Je[l] ≤ Je[Q]− ε
l−1∑
k=Q

∑
si∈V

Lii(x
ui,MPC
i [0|k], ui,MPC [0|k])

(22)
for all l ≥ Q+1, from where again, just like in (12), asymp-
totic stability follows. One possible way to ensure (21) is
to choose

hβ [k|Q+ q] = min{h̃β [k|Q+ q],
Lβ0
lkαβNh

}, (23)

for all k ∈ I(Nh) and all q ∈ I(Nl), where Lβ0 denotes
the right hand side of (21).

Note that both Lβ0 and the values h̃β [k|Q+ q], appearing
on the right hand side of (23), can be determined by
system sβ . Furthermore, the Lipschitz constants lkαβ can
also be determined by system sβ if for example it knows
the function Lαβ , or if a (global) Lipschitz constant is
exchanged between the systems at the beginning. Hence
the values hβ [k|Q + q] can be determined locally by
system sβ (i.e. without further communication) as soon
as communication fails, as required.

With the previous analysis, we have derived

Theorem 6. Assume that at time l = 0, there is no
communication failure and that the algorithm is initially
feasible. If the communication link between two systems sα
and sβ fails at some time Q + 1, recursive feasibility and
asymptotic stability of the closed-loop system with respect
to the set points x̂i is maintained if the coupling constraint
cαβ in (3d) (and similarly cβα) is substituted by (15) with
hα[k|Q+ q] satisfying

hα[k|Q+ q] ≤ h̃α[k|Q+ q] (24)

as well as (21) for some 0 < ε < 1 and for all k ∈ I(Nh)
and all q ∈ I(Nl).

Remark 7. Handling multiple connection failures is straight
forward but not completely obvious. If for a single system
connections fail sequentially, i.e. the connection to sβ1 fails
at Q and the connection to sβ2 fails at Q + q and so
on, we can treat each failing connection individually with
the presented method, using for o ≥ 0 the minimum of
the two values hβ [k|Q + q + o] computed at time Q and
Q + q for the two communication failures, respectively. If
multiple connections fail at one time step, i.e. system sα
loses contact to both sβ1

and sβ2
after time step Q, then

the radii hα have to satisfy:Nh−1∑
k=0

∑
βi

lkβiαhα[k|Q+Nl]


≤ (1− ε)

Lαα(xuα,MPCα [0|Q], uα,MPC [0|Q])

+
∑
sj∈Nα

Lαj(x
uα,MPC
α [0|Q], xpj [0|Q])

 .

(25)

Note that the radii hα in (25) can again be computed
locally, similar to what was discussed above in case of one
communication failure.

4. SIMULATION RESULTS

We present a simple integrator example in a collision
avoidance setup. The dynamics we use are:

xi[k + 1] =

(
p1i[k + 1]
p2i[k + 1]

)
=

(
p1i[k] + u1i[k]
p2i[k] + u2i[k]

)
, (26)

the objective consists of the quadratic self associated stage
costs

Lii(xi, ui) = ‖xi − x̂i‖22 + ‖ui‖22 (27a)
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the coupled stage costs with compact support

Lij(xi, xj) = 20 exp

(
‖x̂i − x̂j‖∞

‖xi − xj‖22 − ‖x̂i − x̂j‖∞
+ 1

)
(27b)

for ‖xi − xj‖22 < ‖x̂i − x̂j‖∞ and zero elsewhere, and the
quadratic, decoupled terminal costs

Fii(xi) = ‖xi − x̂i‖22 . (27c)

The constraints are given by decoupled box constraints

cii(xi) = ‖xi‖∞ − 10, (28a)

the quadratic coupling constraints

cij(xj) = 1− ‖xi − xj‖2 , (28b)

the quadratic, decoupled terminal constraints

dii(xi) = ‖xi − x̂i‖2 −
√

2, (28c)

and the box input constraints

Ui = {u ∈ R2 : ‖u‖∞ ≤ 1}. (28d)

We use four systems s1, . . . , s4. As terminal controllers we
use

kloci (xi) =

(
sign(x̂1i − x1i) min{1, |x̂1i − x1i|}
sign(x̂2i − x2i) min{1, |x̂2i − x2i|}

)
, (29)

for initial states x1[0] = (−7, 6.5)T , x2[0] = (−7,−6)T ,
x3[0] = (5.5,−6)T , x4[0] = (6, 6.5)T and set points
x̂1 = (2,−1.5)T , x̂2 = (1.5, 1.5)T , x̂3 = (−2.5, 2)T and
x̂4 = (−1.5,−1)T .

The neighbourhoods are such, that all systems communi-
cate with each other.

After one iteration the communication between s1 and s2
fails for eight samples, i.e. for l = 2, . . . , 10 there is no
communication between s1 and s2.

The results of the simulation is shown in figure 1. We can
see, that the deviation between the predicted trajectory
at time Q = 2 and the actual state trajectory is minimal
and we conclude from that, that the additional restriction
imposed to guarantee asymptotic stability does not affect
the optimization’s overall behaviour in a severe way. Even
while the restrictions are active, the actual trajectory, i.e.
the result of the optimized solution, is not using all its
freedom.

Remark 8. Since (27b) is defined to be Lij(xi, xj) =
Lji(xj , xi) for all si, si ∈ V , we can avoid the intermediate
exchange of trajectories to compute δi in (9) in the algo-
rithm as all neighbouring systems sj ∈ Ni can compute
the value δi by themselves.

5. CONCLUSION

This paper proposes a simple modification of an existing
DMPC algorithm to make it robust with respect to com-
munication failure. Future work might reduce the conser-
vatism introduced through (21) and might even extend
results to couplings of multiple systems, i.e. no pairwise
coupling.
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and P. D. Christofides. Handling communication disrup-
tions in distributed model predictive control. Journal of
Process Control, 21(1):173 – 181, 2011.

D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36(6):789 – 814, 2000.

Matthias A. Müller, Marcus Reble, and Frank Allgöwer.
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