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Abstract: Due to an increasing amount of large space debris and the attractive perspective of repairing or 
refilling valuable satellites on orbit, rendezvous missions are a growing field of interest. The 
worst case for a rendezvous is the collision of both satellites and therefore precautions have to be 
taken to avoid unwanted contact even in case of system outage. A new approach to real-time 
collision prediction incorporating navigation uncertainties and disturbances like airdrag and J2 
gravity in full 3d is presented which is even tuned for feasibility of on-board implementation. 
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1. INTRODUCTION 

With the growing number of uncontrollable satellites in Earth 
orbit the demand for in orbit satellite repair, refill, inspection 
or broken satellite disposal is increasing dramatically in 
recent times. For those servicing tasks rendezvous mission 
concepts with high degress of autonomy are under 
investigation by agencies around the world, e.g. DARPA’s 
Phoenix (see Barnhart (2012)), DLR’s DEOS (see Reintsema 
et al. (2010)) or USAF’s ARAPAIMA (see Harris et al. 
(2011)). 
The worst case for a rendezvous mission is a collision 
between the servicer satellite and the client satellite. This can 
e.g. happen if the servicer satellite has a malfunction and 
does not respond to commands for some time. One common 
approach is to use an e/i separation scheme described in 
Montenbruck et al (2004) for the approach trajectory which 
prevents the servicer from drifting into the client if control is 
lost. 
Many papers elaborate collision predictors for fly-by 
maneuvers, e.g. Akella and Alfriend (2000), but safety 
studies for rendezvous missions are rare. A discussion of this 
problem can be found in Slater et al (2006). 
To verify if the current motion state is safe for a certain 
number of orbits even under impact of navigation errors, a 
new method using a prediction of the navigation filter state 
and covariance for several orbits under free flight condition is 
developed. This new method uses full 3d information in 
contrary to most classical approaches to take into account the 
full shape and orientation of the uncertainty ellipsoid.  
Two tests for collision are implemented, first a test for the 
distance between the ellipsoid defined by the covariance and 
the client satellite and a test of the 3d integral of the client 
volume in the multivariate gaussian distribution given by the 
covariance. An iterative trajectory propagation approach 
together with the two step collision distance / probability test 
ensures the applicabilty of algorithm to an onboard 
implemention with limited computational effort. 

The organization of the paper is as follows: The rendezvous 
scenario and the investigated nominal trajectory is described 
in Section 2, followed by an overview of the proposed 
motion state safety monitoring concept in Section 3. The 
fundamental models and the collision prediction algorithms 
are described in detail in Section 4 and performance 
evaluation is given in Section 5. Finally the conclusion and 
future work is presented in Section 6. 

2. SCENARIO 

The focus for the application of the proposed algorithm is as 
follows, but this does not exclude application to different 
approach scenarios.  
“Client” describes the satellite that has to be serviced and is 
usually passive without the possibility to communicate and 
receive commands, which means e.g. relative GPS is not 
available. “Servicer” is the satellite that is going to 
repair/refill/remove the client satellite. 
In this scenario but without loss of generality both satellites 
are assumed to fly in a low earth orbit (LEO) at an altitude of 
about 400 km (where airdrag is one of the major trajectory 
disturbances) at a high inclination which makes the impact of 
J2 gravity a major disturbance as well. For the initial 
approach the separation between the two satellites is about 10 
km alongtrack in a presumably safe e/i separated formation, 
with the servicer flying behind the client satellite.  
After receiving the go command the servicer spirals towards 
the client, reducing the size of the e/i separation ellipse until 
it reaches a hold point in 1 km distance. This part of the 
trajectory (the far range approach) is the typical application 
for the proposed collision prediction method.  
In case of a malfunction of the servicer thrusters or a 
shutdown of the servicer navigation / guidance / control it is 
important that the servicer is not drifting into the client 
satellite. The e/i separation should prevent this, but in several 
cases, e.g. in case of bad navigation performance (e.g. due to 
bad illumination condition when using optical navigation) the 
amount of separation might be less then expected. 
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Therefore it is important to test the current motion state 
together with the currently estimated navigation performance 
for collision safety. 

3. MOTION STATE SAFETY MONITORING CONCEPT 

3.1 State and State Estimation Error Covariance Prediction 

Based on the current state, the relative free flying trajectory 
(assuming no maneuvers) for n orbits is calculated along with 
the estimated navigation error with a reasonable temporal 
resolution. The initial state x and initial estimated navigation 
error covariance is supplied by the navigation filter. The 
relative state is described by the relative orbital elements 
(ROE) of the two satellites. The state and the navigation error 
at any time can be evaluated using the solution to the ROE 
equations which allow inclusion of airdrag and J2 gravity. 
To reduce the computational effort, an iterative approach to 
find the time of highest collision risk is employed. After a 
rough scanning of the trajectory, the section with the highest 
risk is tested with a higher temporal resolution. 

3.2 Collision Tests 

At each time step the covariance ellipsoid and standard 
deviation sigma is evaluated and the minimum distance 
between the ellipsoid surface and the client is calculated as an 
indicator for a high collision risk. If the client is inside the 
ellipsoid the true probability is calculated using the integral 
of the client in the 3d probability density function defined by 
the current covariance. If the probability is above some 
threshold a collision warning is reported and eventually a 
critical abort maneuver initiated. 

4. MODELS AND ALGORITHMS 

4.1 Prediction and Test Process 

4.1.1 Orbital model 

The relative state of both satellites is described using the 
ROE formulation (see D’Amico 2010 for a good 
introduction) where the relative motion of the servicer with 
respect to the client is represented by six relative orbital 
elements similar to the six absolute Keplerian elements for 
Keplerian motion.  
The set of ROEs δa  is given by 

x y x ya e e i iδ δ δλ δ δ δ δ =  a  using the dimension-
less relative semi-major axis aδ , the relative mean longitude 
between the spacecrafts δλ , the relative eccentricities xeδ , 

yeδ  and the relative inclinations xiδ , yiδ (see D'Amico 
(2005)). The relative inclinations indicate the difference 
between the two absolute inclinations of the servicer’s and 
the clients’ orbits; the relative eccentricities indicate the 
difference between the two absolute eccentricities of the 
servicer’s and the clients’ orbits (see Montenbruck et al 
(2004)).  
The current relative state ( )tx  in local vertical local 
horizontal (LVLH) frame (+X along track, +Y perpendicular 
to orbital plane, +Z downwards) at any time can easily be 
calculated from the ROEs at some initial time using the 

position of the client on the orbit 0( ) du u t tω= = ∫  and

( ) 0cu cos ,su sin( ),u u u u u= = ∆ = − : 
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(1) 

A big advantage over the formulation of the state in LVLH 
frame is the handy consideration of the J2 gravity 
perturbation which becomes very complicated otherwise (see 
Hayman  (2012)). J2 is the impact of the earth’s oblateness 
effect which leads to a change of the orbit depending on the 
inclination. The scenario investigated here has a high 
inclination of about 85 degrees. The influence of the 
perturbation is in this case not to be neglected. The J2 effect 
pertubs the ROEs and the effect on the ROEs 

2Jδδ a  can be 
described by (see D'Amico (2010)): 
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The new introduced variables are the gravitational effect
( )2

2 / 2 /EJ R aγ = ⋅ , with the earth oblateness factor

2 0,00108J ≈ , the earth’s equatorial radius 6378137mER = , 
the absolute inclination of the client i , the relative perigee 

atan2( , )y xe eϕ δ δ= , the deviation of the relative perigee 
23 / 2 (5 cos ( ) 1)iϕ γ′ = ⋅ ⋅ − , the relative eccentricity vector 

2 2
x ye eδ δ δ= +e , the inclination of the orbit i  and the 

semi-major axis a . The second major disturbance is the 
differential airdrag of the satellites. The impact of the 
differential airdrag on the ROEs can approximately be 
included by (see D'Amico (2010)): 

( ) ( )
2 2 2

2 2

31/ 0 0 0 0
4d

B v u B v uu a
n n
ρ ρδδ ∆

′ ∆ ∆ ⋅ ∆ ∆ = ⋅ −
⋅  

a

 (3) 
This results in ( ) ( )

20( ) ( )P J du u u uδ δ δδ δδ ∆= + +a a a a . It 
has to be noted that the airdrag is only known roughly 
because of uncertainties in air density and reference areas.. 

4.1.2 Propagation  

The state at a certain time step is given by (1) and using the 
same transformation matrix the navigation error covariance at 
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a certain time step is given by (airdrag and J2 is only 
considered for the state propagation): 
 ROE LVLH ROE 0 LVLH ROE( ( )) cov( ( )) Tt t→ →=P x T x T  (4) 

The collision prediction period Sim .O Ot n t= ⋅  is given by the 
number of predicted orbits On  times the duration of one orbit 

02Ot πω= . To gain reliable information about the safety 
distance using numerical simulation, it is necessary to choose 
a very fine subdividision for the prediction time span. At each 
time step the collision risk has to be evaluated. The time 
between two consecutive steps is step /O sOt t n=  with the 

number of nominal steps per orbit sOn . With a larger stepping 
the risk to miss a potential collision is increased. Using a 
sufficient small step size the risk to miss a possible collision 
is dramatically reduced but still there.  

4.1.3 Iteration Process 

Depending on the state it is possible to reduce the number of 
steps per orbit dramatically: The distance d  from the client 
to the covariance ellipsoids surface over the time is used as 
an iteration indicator /d Kκ =  with an appropriate scaling 
factor K  (e.g. 5K = ). The step time depending on κ  is 
then calculated to ( )step Sim( ) / sO Ot t n nκ κ= ⋅ ⋅ . κ  is upper 
bounded to avoid missing a collision due to extremely large 
step sizes. But as mentioned above it is still possible to not 
find the global optimum for the shortest distance with this 
method. The iterative approach typically leads to a reduction 
of factor 20 while still having sufficient resolution at critical 
parts of the trajectory. 

4.2 Covariance Ellipsoid Test 

4.2.1 Covariance Ellipsoid  

The following is under the assumption that the covariance 
matrix is symmetric and diagonalizable. Only the matrix 
elements which represent the relative position states are 
considered (but the impact of the velocity states is already 
included in the propagation).  
With these ingredients, the covariance matrix is represented 
by an ellipsoid of the form 

2 2 2 2
1 1 2 2

2
3 3

2/ / / 1 0,λ λ λ+ + − =ρ ρ ρ  where iλ  are the 
eigenvalues and iρ  the normalized eigenvectors of equation, 
see Eberly (2011). The eigenvector iρ  points into the 
direction of the semi-principal axes of the ellipsoid. The 
length of the semi-principal axes is given by ikλ , with a 
constant k .  
The ellipsoid can now be interpreted as the servicer’s position 
estimation error-ellipsoid, where the probability, that the 
servicer is inside of this ellipsoid depends on the constant k . 
For a probability p of about 99,7% (corresponding to 3σ ) 

( )14.157 and 3,763k k= =  for the 3d case as shown in 

Maybeck (1979), yielding semi-principal axes 
3,763i i iλ=e ρ . Therefore the probability for the servicer 

not to be inside this ellipsoid is 0.3%.  

4.2.2 Distance Calculation Ellipsoid to Client  

In this section a new method will be introduced to verify that 
the client is in the error-ellipsoid of the servicer. Besides a 
pure yes/no indication information about the distance 
between the client and the servicer’s error-ellipsoids surface 
is calculated. This safety distance is e.g. used in the iteration 
process.  

4.2.3 Gradient Function 

This chapter describes the calculation of the shortest distance 
between the ellipsoid’s surface and the center of the client, 
which is based on the method shown by Eberly (2011). As 
the error-ellipsoid usually is skewed and displaced, the 
problem is transformed into a new frame, defined so that the 
semi-principal axis are aligned with the coordinate axis, with 
the associated extents ie , 0 1 2 0e e e≥ ≥ > . The position of 
the client transformed into the new frame and thus the point 
to be examined is given by: 

 [ ] [ ] ( )1
0 1 2 0 1 2, , , ,y y y −= = −Y ρ ρ ρ r  (5) 

where the eigenvectors iρ  and the relative position vector r  
are sorted, so that they fit the semi-principal axes ie . 

The surface of the error-ellipsoid is then given by 
2 2 2 2 2 2
0 0 1 1 2 2/ / / 1x e x e x e+ + =  with [ ]0 1 2, ,x x x=X  defining the 

ellipsoids surface. Based on the symmetry of the ellipsoid it 
is possible to restrict the problem into the first octant, 

0 1 20, 0, 0y y y≥ ≥ ≥ . The shortest vector from Y  to X  
must be perpendicular to the ellipsoids surface. This is given 
for any gradient 2 2 2 2 2 2

0 1 2 0 0 1 1 2 2( , , ) 2 / , 2 / , 2 /G x x x x e x e x e ∇ =   . 

The distance from X  to Y  is thus obtained as:  

 2 2 2 2 2 2
0 1 2 0 0 1 1 2 2( , , ) 2 / , / , /G x x x x e x e x eτ τ  − = ⋅∇ =  Y X  (6) 

for a scalar τ . The scalar τ  indicates the direction (inwards 
or outwards) and qualitative the length of the vector from Y  
to X . For 0τ >  the point Y  is outside the ellipsoid, 
otherwise it is inside (or on) the ellipsoid.  
Equation (6) rewritten for ix  gives: 

 ( ) [ ]2 2/ , 1..3i i i ix e y e iτ= + ∈  (7) 

The solution of equation (7) has to be inside the first octant 
(ellipsoid symmetry) and thus 2 2 2

0 1 2, ,e e eτ τ τ> − > − > − . It is 
sufficient to examine 2

2eτ > − , because 0 1 2e e e≥ ≥ are sorted. 

To calculate τ  with the result that X  is closest to Y , 
equation (7) is substituted into the ellipsoid equation: 

 
2 2 2

0 0 1 1 2 2
2 2 2
0 1 2

( ) 1 0
e y e y e yF

e e e
τ

τ τ τ
     

= + + − =     + + +    
 (8) 

The roots ( ) 0F τ =  in the interval 2
2( , )I eτ = − ∞  are the 

candidates for the searched constant τ . There are one or 
more roots on the interval Iτ  defined by the boundary 
conditions 

2
2

lim ( ) ,  lim ( ) 1
e

F F
ττ

τ τ
→∞→−

→ ∞ = − . On the interval Iτ  

the ellipse equation ( )F τ  is a continuous function and is at 
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least two times differentiable, with the first and second 
derivatives: 

 

2 2 2 2 2 2
0 0 1 1 2 2

2 3 2 3 2 3
0 1 2

2 2 2 2 2 2
0 0 1 1 2 2

2 4 2 4 2 4
0 1 2

2 2 2
( )

( ) ( ) ( )

6 6 6
( ) 0

( ) ( ) ( )

e y e y e yF
e e e

e y e y e yF
e e e

τ
τ τ τ

τ
τ τ τ

− − −′ = + +
+ + +

′′ = + + >
+ + +

 (9) 

This implies that ( )F τ  is a convex function on Iτ  thus the 
function has one unique root on the interval to be examined. 
This unique root yields the scalar τ . Thus the distance is 
calculated to: 

 

( ) ( ) ( )2 2 2
0 0 1 1 2 2

2 2 22 2 2
2 2 20 1 2
0 1 22 2 2

0 1 2

1 1 1

d x y x y x y

e e ey y y
e e eτ τ τ

= − + − + − =

     
− + − + −     + + +    

(10) 

Problems occur if 2y  is close to zero when lim ( )
t c

F τ
→

→ ∞  is 

not true unless 2
1c e= − . Thus it is not possible to guarantee a 

root in the interval 2
2( , )I eτ = − ∞ . This problem can be dealt 

with by a reduction to a 2D problem in such cases (not shown 
here).  

4.2.4 Root Finding Algorithm 

This chapter is about the root finding algorithm for ( )F τ  to 
get τ . A modified bisection method (MBM) is used followed 
by the standard Newton’s method (NM). Just using the fast 
NM cannot guarantee convergence: Using an initial condition 

0τ  with 0( ) 0F τ <  has the possibility to cause an unstable 
process, where τ  leaves the interval 2

2( , )I eτ = − ∞ . Starting 
with a 0 Iττ ∈  with 0( ) 0F τ >  guarantees convergence, 
because of the characteristics of a convex function on Iτ  (see 
Equation 9) and the boundary conditions. Figure 1 shows a 
typical graph of ( )F τ . 

 
Figure 1: Typical graph of ( )F τ  

The MBM is suited to determine such an initial condition 
because it is a stable root finding method in a bounded 
interval. 2

left 2eτ = −  is used as left initial value any 

right,1 leftτ τ>  is suitable. Here 2 2 2 2 2 2 2
right,1 2 0 0 1 1 2 2e e y e y e yτ = − + +

. The MBM calculates a new right value right,iτ  each step, 

until right ,( ) 0iF τ >  using ( )right , 1 left right , / 2i iτ τ τ+ = + . At each 

step the interval from leftτ  to ,right iτ  is divided into two 
intervals by computing the midpoint right , 1iτ + . In the standard 
method the subinterval which contains the root (identified by 

a conversion of the sign) is used. Here the MBM stops, as 
soon as the root is located in the right subinterval, where 

right , 1( ) 0iF τ + > . This makes sure the calculated value right , 1iτ +  
is left from the root and sufficient close to get guaranteed 
convergence with a NM with Newton right , 1iτ τ += . 

4.2.5 Collision Test 

Finally the calculated distance between ellipsoid and client is 
evaluated and if the result is that the client is inside the 
ellipsoid, the following probability test is engaged. 

4.3 Probability Test 

The actual collision probility is computed by integrating a 
multivariate gaussian distribution defined by the servicer 
covariance and state. The integration volume is a box with 
dimensions given by the client and servicer satellite sizes and 
located at the origin.  
This results in an approximation of the probability for the 
servicer hitting the client. Solving the integral is done using a 
triple integral approximation over the gaussian multivariate 
distribution function as described in Dan (2013).  
This is a time consuming process but has to be computed 
only infrequently (when an ellipsoid collision is detected). If 
the collision probability is above some specific threshold (i.e. 
1e-5) a warning is sent to the vehicle management. If a 
warning is triggered n consecutive times in a row the vehicle 
management commands a critical abort maneuver to move 
the servicer satellite to a predefined safe e/i separation. 

5. PERFORMANCE 

Performance of the collision prediction algorithm is 
demonstrated by testing a typical rendezvous approach for 
motion state safety in a complete and verified Matlab 
Simulink based satellite simulator developed by Astrium. A 
high order gravity model (30th order) and all major 
disturbance effects (i.e. airdrag which has the largest impact 
for an orbit altitude of 400km) are included. 

 
Figure 2: Example trajectory 

After a short formation flying phase a drift motion is initiated 
and the servicer starts to approach the client. After 18000 
seconds the servicer closed up to about 4 km behind the client 
as shown in Figure 2. The size of e/i separation is reduced 
during approach.  
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The initial navigation state and the initial covariance for each 
simulation step is taken from the navigation filter which is 
implemented as an absolute dynamics (ECI) based unscented 
kalman filter as shown in Posch et al. (2012). 

 
Figure 3: Safety Ellipsoid check fails 

 
Figure 4: Safety probability check fails 

Figure 3 and Figure 4 show the warning status of the two 
safety tests. As can be seen, the ellipsoid check fails during 
the maneuver to initiate the drift motion and then again when 
getting closer. The second test for probability shows 
acceptable collision probability for the first maneuver but 
throws a warning when getting closer. Figure 5 shows the 
minimum distances of ellipsoid to client, servicer to client 
and the maximum probability over time (which means the 
minimum / maximume for each tested time step). It has to be 
noted that the pure minimum servicer to client distance is no 
sufficient indicator for collision probability as it does not 
include the effect of navigation errors. 

 
Figure 5: Safety test distances and probability 

The safety test results for three time steps (tsim) are shown in 
more detail now. 

5.2 No Collision 

This shows the prediction result for the no-warning case 
during drifting at time step 16200.  

 
Figure 6: Distances (no collision case) tsim = 16200 

Figure 6 shows the evolution of the distance between 
ellipsoid and client and servicer and client over the prediction 

horizon of 8 orbits. It can be seen that the distance between 
ellipsoid and client is getting very small, but still above 0. 

 
Figure 7: Collision prob. (no collision case) tsim = 16200 

The collision probability is therefore always very low as can 
be seen in Figure 7. 

 
Figure 8: Trajectory and cov. (no collision case) tsim = 16200 

Figure 8 is a visualization of the covariance ellipsoid 
evolution (green) and the trajectory (black) for 8 orbits in 2d 
(LVLH x vs z). It can be seen that the navigation error 
becomes stretched primarily in along track direction. No hit 
is reported. 

5.3 Ellipsoid warning, probability ok 

This shows the prediction result for case when the ellipsoid 
test throws a warning while the probability is still ok, for 
example in the beginning at time step 1200 where the initial 
navigation error is quite big. 

 
Figure 9: Trajectory and cov. (ellipsoid case) tsim = 1200 

 
Figure 10: Distances (ellipsoid case) tsim = 1200 

 
Figure 11: Collision probability (ellipsoid case) tsim = 1200 

As in the previous section, Figure 9 visualizes the evolution 
of the trajectory and the covariance over the prediction 
horizon. This time a collision warning for the ellipsoid is 
thrown (red).  
Figure 10 displays only the relevant time period of the 
prediction which reports a hit after about 4 orbits. The 
maximum probability in this case is evaluated to about 8e-7, 
therefore no collision warning is reported (Figure 11).  
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5.4 Collision 

This shows the prediction result for the case when both 
checks fail, e.g. in the end of the approach at tsim = 18000. 

 
Figure 12: Distances (collision warn case) tsim = 18000 

 
Figure 13: Collision probability (collision case) tsim = 18000 

Figure 12 shows the distances which indicate a ellipsoid hit 
after about 1.5 orbits. Figure 13 shows to probability which 
crosses the threshold and the prediction is immediately 
terminated (last evaluated step not shown).  

 
Figure 14: Trajectory and cov xz (collision case) tsim = 18000 

 
Figure 15: Trajectory and cov yz (collision case) tsim = 18000 
Figure 14 and Figure 15 show the prediction (in x-z and y-z 
planes) of the trajectory and the covariance ellipsoid which 
indicates a hit after 1.5 orbits. 

5.5 Computational Effort 

Several measures were undertaken to limit demands on the 
computation hardware: Using the direct solution with ROEs, 
employing an iterative approach for the trajectory testing, 
using a two step method (ellipsoid distance and probability 
integral) for the collision test and using fast methods to 
determine the ellipsoid distance (modified bisect and 
newton).  
All that leads to a quite limited computational effort which 
can be further reduced by distributing the calculations for the 
collision test over a longer time span (e.g. evaluate every 
minute or before and after maneuvers or illumination 
changes). Evaluation for 8 orbits takes < 0.01s on one i7 core 
(~25k MIPS) which leads to ~2.5s execution time on a 
LEON3-FT (~100 MIPS, see Gaisler (2011)) or about 4% 
load when evaluated in one minute intervals. Thus it can be 
computed easily along with other GNC functionality and 
Onboard implementation is therefore feasible. 

6. CONCLUSION 

A new method for collision warning was presented that fits 
the requirements of current on-orbit rendezvous missions. It 
uses full 3d information and considers major disturbances 
like J2 and differential airdrag. Applying several methods to 
reduce computational effort gives feasibility of an onboard 
implementation.  
Future work is on safety verification of orbit maneuver 
commands before they are executed and prohibiting them if 
they lead to unsafe conditions with collision risk. 
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