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Abstract: This brief studies the causal consensus problem of singular (descriptor) multi-agent
systems with networked communication delays and agents described by general singular systems.
For the studied systems, only the information of outputs are available through the network.
An observer-based networked predictive control scheme is employed to compensate for the
communication delays actively. Furthermore, based on the output feedback, observer and the
networked predictive control scheme, a novel protocol is proposed in this paper. By using the
tools of graph, algebra and singular system theory, the necessary and sufficient conditions are
given for the existence of the proposed protocol to solve the considered consensus problem. The
given conditions depend on not only the topologies of singular multi-agent systems but also
the structure properties of each agent dynamics. Moreover, a consensus algorithm is proposed
to design the novel observer-based predictive protocol. A numerical example demonstrates the
effectiveness of compensation for networked delays using the provided consensus algorithm.

1. INTRODUCTION

Distributed coordination control of multi-agent systems
(MASs) has attracted considerable attention due to board
applications including formation control, distributed sen-
sor networks, flocking and congestion control in communi-
cation networks (Reynolds [1987], Olfati-Saber and Mur-
ray [2002], Fax and Murray [2004]).

Consensus is one of the most fundamental distributed
coordination control problems in MASs. Consensus means
that multiple agents reach an agreement on a common
value which might be, for example, the altitude in multi-
spacecraft alignment, heading direction in flocking behav-
ior, or average in distributed computation (Lin and Jia
[2010]). At present, numerous results have been obtained
for consensus problems of MASs. For MASs with state and
measurement disturbances, Liu et al. [2009] has provided
a distributed dynamic compensator to solve the consen-
sus problem with H∞ performance using H∞ techniques.
Zhai et al. [2011] has dealt with the consensus problem
for MASs via a decentralized dynamic compensator by
reducing this problem to solving one strict matrix inequal-
ity. Consensus problems of multi-agent networks with di-
rected communication graphs have been discussed in Guan
et al. [2012]. Moreover, several conditions are proposed to
guarantee that all agents achieve consensus and satisfy
robust H∞ performance. Wen et al. [2012] has investi-
gated stochastic consensus problem for nonlinear MASs
with repairable actuator failures and state-dependent noise
perturbations.

? This work was supported in part by the National Natural Science
Foundation of China under Grant 61273104 and 61333003.

It is well known that singular systems provide a more
natural description of dynamical systems than state space
systems (Luenberger and Arbel [1977], Hill and Maareels
[1990]). Moreover, the concept of singular multi-agent sys-
tems (SMASs) has been introduced in Yang and Liu [2012].
Taking a SMAS consisting of several singular systems such
as three-link manipulators through networks for example,
achieving consensus means that differences of states be-
tween different manipulators tend to zero, respectively.
Roughly speaking, these manipulators move in the very
similar trajectories, but these trajectories do not overlap.
In the last two decades, many results of state space systems
have been extended to singular systems (Dai [1989], Yang
et al. [2010]). But rare works have been published to deal
with consensus of SMASs. For SMASs with agents de-
scribed by homogenous or heterogenous singular systems,
consensus conditions have been proposed using the tools of
graph, algebra and singular system theory (Yang and Liu
[2011]). Yang and Liu [2012] has provided the necessary
and sufficient consensus conditions with respect to a set
of admissible consensus protocols for SMASs with fixed
topologies. However, Yang and Liu [2011] and Yang and
Liu [2012] do not consider the networked communication
delays. Due to finite speed of transmissions and limited
bandwidth of communication channels, it is inevitable that
networked communication delays occur when information
exchanges among agents in networked MASs through the
shared network. It is worth mentioning that networked
delays often degrade the performance of MASs and de-
stroy the stability of systems (Wu et al. [2011]). Thus,
it is essential to eliminate or reduce the negative effect
of networked delays. Therefore, this paper concerns the
causal consensus problem of networked singular multi-
agent systems (NSMASs) with fixed topologies and agents
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described by general singular systems. A observer-based
networked predictive control scheme is employed to com-
pensate for the communication delays actively and effec-
tively. Based on the output feedback, observer and the
networked predictive control scheme (NPCS), a novel pro-
tocol is proposed to solve the consensus problem of studied
SMASs. Furthermore, the consensus algorithm is proposed
to design this novel observer-based predictive protocol.
The provided numerical example demonstrates the effec-
tiveness of compensation for communication delays.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

For the given vector x, ‖x‖ stands for the Euclidean
norm. R and C represent the real plane and the complex
plane, respectively. Let ⊗ denote the Kronecker product
of matrices A = [aij ] ∈ Rm×n and B ∈ Rp×q, which is
defined as

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB




and satisfies the properties
(A⊗B)(C ⊗D) = (AC)⊗ (BD),

A⊗B + A⊗ C = A⊗ (B + C).
A matrix H ∈ Rn×n is said to be Schur stable if σ(H) ⊆
D(0, 1), where D(0, 1) expresses the interior of an identity
circle whose center is the origin, and σ(H) = {s|det(sIn−
H) = 0}.
Definition 1. (Yang et al. [2004]) Let E, A ∈ Rn×n.

(i) The pair (E, A) is said to be regular if det(sE −A) is
not identically zero for some s ∈ C;

(ii) The pair (E, A) is said to be causal if (E, A) is regular
and degdet(sE −A) = rankE for ∀s ∈ C;

(iii) Singular discrete-time system
Ex(k + 1) = Ax(k)

is said to be regular and causal, if the pair (E, A) is
regular and causal.

Definition 2. (Yang et al. [2004]) Singular discrete-time
system

Ex(k + 1) = Ax(k) + Bu(k), (1a)

y(k) = Cx(k), (1b)
is said to be Y -controllable, if there exists a state feedback
u(k) = Kx(k) + v(k) such that the closed-loop system

Ex(k + 1) = (A + BK)x(k) + Bv(k) (2)
is causal, where v(k) is a new input.
Definition 3. (Yang et al. [2004]) System (1) is said to
be Y -observable, if at arbitrary time k, x(k) is uniquely
determined by the initial condition and {u(i), y(i), i =
0, 1, · · · , k}.
Lemma 1. (Yang et al. [2004]) System (1) is Y -controllable
if and only if

rank
[

E 0 0
A E B

]
= rank(E) + n;

System (1) is Y -observable if and only if

rank

[
E A
0 E
0 C

]
= rank(E) + n.

Lemma 2. (Yang et al. [2004]) For system (1), there exists
an output feedback u(k) = Fy(k) + v(k) such that the
closed-loop system (2) via u(k) is causal if and only if
system (1) is Y -controllable and Y -observable.

In general, information exchanges among agents are
achieved through a network for (singular) multi-agent sys-
tems. The networked communication topology of multiple
agents can be modeled by directed or undirected graphs
(Skelon et al. [1998]). Let G = (V, E ,A) be a weighted
digraph with the set of nodes V = {1, 2, · · · , N} denoting
the agents, the set of edges E ⊆ V×V and the nonnegative
weighted adjacency matrix A = [aij ] ∈ RN×N . In G, a
directed edge eij = (i, j) ∈ E means that j-th agent can
receive information from i-th agent directly, where node
j and node i are called child and parent node, respec-
tively. The neighbor set of the i-th agent is denoted by
Ni = {j ∈ V|eji ∈ E}. The adjacency elements aii = 0,
aij > 0 ⇔ j ∈ Ni associated with eji, otherwise aij = 0.
The Laplacian matrix LG of the weighted digraph G is
defined as

LG = D −A, (3)
where

D = diag[din(1), · · · ,din(N)], (4)

din(i) =
N∑

j=1

aij . Clearly, all row-sums of LG are zero,

which implies that LG has at least one zero eigenvalue
and corresponding the right eigenvector∞N , where∞N =
[1 1 · · · 1]T ∈ RN .

A directed tree is such a directed graph whose every node
has exactly one parent node except the root node. A
spanning tree of the digraph is a directed tree containing
all nodes of the digraph. A graph is said to contain a
spanning tree if a subset of the edges forms a spanning
tree.
Lemma 3. (Ren and Beard [2005])The Laplacian matrix
LG of a directed graph G has at least one zero eigenvalue
and all non-zero eigenvalues are in the open left-half plane.
Furthermore, LG has exactly one zero eigenvalue if and
only if G contains a directed spanning tree.

2.2 Problem Formulation

Consider a NSMAS consisting of N agents indexed by
1, 2, · · · , N, respectively. The dynamics of the i-th agent
are described by a singular discrete-time system:

Exi(k + 1) = Axi(k) + Bui(k), (5a)

yi(k) = Cxi(k), (5b)
where xi(k) is the state, ui(k) is the control input, yi(k)
is the measured output, E, A ∈ Rn×n, B ∈ Rn×q,
C ∈ Rm×n and rankE = r ≤ n. The communication
topology is described by a directed digraph G = (V, E ,A)
with a set of nodes V = {1, 2, · · · , N}, a set of edges
E ⊆ V × V and a nonnegative weighted adjacency matrix
A = [aij ] ∈ RN×N .
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In order to guarantee the feasibility of the proposed
approach designing protocols, some assumptions can be
reasonably made:
Assumption 1. (i) The each agent system is Y -controllable
and Y -observable;

(ii) The state of each agent system can not be measured,
but the output is available through the shared network;

(iii) The networked communication delay d is a known and
constant positive integer.
Definition 4. For NSMAS (5), protocol ui(k), i ∈ V is
said to solve the causal consensus problem (or NSMAS (5)
achieves causal consensus via protocol ui(k)) if the closed-
loop system via ui(k) is causal, and the following condition
holds:

lim
k→∞

‖xj(k)− xi(k)‖ = 0, ∀i, j ∈ V. (6)

The aim of this paper is to solve the following consensus
problem.
Problem 1. For NSMAS (5) with the directed topology
G = (V, E ,A) and the communication delay d, design
protocol ui(k) to solve the causal consensus problem.

Adopt an output feedback
ui(k) = Fyi(k) + vi(k), i ∈ V, (7)

where F ∈ Rn×q is designed to guarantee that the closed-
loop system

Exi(k + 1) = (A + BFC)xi(k) + Bvi(k) (8)
is causal (Yang et al. [2004]), and vi(k) will be designed
as follows. There exist two nonsingular matrices P and Q
such that

PEQ =
[

Ir 0
0 0

]
, P (A + BFC)Q =

[
A11 A12

A21 A22

]
,

PB =
[

B1

B2

]
, CQ = [ C1 C2 ] , Q−1xi(k) =

[
zi1(k)
zi2(k)

]
,

where A22 such that det(A22) 6= 0 which implies system
(8) is causal (Yang et al. [2004]). Then the restricted
equivalent form of the system (8) is obtained:

zi1(k + 1) = A11zi1(k) + A12zi2(k) + B1vi(k), (9a)
0 = A21zi1(k) + A22zi2(k) + B2vi(k), (9b)
yi1(k) = C1zi1(k), yi2(k) = C2zi2(k),
yi(k) = yi1(k) + yi2(k).

(9c)

Hence (6) holds if and only if
lim

k→∞
‖zj1(k)− zi1(k)‖ = 0 (10)

and
lim

k→∞
‖zj2(k)− zi2(k)‖ = 0 (11)

hold simultaneously.

It can be obtained from (9b) that

zi2(k) = −A−1
22 [A21zi1(k) + B2vi(k)]. (12)

Substituting (12) into (9a) derives
zi1(k + 1) = Āzi1(k) + B̄vi(k), yi1(k) = C1zi1(k), (13)

where Ā = A11 −A12A
−1
22 A21, B̄ = B1 −A12A

−1
22 B2.

Due to the state of each agent system can not be measured,
an observer is adopted:
ẑi1(k+1) = Āẑi1(k)+ B̄vi(k)+L[yi1(k)−C1ẑi1(k)], (14)

where ẑi1(k) and vi(k) are the state and control input
of the observer, respectively. Using observer design ap-
proaches (Yang et al. [2004]), design L to guarantee that
lim

k→∞
‖ẑi1(k)− zi1(k)‖ = 0, i ∈ V.

Since information exchanges with the networked com-
munication delay d, at time k, i-th agent only receives
information from j-th agent at time k − d. In order to
compensate the networked communication delay actively
and effectively, NPCS proposed in Liu et al. [2007] is
employed to the studied consensus problem. Based on the
output data from j-th agent up to time k − d, construct
the state predictions of j-th agent from time k− d to time
t as follows:

ẑj1(k − d + 1|k − d) =Āẑj1(k − d) + B̄vj(k − d)
+ L[yj1(k − d)− C1ẑj1(k − d)],

ẑj1(k − d + 2|k − d) =Āẑj1(k − d + 1|k − d)
+ B̄vj(k − d + 1),
...

ẑj1(k|k − d) =Āẑj1(k − 1|k − d) + B̄vj(k − 1),
By the way of iteration,

ẑj1(k|k − d) =Ād−1(Ā− LC1)ẑj1(k − d)

+
d∑

s=1

Ād−sB̄vj(k − d + s− 1)

+ Ād−1Lyj1(k − d), j ∈ V.

(15)

For NMAS (13) with the communication delay d, the
protocol based on NPCS is adopted as

vi(k) = vi(k|k−d) = K
∑

j∈Ni

aij [ẑj1(k|k−d)−ẑi1(k)], (16)

where K is a weighted constant matrix to be designed.
Definition 5. For NMAS (13), protocol (16) based on
observer (14) is said to solve the consensus problem (or
NMAS (13) achieves consensus via protocol (16) based on
observer (14)) if the following conditions hold:

lim
k→∞

‖zj1(k)− zi1(k)‖ = 0,

lim
k→∞

‖ei(k)‖ = 0, ∀i, j ∈ V,

where ei(k) = ẑi1(k)− zi1(k).

Based on the previous preparation, solving Problem 1 has
been converted to solving the following Problem 2.
Problem 2. Design a matrix F and protocol (16) to guar-
antee that det(A22) 6= 0, (10) and (11) hold.

3. CONSENSUS OF MASS BASED ON NPCS

3.1 Analysis of Consensus Conditions Based on NPCS

Theorem 1. For NMAS (13) with the directed topology
G = (V, E ,A) and the communication delay d, if Ā is
not Schur stable, then protocol (16) solves the consensus
problem if and only if G contains a directed spanning
tree, and Ā− λiB̄K and Ā−LC1 are Schur stable, where
λi, i ∈ V\{1} are the non-zero eigenvalues of the Laplacian
matrix LG .
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Proof. Denote
δi(k) = zi1(k)− z11(k), i ∈ V,

δ(k) = [δT
2 (k) δT

3 (k) · · · δT
N (k)]T ,

e(k) = [eT
2 (k) eT

3 (k) · · · eT
N (k)]T .

It can be concluded from Definition 5 that protocol (16)
solves the consensus problem if and only if lim

k→∞
δ(k) = 0

and lim
k→∞

e(k) = 0 hold simultaneously. By the iteration of

system (13), the state zj1(k) can also be written as

zj1(k) = Ādzj1(k− d)+
d∑

s=1

Ād−sB̄vj(k− d+ s− 1). (17)

From (13) and (14), it can be obtained:

ei(k + 1) = (Ā− LC1)d−1ei(k − d + 1). (18)
Then it follows that

ẑi1(k) = zi1(k) + (Ā− LC1)d−1ei(k − d + 1). (19)
Combining with (15), (17) and (18) gives

ẑj1(k|k − d) =Ād−1(Ā− LC1)ẑj1(k − d) + zj1(k)

− Ādzj1(k − d) + Ād−1LC1zj1(k − d)

=zj1(k) + Ād−1ej(k − d + 1).
(20)

Substituting (19) and (20) into (16) yields
vi(k)

=K

N∑

j=1

{aij [δj(k) + Ād−1ej(k − d + 1)]} − din(i)K[δi(k)

+ (Ā− LC1)d−1ei(k − d + 1)].
(21)

The closed-loop system of system (13) via protocol (21)
can be described as

zi1(k + 1)

=Āzi1(k) + B̄K

N∑

j=1

{aij [δj + Ād−1ej(k − d + 1)]}

− din(i)B̄K[δi(k) + (Ā− LC1)d−1ei(k − d + 1)].
Thus,

δi(k + 1)
=(Ā− din(i)B̄K)δi(k) + [(γi − γ1)⊗ (B̄K)]δ(k)

+ [(Ai −A1)⊗ (B̄KĀd−1)]e(k − d + 1)

+ {(D1 −Di)⊗ [B̄K(Ā− LC1)d−1]}e(k − d + 1),

where Ai, Di, γi, i ∈ V such that [A1 A2 · · · AN ] =
AT , [D1 D2 · · · DN ] = DT , γi = [ai2 ai3 · · · aiN ], and D
is defined by (4).

Hence
δ(k + 1) = Γδ(k) + Ξe(k − d + 1),

where
Γ = IN−1 ⊗ Ā− (L22 −∞N−1L12)⊗ (B̄K),

Ξ =(∞N−1D1 − D̃)⊗ [B̄K(Ā− LC1)d−1],

+ (Ã −∞N−1A1)⊗ (B̄KĀd−1),

D̃ = [DT
2 DT

3 · · · DT
N ]T , Ã = [AT

2 AT
3 · · · AT

N ]T ,[L11 L12

L21 L22

]
= LG , ∞N−1 = [1 1 · · · 1]T ∈ RN−1.

Then it follows that[
δ(k + 1)

e(k − d + 2)

]
=

[
Γ Ξ
0 IN ⊗ (Ā− LC1)

] [
δ(k)

e(k − d + 1)

]
.

(22)
Furthermore, protocol (16) solves the consensus problem
if and only if system (22) is Schur stable, which implies
that Γ and Ā− LC1 are Schur stable.

Let H =
(

1 0
∞N−1 IN−1

)
. Using the definition of Lapla-

cian matrix LG obtains

H−1LGH =
(

0 L12

0 L22 −∞N−1L12

)
. (23)

Let λ1 = 0, λ2, · · · , λN be eigenvalues of LG . It can
be obtained from (23) that λ2, · · · , λN are eigenvalues of
L22−∞N−1L12. Thus, there exists a nonsingular matrix T
such that L22−∞N−1L12 is similar to a Jordan canonical,
that is

T−1(L22 −∞N−1L12)T = J = diag(J1, · · · , Js),
where Jk, k = 1, 2, · · · , s, are upper triangular Jordan
blocks. Hence

IN−1 ⊗ Ā− J ⊗ (B̄K)
=(T ⊗ In)−1[Ā− (L22 −∞N−1L12)⊗ (B̄K)](T ⊗ In),

which implies that eigenvalues of IN−1 ⊗ Ā − (L22 −
1N−1L12) ⊗ (B̄K) are given by all eigenvalues of Ā −
λiB̄K, i ∈ V\{1}. Thus, protocol (16) solves the consensus
problem if and only if Ā−λiB̄K, i ∈ V \{1} and Ā−LC1

are Schur stable. The proof of sufficiency is completed.

Necessity. Based on the previous derivation, it suffices to
show that Reλi > 0, i ∈ V \{1} and G contains a directed
spanning tree. It can be obtained from Lemma 3 that
λi = 0 or Reλi > 0, i ∈ V \ {1}. Assume that there exists
some j ∈ V \ {1} such that λj = 0. Thus, Ā− λjB̄K = Ā.
Since Ā − λjB̄K is Schur stable, so Ā is Schur stable,
which is a contradiction with the precondition. Hence
Reλi > 0, i ∈ V \ {1}. Therefore, it can be concluded
from Lemma 3 that G contains a directed spanning tree.
The proof is completed.
Remark 1. It can be obtained from Theorem 1 that MAS
(13) achieving consensus via protocol (16) based on NPCS
has no relationship with networked communication delays,
and only depends on the topology of MAS (13) and the
structure properties of each agent dynamics. Hence proto-
col (16) based on NPCS can compensate communication
delays effectively.
Remark 2. When protocol (16) solves consensus problem
of NMAS (13), one has

lim
k→∞

δi(k) = 0, lim
k→∞

ei(k) = 0, i ∈ V.

which, together with (21) derives
lim

k→∞
vi(k) = 0, i ∈ V. (24)

From (12), one obtains

zi2(k)− z12(k) = −A−1
22 A21δi(k)−A−1

22 B2[vi(k)− v1(k)].
Combining lim

k→∞
δi(k) = 0 and (24) yields

lim
k→∞

‖zj2(k)− zi2(k)‖ = 0, ∀i, j ∈ V.

Hence Problem 2 is solved if protocol (16) solves the
consensus problem of system (13).
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Corollary 1. For NMAS (13) with the directed topology
G = (V, E ,A) and the communication delay d, when proto-
col (16) solves consensus problem, if Ā is not Schur stable,
then G contains a directed spanning tree. Furthermore,
if Ā is nonsingular, then (Ā, B̄, C1) is stabilizable and
detectable.

Proof. It can be concluded from Theorem 1 that G
contains a directed spanning tree, and Ā − LC1 is Schur
stable which implies that (Ā, C1) is detectable. Similar to
the proof processes of [Yang and Liu, 2012, Theorem 1], it

can be obtained that
([

Ā 0
0 Ā

]
,

[
B̄ 0
0 B̄

])
is stabilizable.

Since Ā is nonsingular, one obtains

rank
[

sIn − Ā 0 B̄ 0
0 sIn − Ā 0 B̄

]
= 2n,

or equivalently,
rank

[
sIn − Ā B̄

]
= n, ∀s ∈ C \D(0, 1).

Hence (Ā, B̄) is stabilizable. The proof is completed.

3.2 Design of Observer-based Predictive Protocols

Based on the previous preparation, the following algorithm
is provided to design observer-based predictive protocol
(7) associated with observer (14) and protocol (16), which
implies that Problem 1 will be solved under Assumption
1.
Algorithm 1. Input: the matrices E, A ∈ Rn×n, B ∈
Rn×q, C ∈ Rm×n, A = [aij ] ∈ RN×N and d ∈ R;
Output: the gain matrices F, L and K.

(a) Find nonsingular matrices P and Q such that

PEQ =
[

Ir 0
0 0

]
;

(b) Compute the matrices Â11 ∈ Rr×r, Â12 ∈ Rr×(n−r),

Â21 ∈ Rr×(n−r), Â22 ∈ R(n−r)×(n−r), B1 ∈ Rr×q,
B2 ∈ R(n−r)×q, C1 ∈ Rm×r C2 ∈ Rm×(n−r) by[

Â11 Â12

Â21 Â22

]
= PAQ,

[
B1

B2

]
= PB,

[ C1 C2 ] = CQ;

(c) Choose a matrix F such that det(Â22 + B2FC2) 6= 0;
(d) Compute the matrices A11, A12, A21, A22, Ā and B̄

by

A11 = Â11 + B1FC1, A12 = Â12 + B1FC2,

A21 = Â21 + B2FC1, A22 = Â22 + B2FC2,

Ā = A11 −A12A
−1
22 A21, B̄ = B1 −A12A

−1
22 B2;

(e) Compute Laplacian matrix LG by (3) and the non-
zero eigenvalues λi of LG , i =∈ V \ {1};

(f) If (Ā, C1) is detectable, choose a matrix L such that
Ā−LC1 is Schur stable. Otherwise, come back Step (c)
to choose F again;

(g) Choose a matrix K such that Ā− λiB̄K, i ∈ V \ {1}
are Schur stable. Then output the matrices F, L and
K.

Remark 3. According to Lemma 2, Assumption 1 guaran-
tees the existence of F in step (c) of Algorithm 1.
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Fig. 3. Trajectories of xi1 − x11, i = 2, 3 · · · , 6

4. NUMERICAL EXAMPLE

Consider SMAS (5) consisting of N = 6, where

E =

[ 1 0 0
0 1 0
0 0 0

]
, A =

[ 1 1 −1
−3.5 −1.5 1
−2 0 0

]
,

B = [ 1 0 1 ]T , C = [ 3 2 1 ] .
The networked communication delay d = 3 and elements of
the adjacency matrix A: a21 = a32 = a42 = a54 = a64 = 1,
otherwise aij = 0.

According to the steps in Algorithm 1, the following can
be obtained: F = 1, L = [ 1.3 −1.5 ]T , K = [ 3.5 2.7 ] .
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The simulation results are presented in Figs. 1-5, respec-
tively. Figs. 1 and 2 show state trajectories of NSMAS (5)
which indicates NSMAS (5) achieves causal consensus via
observer-based predictive protocol (16). Figs. 3-5 present
state differences of NSMAS (5) all tend to zero which im-
plies Problem 1 is solved by protocol (16) using Definition
4.

5. CONCLUSION

For NSMASs with directed topologies and constant com-
munication delays, the causal consensus problem via
observer-based predictive protocols has been solved. Due
to only the information of outputs is available through the
shared network with communication delays, an observer-
based NPCS has been employed to compensate commu-
nication delays actively. Based on the output feedback,
observer and NPCS, a novel protocol has been proposed
in this paper. Moreover, the consensus algorithm has been
provided to design this novel observer-based predictive
protocol. The provided simulation results have success-
fully demonstrated the effectiveness of compensation for
networked delays via the proposed novel protocol. How-
ever, it is worth noticing that the study of consensus for
SMASs with directed topologies and constant communi-
cation delays is a basic problem, which only serves as
a stepping stone to investigate time-varying networked
communication delays or more complicated topologies and
agent dynamics. The future research will study singular
multi-agent systems with time-varying networked delays,
stochastic or switching topologies, and agents described by
switching systems or hybrid systems, and so on.
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