
   

Combined Approach of Fuzzy Decision Making and Predictive Functional Control 

to Minimize Variations of Manipulated Variables in Processes with Dead Time 

 
 

Tarek Aissa, Christian Arnold, Steven Lambeck 


Department of Electrical Engineering and Information Technology, University of Applied Science Fulda,  

Fulda, Germany, (e-mail: {tarek.aissa; christian.arnold; steven.lambeck}@et.hs-fulda.de) 

Abstract: Basically conventional controllers operate on a crisp set point, even if the control task does not 

require an exact value of the controlled variable. In fact the requirements for the controlled variable can 

often be described as intervals of acceptable or ideal ranges. In this paper we present an approach of a 

predictive functional controller combined with fuzzy decision making, which leads to a controller that 

operates on complete fuzzy goals. This approach is demonstrated for simple processes with dead time and 

the performance is analyzed by comparison with conventional controllers.   



1. INTRODUCTION 

The aim of many control applications is to reach a specified 

range of the process variable x and therefore it is not 

necessary to hold the controlled variable x at an exact set 

point w. The requirements of the control task may then be 

defined by intervals of ideal, acceptable and inappropriate 

ranges, whereby the controlled variable x should stay at least 

in the acceptable range, preferably in the ideal range. Such a 

linguistically formulated range can easily be described by 

formulating a fuzzy goal with the parameters of a trapezoidal 

membership function W (figure 1):  
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Fig. 1. Fuzzification of stationary requirements for controlled 

variable x . 

It is obvious, that one requirement of the control task is, to 

manipulate the process in such a way, that the controlled 

variable x owns a high degree of membership to the 

stationary fuzzy goal W represented in Fig.1. Besides of 

reaching the stationary goal, the reducing of variations of the 

manipulated variable u is desirable. By reducing the 

variations of the manipulated variable u ,it is possible to take 

care of the actuators durability. Hence, an additional fuzzy 

goal C for the dynamic behaviour has to be formulated. 

Therefore, initially the maximum (forced) variation of the 

controlled variable maxx  can be formulated based on the 

maximum gradients of the manipulated variable maxu :  

  Txufx  maxmax
   

Using equation (2) and doing some simple transformations 

leads to the dynamic fuzzy goal C . Regarding the actuators 

durability it is evident, that no variations of the manipulated 

variable u is “ideal”, which is the case, if there is no need for 

an adjustment of the controlled variable x. Consequently we 

define the core of the membership function only for 0x . 

Hence we will get a resulting triangular membership function 

using the sample time T with the optimal case of 0x  and 

the spread defined by the maximum accepted variation maxx :  

    xxxTfx
T

TC  ,00: maxmax
  

In many technical applications that deal with SISO-Systems 

simple continuous controllers (like PID) or discontinuous 

controllers (like two- or three point controllers) are used. For 

that type of controllers it is basically necessary to define a 

crisp set point w and it is not possible to operate on a fuzzy 

goal like shown in figure 1. As one consequence, the 

variations of the manipulated variable u  can not be taken 

into account. In case of using a continuous controller it may 

be suitable to use a nonlinear transfer element at the input of 

the controller, which operates as a dead zone element. For 

discontinuous controllers we can define a hysteresis h  to 

reduce the variations of the manipulated variable u . An 

approach for defining the parameters for hysteresis h  or a 

dead zone, may be to use an alpha cut of the stationary fuzzy 

goal W and to define the supremum and infimum of the 

resulting set as parameters of the set point interval 

],[ maxmin ww , as shown in figure 2.  
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Fig. 2. Defining the limiting set points out of a stationary 

membership function depended on the parameter of the alpha 

cut. 

Now it is possible to define the parameters of hysteresis h  

and dead zone as well as the desired value w of the controlled 

variable x for the controllers by the following equations:  
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Fig. 3. Adjusting the parameters for a discontinuous (above) 

and a continuous controller (below). The user has to define a 

compromise out of stationary requirements and the variations 

in the manipulations. 

As we can see in figure 3 there are a lot of parameters to set 

up by the user, which can lead to a confusing tuning task. To 

avoid the defining of the parameters for controllers, 

hysteresis, dead zone, etc., it may be suitable to use a 

controller which operates on the complete fuzzy goal, as 

shown in figure 4.  

In this paper we will describe an approach of a fuzzy goal 

predictive functional controller, which operates on the 

complete fuzzy goal. Therefore, we will combine the theories 

of predictive functional control and fuzzy decision making. 

We will use fuzzy decision making to replace the calculation 

of the reference trajectory for future process states for the 

predictive functional controller. First of all we will describe 

some theoretical aspects in section 2 followed by the 

presentation of the approach of a fuzzy goal predictive 

functional controller in section 3. Some simulation results 

will be presented in section 4. Finally, some concluding 

remarks and a short outlook will be given in section 5.  

 

Fig. 4. Approach for a fuzzy goal predictive functional 

controller. 

2. FUNDAMENTALS 

In this chapter we will introduce some basics of predictive 

functional control (PFC) and the theory of fuzzy decision 

making, which is necessary to explain the approach of the 

fuzzy goal predictive functional controller (FGPFC) in the 

next section. 

2.1  Predictive Functional Control 

The theory of predictive functional control was developed out 

of the Model based predictive control (MPC), which is a very 

common method of advanced control strategies. The idea of 

MPC can easily be described by the following steps: initially 

the free process behavior without control is predicted in a 

prediction horizon Pn . The prediction is done by an internal 

process model. The process model requires some 

measurements or observations for the initial state. The future 

disturbances of the process can also be used if they are 

known. With the prediction of future process states, it is 

possible to evaluate a control sequence in such a way, that the 

futures control deviation (difference between set point and 

controlled process variable) is minimized.  

When we have to deal with complex processes, like nonlinear 

processes or processes with contraints, it is often necessary to 

use a numerical solver with an (for example iterative) 

optimization method to calculate the future control sequence 

((Adamy, 2009), (Dittmar et al., 2004)). Otherwise, for 

processes that can be described as linear state space systems 

without constraints, there is an analytic way to calculate the 

control sequence. In that case, we are talking about predictive 

functional control (PFC), which was presented first by 

Richalet in (Richalet et al., 1978). 

As mentioned above, the the PFC has the advantage that a 

numerical optimization for calculating a control sequence is 

not necessary. The existence of an analytic solution leads to 

an easy implementation in practice. There are many examples 

which demonstrate, that the PFC is getting more and more 

successful applied in industrial applications (see (Richalet et 

al., 1978), (Richalet et al., 2009), (Luft, 2009)). Richalet 

described PFC as “easy to understand, to implement, to 

tune”. 

Some important modifications by Richalet can simplify the 

optimization problem significant (Valencia-Palomo et.al., 

2012). On the one hand, there is the choice of coincidence 

points, which means that the control error has to be 

minimized only at a random point and not in the complete 

prediction horizon (for example by mean square error). This 
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leads to an easier objective function of the PFC. On the other 

hand, only basic functions are used to describe the behavior 

of the manipulated variable. Consequently, the solution space 

for possible control actions gets reduced. 

The application of PFC will be demonstrated in this paper by 

the control of a first-order lag element in combination with a 

dead time. The results of using the proposed fuzzy goal PFC 

to control a first order system without dead time are 

presented in (Arnold et.al., 2013). The transfer function of 

the system regarded in this paper, which is a suitable example 

of a transport application, can be represented as 
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The aim is now to calculate the control equation by using this 

transfer function as an internal model. Therefore the dead 

time t  is initially neglected and will be considered later. A 

time-discrete formulation of the resulting first order system 

using the sample time T and a first order hold is then 

defined by using the parameter  sT   exp : 
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Usually, the dynamic behavior of the PFC is defined by a 

reference trajectory )1( kxR . It is obvious that the 

requirement of the control task is, that the internal model 

should follow the reference trajectory. Hence, we have the 

premise    11ˆ  kxkx R . The future process state can 

easily be calculated by the first order system (equation (6)) 

and the futures disturbance:  

         111ˆ  kzkuKkxkx SSS   

Assuming that the disturbance of the next sample  1kz  

will be the same as in the current one (in a simplified 

approach), we can calculate the disturbance by the current 

process states in the following way: 

       kxkxkzkz ˆ1    

Some mathematical transformations of equations (6), (7) and 

(8) lead to the control sequence equation: 
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The influence of the dead time on the process is obviously 

given by the discrete formulation of the dead time 

Tdt  : 

)(ˆ)()()(ˆ kxdkxkxdkx   

Both equations can be combined to: 

)()(ˆ)(ˆ)( kxdkxkxdkx   

To control the dead time system we have to replace )(kx  in 

equation (9) by )( dkx   of equation (11). The structure of 

the PFC controller is shown in figure 5. It has to be 

mentioned that constraints of the manipulation variable )(' ku  

may be taken into account by using the constrained value of 

the manipulation variable )(ku  as input of the process and 

the inner model. Besides that, it is still not possible to operate 

on the complete fuzzy goal W , so that a crisp set point is 

still necessary (figure 5). Therefore, we replace the 

calculation reference trajectory )1( kxR  by a fuzzy decision 

making approach. 

 

Fig. 5. Structure of the PFC controller. 

2.2  Fuzzy Goals and Fuzzy Decision Making 

As already mentioned, the requirements for the set points of 

some control applications are often formulated inexact or as 

intervals. Thus, we often have to deal with linguistically 

formulated requirements. An opportunity to handle those 

requirements is to apply the fuzzy theory by using fuzzy 

numbers or fuzzy intervals. In that case we can transform the 

knowledge of the user into a stationary fuzzy goal  xW . 

By using a fuzzy formulation for the requirements of the 

control task we will be able to take care of forbidden areas of 

the possible states. For reasons of simplification we will only 

use trapezoidal membership functions as described in section 

1 (see also figure 1). 

In (Bellmann et.al., 1970) the theory of fuzzy decision 

making was introduced. The idea is to find the optimal 

solution x* out of a set of alternatives x, which represents the 

solution space. Thereby all requirements and constraints have 

to be formulated as fuzzy sets. Hence we formulate an 

amount of fuzzy goals )(xGi (with i=1,…n) and fuzzy 

contraints )(xCj (with j=1,…,m). The best solution x* has to 

be calculated by an aggregation of all fuzzy goals )(xGi  

and constraints )(xCj . There are several ways to find the 

best solution. In this paper we focus on the approach 

presented in (Bellmann et.al., 1970), where the fuzzy 

decision set (possible solutions for x)  xD  is defined by 

the intersection of all fuzzy goals and constraints. One 

possibility to determine the optimal solution x* out of the 
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fuzzy decision set  xD  is given by the maximum value 

(Bandemer et.al., 1970): 
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It has to be mentioned, that all constraints can also be 

transformed into goals by a simple reversing of the set. That’s 

the reason why we will focus on fuzzy goals from now on 

(Bernard, 2000).  

3. CONCEPT OF A FUZZY GOAL PFC CONTROLLER 

In this chapter we will present our proposed approach of a 

fuzzy goal PFC. The advantage of the proposed controller is, 

that there is no need for a crisp set point, like in a 

conventional PFC. The fuzzy formulation of the requirements 

can be used directly at the input of the controller. The 

approach is to replace the reference trajectory with a fuzzy 

decision making approach, explained shortly in section 2.  

3.1  Approach to a Solution 

It is obvious that the optimal value of the controlled variable 

depends on the stationary and the dynamic requirements. 

Hence, it is necessary to find a compromise of both 

requirements. The stationary fuzzy goal W  is already 

formulated as a function of the controlled variable x (see 

equation (1)). Consequently the dynamic requirements have 

to be transformed as a function of x as well. We can do this 

by adding the current process state to the accepted variations 

mentioned in equation (3): 

      
    xxxkxf

xxxTkxfx

T
T

T
TC

,00

,00

maxmax

maxmax



 
 

 

Fig. 6. Compromise of stationary and dynamical goal. 

According to equation (12) the optimal solution is given by 

the maximum membership of the intersection set of the 

stationary fuzzy goal W  and the dynamic fuzzy goal 

C (also shown in figure 6): 

       xkxxxWx CWD ,,,max* max   

Another benefit of using trapezoidal membership functions is 

that the optimal decision can easily be calculated analytically 

by using a case differentiation and the relations of table 1. 

Table 1.  Case differentiation for the optimal solution 

 1* kx  for 
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3.2  Closed loop dynamic behaviour in accepted area 

For convenience we focus on the lower part of the accepted 

area (second case of table 1). It is evident, that the 

considerations are similar for the upper part of the accepted 

area (4th case of table 1). For the lower part we receive the 

following solution for the next sample: 
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Using the z-Transformation and some mathematical 

operations leads to the following equation: 

   

 WL

WL

T

T

ez

e

WWx

WW
z

WWx

x

W

zx



























1

12max

12

12max

max

2

 

The resulting system represents a first order time delay 
system with a static gain of one. The time constants can be 
determined for the lower and the upper part of the accepted 
area
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Hence, to adjust the dynamic of the proposed fuzzy goal PFC 

it is only necessary to choose the accepted variations maxx .  

4. SIMULATIONS 

Several simulations have been done to test and verify the 

approach of the fuzzy goal PFC. In this paper we will present 

the results of the control of a transport system with a 

significant dead time.  
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4.1  Model of the dead time system 

One of the classic benchmark examples for control tasks with 

dead times are transport systems. The target of the control 

task of transport systems is to control the amount of material 

per time ( outQ ) delivered to a specified place by adjusting a 

valve at the inflow. Hence, the valve is regulating the supply 

of the material ( inQ ). It may also be possible that the process 

is disturbed by an unknown variable zQ . The principle 

function is shown in figure 7. 

 

Fig. 7. Schematic representation of the process. 

The dead time depends on the ratio of speed and length of the 

conveyor. The valve at the inflow can be described as a first 

order system. The resulting transfer function is given by: 
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The system investigated in this paper represents a first order 

lag element ( sK ss 1,2.0   ) with dead time ( st 10 ), 

which will be used as inner model of the controller. 

4.2  Simulation results 

All simulations were done with the simulation environment 

of (MATLAB/Simulink). A unified stochastic disturbance 

sequence zQ  was used for all executed simulations. The 

stationary fuzzy goal was defined as: 

    hQfh
T

outTW ,9,06,04,02,0max,   

To verify the proposed approach we compared the results of 

the fuzzy goal PFC with a simple PI controller and a smith 

predictor (Lunze, 2004), which is common practice for 

systems with dead time delay. The adjustment was done by 

zero-pole compensation. The performance of the mentioned 

controllers is shown in figure 8 in terms of a time plot of the 

controlled variable inQx   and the manipulated variable 

outQu  . 

 

Fig. 8. Controlled (above) and manipulated signal (below) 

during the simulation scenario.  

It is obvious, that the continuous controllers are focussed on 

the minimization of the control error all the time, which leads 

to higher variations of the manipulated variable, without 

achieving much better results regarding the stationary fuzzy 

goal. Another aspect to evaluate the performance of the 

controller is given by the mean fulfilment of the stationary 

fuzzy goal W : 
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and the mean variation of the manipulated variable (both 

shown in figure 9): 
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It is evident, that an adaption of the controller’s gain leads to 

an improvement (higher fulfilment of the stationary goal) to a 

certain degree. A higher gain for the PI controller leads to an 

oscillating and unstable system and therefore high variations 

of the manipulated variable and less fulfilment of the 

stationary goal. For the fuzzy goal PFC maxx  is the 

parameter to adjust. The results of higher values for maxx  

are similar to the results of the PI controller or smith 

predictor. Because of the use of uncertain set points it is to be 

seen that the fuzzy goal PFC solves the control task by less 

variations of the manipulated variable. 
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Fig. 9. Various control strategies regarding the fulfillment of 

the stationary fuzzy goal and the mean variation of the 

manipulated variable depending on pK  or maxx . 

For a last test the influence of the dead time to the robustness 

of the controllers were investigated. Therefore we analyzed 

what happens to the fulfilment of the stationary fuzzy goal 

for several dead times; the controllers parameters are not 

changed. The results are shown in figure 10. Apparently the 

PI-Controller is not suitable to handle larger dead-times. The 

Smith Predictor achieves good results, although the 

performance of the fuzzy goal PFC becomes relatively better 

for larger dead times by less variations of the manipulated 

variable. 

 

Fig. 10. Various control strategies regarding the fulfilment of 

the stationary dependent of the time delay t  

5. CONCLUSION AND OUTLOOK 

In this paper we presented a fuzzy goal PFC, which operates 

on fuzzy formulated requirements. The way of doing this is to 

combine the conventional PFC with the theory of fuzzy 

decision making. Thereby, the calculation of a reference 

trajectory is replaced by a fuzzy approach. Hence, the 

requirements of the control task can easily be formulated 

linguistically. The adjustment of the proposed controller will 

be much easier to handle than finding several parameters of a 

conventional controller. We could show that the proposed 

approach provides good results in simulative experiments. 

Because of the uncertain set point the variations of the 

manipulated variable can be reduced without loosing 

stationary accuracy. In the simulations we also found out, that 

the proposed controller is robust against changing dead times. 

In future works we will try to transmit the proposed approach 

to MIMO-Systems and processes with more than one inner 

state and we will verify the fuzzy goal PFC in practical 

experiments. 
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