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Abstract: This paper discusses the model reference adaptive control problem for ionic polymer-metal
composite (IPMC) actuators. Firstly, a mathematical model of the IPMC actuator is constructed as
a stable second order dynamical system preceded by a hysteresis representation. Then, an adaptive
controller is synthesized for the IPMC actuator. The proposed control law ensures the global stability of
the controlled IPMC system, and the position error of IPMC actuator can be controlled by choosing the
design parameters. Experimental results confirm the effectiveness of the proposed method.

1. INTRODUCTION

Ionic polymer-metal composites (IPMCs) form an important
category of electroactive polymers and have actuation capabil-
ity known as artificial muscles (Nemat-Nasser and Li, 2000;
Shahinpoor and Kim, 2001; Bar-Cohen, 2004). An IPMC sam-
ple typically consists of a thinion-exchange membrane, chem-
ically plated on both surfaces with a noble metal as electrode.
Transport of hydrated cations and water molecules within an
IPMC under an applied voltage and the associted electrostatic
interactions lead to bending motions of the IPMC, and hence
the actuation effect. Fig. 1 illustrates the mechanism of the
IPMC actuation. Because of the softness, resilience, biocom-
patibility, and the capbility of producing large deformation
and large force under a low action voltage, IPMCs are very
attractive for many applications in the fields of biomedical
devices and biomimetic robots (Chen and Tan, 2008; Chen and
Tan, 2010). Microfabrication of IPMC has also been extends
to micro- and nanomanipulation domains. However, the main
disadvantage is the hysteresis phenomenon between the applied
electric voltage and the displacement (Fig. 2). Due to the un-
differentiable and nonmemoryless character of the hysteresis,
it causes position errors which limit the operating speed and
precision of IPMCs. The development of control techniques to
mitigate the effects of hysteresis has been studied for decades
and has recently re-attracted significant attention. Interest in
studying dynamic systems with actuator hysteresis is motivated
by the fact that they are nonlinear system with nonsmooth non-
linearities for which traditional control methods are insufficient
and thus require development of alternate effective approaches.

About the challenge of the problem, the thorough characteri-
zation of the hysteresis forms the foremost task (Banks, 2000;
Guyer, et al, 1994; Oh and Bernstein, 2007; Webb, et al, 1998).
Appropriate hysteresis models may then be applied to describe
the nonsmooth nonlinearities for their potential usage in for-
mulating the control algorithms. The basic idea consists of the
modeling of the real complex hysteresis nonlinearities by the
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Fig. 1. Mechanism of IPMC actuation
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Fig. 2. The relation between the applied electric voltage and the
displacement of IPMC actuator

weighted aggregate effect of all possible so-called elementary
hysteresis operators. Elementary hysteresis operators are non-
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complex hysteretic nonlinearities with a simple mathematical
structure. The popular models are Preisach model (Croft, et al,
2001; Cross, et al, 2001; Mayergoyz, 1991; Natale, et al, 1991),
Prandtl-Ishlinskii (PI) model (Brokate and Sprekels, 1996; Vis-
intin, 1994), and Krasnosel’skii-Pokrovskii (KP) model (Kras-
nosel’skii and Pokrovskii, 1989; Visintin, 1994). The Preisach
model and KP model are parameterized by a pair of thresh-
old variables (Mayergoyz, 1991), whereas the PI model is a
superposition of elementary stop (or play) operators which are
parameterized by a single threshold variable.

Upon the developments in various hysteresis models, it is by
nature to seek means to fuse these hysteresis models with the
available control techniques to mitigate the effects of hysteresis,
especially when the hysteresis is unknown, which is a typical
case in many practical applications. However, the results on
the fusion of the available hysteresis models with the avail-
able control techniques is surprisingly spare in the literature
(Su, et al, 2005; Tan and Baras (2004); Tao and Kokotovic,
1995)). The most common approach in coping with hysteresis
in the literature is to construct an inverse operator, which is
pioneered by Tao and Kokotovic (1995), and the reader may
refer to, for instance Moheimani and Goodwin (2001), Iyer and
Shirley (2004), Krejci and Kuhnen (2001), Kuhnen and Janocha
(1999), and the references therein. Essentially, the inversion
problem depends on the phenomenological modeling methods
(for example, using Preisach models). Due to multi-valued
and non-smooth features of hysteresis, the inversion always
generates errors and possesses strong sensitivity to the model
parameters. These errors directly make the stability analysis of
the closed-loop system very difficult except for certain special
cases. Another approach, instead of directly constructing the
inversion from the hysteresis model, is an approximate implicit
inversion. This method, associated with the preceded system,
was introduced for convenience of the stability analysis for
the closed-loop system (Chen, et al, 2008). The approximate
implicit inversion is obtained by searching for an optimal value
of the inversion based on a performance index. However, unlike
the direct inverse construction approach, this approximate im-
plicit inversion technique is dependent on the preceded system
(Chen, et al, 2008). The result is also somewhat preliminary as
it is illustrated only for uncertain linear discrete-time systems.

In this paper, a new model for the IPMC actuator is proposed
based on phenomenological method. The model is a stable
second order dynamical system preceded by a PI hysteresis
representation. An adaptive controller is synthesized for the
IPMC actuator. The advantage is that only the parameters in the
formulation of the controller need to be adaptively estimated,
and the real values of the parameters in the IPMC model need
to be neither identified nor measured. The proposed control law
ensures the global stability of the controlled IPMC actuator,
and the position error of IPMC actuator can be controlled by
choosing the design parameters. Experimental results confirm
the effectiveness of the proposed method.

2. PROBLEM STATEMENT

In this paper, the robust control for IPMC actuator shown in Fig.
3 is studied. By observing the measured input-output relation
in Fig. 2 (where the input is v(t) = 2sin(2πt)

1+ 2
7 t

, it can be seen

that there exists a typical hysteretic behavior between the input
voltage and output displacement. In the following, a relatively

simple model will be presented to describe the IPMC actuator
in order to be usefule in the control design.

IPMC

Actuator

Sensor

Electrode

Fig. 3. Experimental setup of IMPC actuator

2.1 Prandtl-Ishlinskii Model

In this subsection, a relatively simple hysteresis model ”Prandtl-
Ishlinskii (PI) operator” will be adopted because of its ability
of describing the complicated hysteresis. The basic element of
the PI operator is the so-called play operator. For w ∈ R̄ and
arbitrary piece-wise monotone function v(t), define fr : R̄ ×
R̄ → R̄ as

fr(v,w) = max(v− r, min(v+ r,w)) (1)

where R̄ denotes the set of real number. For any initial value
u−1 ∈ R̄ and r ≥ 0, the play operator Fr[∗;u−1](t) is defined as

Fr[v;w−1](0) = fr(v(0),w−1), (2)

Fr[v;w−1](t) = fr(v(t),Fr[v](ti)) (3)

for ti ≤ t ≤ ti+1, where the function v(t) is monotone for ti ≤ t ≤
ti+1 . The play operator is mainly characterized by the threshold
parameter r ≥ 0 which determines the height of the hysteresis
region in the (v,u) plane.

For simplicity, denote Fr[v;w−1](t) by Fr[v](t) in the following
development of this note. It should be noted that the play
operator Fr[v](t) is rate-independent.

Based on the above definitions, the PI hysteresis model is then
defined as

u(t) =
∫ ∞

0
p(r)Fr[v](t)dr (4)

where p(r) is the density function which is usually unknown,
satisfying p(r) ≥ 0 with

∫ ∞
0 rp(r)dr < ∞. Since the density

function p(r) vanishes for large values of r, it is reasonable
to assume that there exists a constant R such that p(r) = 0 for
r > R. Thus, model (4) gives

u(t) =
∫ R

0
p(r)Fr[v](t)dr. (5)

It should be noted that PI model (5) indeed generates the
hysteresis curves and are well-suited to describe complicated
hysteretic behaviors.

Fig. 4 shows the hysteresis curves generated by PI model for
p(r) = e−0.1(r−1)2

, v(t) = 2sin(2πt)
1+ 2

7 t
, r ∈ [0,20], t ∈ [0,3].
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Fig. 4. Hysteresis curves of PI model

2.2 Model of IPMC Actuator and Control Purpose

By observing Fig. 4, it can be seen that the PI model is still
not capble to describe the hysteresis behavior existing in the
IPMC actuator (see Fig. 2), especially at the instants when the
input changes its monotonous properties (i.e. from increasing
to decsreasing, or from decreasing to increasing). For this
purpose, a filter G(s) = 1

s2+a1s+a2
will be added to the output

of the PI hysteresis to smoothen the sharpness of the PI model
(Fig. 5), where a1 and a2 are constants and s2 + a1s + a2 is
a Hurwitz polynomial. In this figure, y(t) ∈ R̄ represents the
displacement of the IPMC actuator, u(t) is called the output
of the PI hysteresis, v(t) is the voltage applied to the IPMC
actuator.

PI Hysteresis
y(t)u(t)v(t)

21

2

1

asas ++

Fig. 5. Model of IPMC actuator

Fig. 6. The relation between v(t) and y(t)

Fig. 6 shows the relation between v(t) and y(t) with v(t) =
2sin(2πt)

1+ 2
7 t

, p(r) = e−0.1(r−1)2
, r ∈ [0,20], t ∈ [0,3], a1 = 1 and

a2 = 2. It can be seen that the characteristic behavior of Fig. 6
is very similar to that of Fig. 2. Thus, the scheme in Fig 5 can be
considered to be well-suited to describe the hysteretic behavior
in IPMC actuator. Therefore, IPMC actuator can be modelled
as follows.

(s2 +a1s+a2)[y](t) = u(t) (6)

u(t) =
∫ R

0
p(r)Fr[v](t)dr (7)

It should be noted that the parameters a1 and a2, and the density
function p(r) are all unknown in practice.

The objective is to design an adaptive controller so that the input
voltage v(t) can drive the displacement y(t) of IPMC actuator
to track a desired position ym(t) of a reference model described
by

Pm(s)[ym](t) = rm(t) (8)

where rm(t) is the uniformly bounded input of the reference
model, Pm(s) is a monic stable polynomial with degree 2
described as

Pm(s) = s2 +am1s+am2 (9)

where am1 and am2 are parameters.

3. ADAPTIVE CONTROL DESIGN

3.1 Some Preliminaries

To begin with, introduce a positive real number Λ. Now, con-
sider the polynomial equation

θ1(s2 +a1s+a2)+(θ2 +θ20(s+Λ))

= (s+Λ)(s2 +a1s+a2)−Pm(s)) (10)

with θ1 ∈ R̄, θ2 ∈ R̄, and θ20 ∈ R̄. It is well known that the
parameters θ1, θ2, and θ20 exist uniquely. Operating both sides
of (10) on y(t) yields

θ1u(t)+(θ2 +θ20(s+Λ))[y](t)
=(s+Λ)[u](t)− (s+Λ)Pm(s)[y](t) (11)

By observing that the polynomial s + Λ is stable, the relation
between the input and the output of the linear plant can also be
expressed as

u(t) = θ1
1

s+Λ
[u](t)+θ2

1
s+Λ

[y](t)+θ20y(t)+Pm(s)[y](t)

(12)

where an exponential decaying term is omitted. Thus, by sub-
stituting PI model (5) into (12), it gives∫ R

0
p(r)Fr[v](t)dr =

∫ R

0
p(r)θ1

1
s+Λ

[Fr[v]](t)dr

+θ2
1

s+Λ
[y](t)+θ20y(t)+Pm(s)[y](t) (13)

Therefore, it can be easily seen that the exponential output
tracking of the linear plant can be achieved if the design input
v(t) to the hysteresis is chosen such that the next equation holds∫ R

0
p(r)Fr[v](t)dr =

∫ R

0
p(r)θ1

1
s+Λ

[Fr[v]](t)dr

+θ2
1

s+Λ
[y](t)+θ20y(t)+ rm(t) (14)
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3.2 Adaptive Control Algorithm

Since the transfer function is unknown, the parameters θ1, θ2,
and θ20 are all unavailable. Thus, the control input v(t) which
should satisfy (14) can not be determined. It should be noted
that the density function p(r) is also unknown.

In order to derive the control input v(t), the unknown param-
eters needed in the design will be estimated by adaptive algo-
rithms.

Suppose that the estimates of p(r), p(r)θ1, θ2 and θ20 are
respectively p̂(r, t), θ̂1(r, t), θ̂2(t) and θ̂20(t) at instant t, where
the estimate p̂(r, t) should be designed such that p̂(r, t) ≥ 0 for
all r and t.

With these estimates, by observing (14), the design task is
to find a signal v(t) as an input of the hysteresis so that the
following equation holds∫ R

0
p̂(r, t)Fr[v](t)dr =

∫ R

0
θ̂1(r, t)

1
s+Λ

[Fr[v]](t)dr

+θ̂2(t)
1

s+Λ
[y](t)+θ̂20(t)y(t)+rm(t) (15)

For simplicity, define

W (t) =
∫ R

0
θ̂1(r, t)

1
s+Λ

[Fr[v]](t)dr

+ θ̂2(t)
1

s+Λ
[y](t)+θ̂20(t)y(t)+rm(t) (16)

Now, we try to find a virtual signal v̄(t) which should satisfy∫ R

0
p̂(r, t)Fr[v̄](t)dr = W (t) (17)

Let [vmin,vmax] be the practical input range of the IPMC actua-
tor, which is a subset of [−R,R]. Suppose W (t) is monotonic on
the interval ti ≤ t ≤ ti+1. For each t ∈ [ti, ti+1], define∫ R

0
p̂(r, t)Fr[vmax](t)dr = W̄sat(t), (18)∫ R

0
p̂(r, t)Fr[vmin](t)dr = W sat(t) (19)

Since p̂(r, t) ≥ 0, it holds

W sat(t) ≤
∫ R

0
p̂(r, t)Fr[v](t)dr ≤ W̄sat(t) (20)

for vmin ≤ v(t) ≤ vmax.

Without loss of generality, suppose W (t) is monotonically
increasing on the interval ti ≤ t ≤ ti+1. For each t ∈ [ti, ti+1],
define a new variable v̄µ(t) with v̄0(t) = v(ti) and another new
variable Wµ(t)

v̄µ(t) = v̄0(t)+ µ, (21)

Wµ(t) =
∫ R

0
p̂(r, t)Fr[v̄µ ](t)dr, (22)

where µ is a parameter varying in the range µ ∈ [0,vmax−vmin].

If W (t) > W̄sat(t), let v̄(t) = vmax.

If W (t) < W sat(t), let v̄(t) = vmin.

If W sat(t) ≤ W (t) ≤ W̄sat(t), the value of v̄(t) is derived from
the following algorithm.

Step 1: Let µ increase from 0.
Step 2: Calculate v̄µ(t) and Wµ(t). If Wµ(t) < W (t), then let

µ increase continuously and go to Step 2; Otherwise, go to
Step 3.

Step 3: Stop the increasing of µ , memorize it as µ0 and define
v̄(t) = v̄µ0(t).

For t = 0, v̄0(0) can be defined as v̄0(0) = vmin. The calculated
v̄(t) is called the “implicit inversion”of W (t).

With the above implicit inversion, the adaptive control v(t) as
an input of the hysteresis can thus be chosen as

v(t) = v̄(t) (23)
Therefore, the determined adaptive control v(t) satisfies (15) if
W sat(t) ≤W (t) ≤ W̄sat(t).

To apply the adaptive control law (23), it is necessary to develop
algorithms to estimate the required parameters p̂(r, t), θ̂1(r, t),
θ̂2(t) and θ̂20(t) in (15). Define

e(t) = y(t)− ym(t) (24)

If W sat(t) ≤W (t) ≤ W̄sat(t), from (8), (13) and (15), it yields

e(t) =
1

Pm(s)
[
−

∫ R

0
p̃(r, ·)Fr[v]dr

+
∫ R

0
θ̃1(r, ·)

1
s+Λ

[Fr[v]]dr + θ̃2
1

s+Λ
[y]+ θ̃20y

]
(t) (25)

with p̃(r, t) = p̂(r, t)− p(r), θ̃1(r, t) = θ̂1(r, t)− p(r)θ1, θ̃2(t) =

θ̂2(t) − θ2 and θ̃20(t) = θ̂20(t) − θ20, where an exponential
decaying term is omitted.

Now, introduce a first order monic stable polynomial s+L such
that s+L

Pm(s) is strictly positive real, and define a new error ε(t) as

ε(t) = e(t)+
s+L
Pm(s)

[
ξ −κεm2

0

]
(t) (26)

where κ > 0 is an arbitrary constant, and

ξ (t) = −
∫ R

0
p̂(r, t)

1
s+L

[Fr[v]](t)dr− 1
s+L

[ζ ](t)

+
∫ R

0
θ̂1(r, t)

1
(s+L)(s+Λ)

[Fr[v]](t)dr

+ θ̂2(t)
1

(s+L)(s+Λ)
[y](t)+ θ̂20(t)

1
s+L

[y](t), (27)

ζ (t) = −
∫ R

0
p̂(r, t)Fr[v](t)dr

+
∫ R

0
θ̂1(r, t)

1
s+Λ

[Fr[v]](t)dr

+ θ̂2(t)
1

s+Λ
[y](t)+ θ̂20(t)y(t), (28)

m0(t) =
(∫ R

0

∣∣∣∣ 1
(s+L)(s+Λ)

[Fr[v]](t)
∣∣∣∣2

dr

+
∫ R

0

( 1
s+L

[Fr[v]](t)
)2

dr +ξ 2(t)

+
∣∣∣∣ 1

(s+L)(s+Λ)
[y](t)

∣∣∣∣2 +
( 1

s+L
[y](t)

)2
) 1

2
(29)

The parameter adaptation laws with projection are chosen as
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˙̂p(r, t) =



γ0ε(t)
1

s+L

[
Fr[v]

]
(t) i f p̂(r, t) > 0

γ0ε(t)
1

s+L

[
Fr[v]

]
(t) i f p̂(r, t) = 0 and

ε(t)
1

s+L

[
Fr[v]

]
(t) > 0

0 otherwise
(30)

˙̂θ1(r, t) = −Γε(t)
1

(s+L)(s+Λ)
[Fr[v]](t), (31)

˙̂θ2(t) = −Bε(t)
1

(s+L)(s+Λ)
[y](t), (32)

˙̂θ20(t) = −βε(t)
1

s+L
[y](t) (33)

where γ0 > 0, Γ = ΓT > 0, B = BT > 0, β > 0 are the
adaptation gains.

Lemma 1: If W sat(t) ≤W (t) ≤ W̄sat(t), the adaptive laws (30)-
(33) guarantee that ε(t) ∈ L2 ∩ L∞, ε(t)m0(t) ∈ L2, p̂(r, t) ∈
L∞, θ̂1(r, t)∈L∞, θ̂2(t)∈L∞, θ̂20(t)∈L∞, ˙̂p(r, t)∈L2, ˙̂θ1(r, t)∈
L2, ˙̂θ2(t) ∈ L2, and ˙̂θ20(t) ∈ L2.

Proof: If W sat(t) ≤W (t) ≤ W̄sat(t), then, from (25) and (26), it
gives

ε(t) =
s+L
Pm(s)

[σ ](t) (34)

with

σ(t) =
∫ R

0
θ̃ T

1 (r, t)
1

(s+L)(s+Λ)
[
Fr[v]

]
(t)dr

+ θ̃ T
2 (t)

1
(s+L)(s+Λ)

[y](t)+ θ̃20(t)
1

s+L
[y](t)

−
∫ R

0
p̃(r, t)

1
s+L

(s)
[
Fr[v]

]
(t)dr−κε(t)m2

0(t). (35)

Let the controllable realization of L(s)
Pm(s) be (A,b,c) and xε(t) be

its state variable. Then, from (34), it yields

ẋε(t) = Axε(t)+bσ(t), ε(t) = cxε(t). (36)

Since s+L
Pm(s) is strictly positive real, it follows from the Lefschetz-

Kalman-Yakubovich Lemma that there exist real constant ma-
trices P = PT > 0, Q = QT > 0 such that

AT P+PA = −Q, Pb = cT . (37)

Consider the positive definite function

V (t) =xT
ε Pxε +

∫ R

0

1
γ0

p̃2(r, t)dr +
∫ R

0
θ̃ T

1 (r, t)Γ−1θ̃1(r, t)dr

+θ̃ T
2 (t)B−1θ̃2(t)+

1
β

θ̃ 2
20(t). (38)

By differentiating V (t), the lemma can be proved.

Theorem 1: If W sat(t) ≤ W (t) ≤ W̄sat(t), all the signals in
the closed-loop system consisting of the linear plant (6), the
hysteresis (7), the reference model (8), the controller (23) and
the adaptive laws (30)-(33) are bounded and the output tracking
error e(t) = y(t)− ym(t) satisfies e(t) ∈ L2 and lim

t→∞
e(t) → 0.

Proof: Due the page limitation, the proof is omitted.

4. EXPERIMENTAL RESULTS

The experimental setup of IMPC actuator is shown in Fig. 3.

The control purpose is to drive the output y(t) of the nano-
positioner to track the output ym(t) of the reference model
described by (s+1)(s+2)[ym](t) = rm(t).

In the adaptive control experiment, Λ(s) is chosen as Λ(s) = s+
3, L(s) is chosen as L(s) = s+1.5, the initial values are chosen
as p̂(r,0) = 0.1, θ̂1(r,0) = 0.2, θ̂2(0) = 0.2, θ̂20(0) = 0.2.

The sampling period is chosen as 0.025 s. The experiment is
conducted for the reference input rm(t) = sin(0.4t). The desired
output ym(t) is shown in Fig. 7.

The design parameters are shown in Table.1. The estimated
parameter θ̂1(r, t) for r = 0.2 is shown in Fig. 8. For other values
of r, the convergence has also been confirmed. Similarly, the
convergences of other parameters have also been observed. The
control input is shown in Fig. 9. The output tracking error is
shown in Fig. 10. It can be seen that the output convergence is
confirmed in a relatively short time and the steady state error is
within 0.01mm.

It should be noted that good output trackings for the cases that
rm(t) is constant or piecewise constant have also been verified
by experimental results.

Table 1. Control Parameter Values

Parameters Values
R 20
L 1.5
Γ 800
γ0 800
B 800
β 10
κ 0.01

0 5 10 15 20

-0.5

0

0.5

Time[s]

y
m
(t
)

Fig. 7. Desired output ym(t)

5. CONCLUSION

This paper has discussed the adaptive control for IPMC actua-
tor. A simple continuous-time model which is a stable second
order dynamical system preceded by a PI hysteresis represen-
tation has been formulated for the IPMC actuator. The model
reference adaptive control has been synthezised based on the
obtained mathematical model, and it can also ensures the sta-
bility of the controlled IPMC system. The high precision output
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Fig. 8. Estimated parameter θ̂1(r, t) for r = 0.2
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Fig. 9. The control input v(t)
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Fig. 10. Output tracking error y(t)− ym(t)

tracking control has been confirmed by experimental results
for low frequency desired signals. The high frequency output
tracking control is expected to be conducted in the future.
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