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A.C.P.M. Backx ∗

∗ Electrical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands (e-mail: n.q.tran@tue.nl;

j.scholten.1@student.tue.nl; l.ozkan@tue.nl; a.c.p.m.backx@tue.nl).

Abstract: A two-layer approach for the auto-tuning of model predictive control (MPC) is
proposed. The bottom layer computes the weighting matrices of the cost function from a desired
closed-loop bandwidth while the top layer aims at finding the optimal bandwidth. This optimum
corresponds to the optimal balance between the robustness and nominal performance of the
closed-loop system. To find the optimal bandwidth, the extremum seeking (ES) algorithm, a
form of non-model-based adaptive optimisation, is proposed. The auto-tuning approach is tested
on a binary distillation column model. It is shown that the auto-tuning approach enables the
MPC system to track its optimal closed-loop bandwidth and therefore obtain the minimum
output variance.
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1. INTRODUCTION

Model Predictive Control (MPC) has been widely accepted
as the control strategy for multiple input/multiple output
(MIMO) systems and for processes with constraints. MPC
usually solves an optimization problem with a quadratic
cost function online. Like any other model-based operation
support systems, the performance of MPC depends on
the accuracy and appropriate maintenance of the model.
Model-plant mismatch will degrade the performance of
MPC if proper supervision is not conducted. Therefore, the
influence of modelling uncertainty on MPC is of significant
importance.

Apart from modelling and identification advances, the
tuning of MPC can also be considered as a method to
handle the robustness of the system. In literature, there
have been several studies which dealt with modelling
uncertainty in the context of controller tuning. Lee and
Yu (1994) proposed a tuning method consisting of two
steps: The first step is to tune the controller for nominal
stability; the second step is to de-tune the controller by
adjusting the Kalman filter gain and the covariance of
the disturbance. The de-tuning method is based on the
analysis of the sensitivity and complementary sensitivity
functions in the frequency domain. A number of works
(Rowe and Maciejowski (2000b), Rowe and Maciejowski
(2000a), Shah and Engell (2011) and Tran et al. (2014))
investigated the matching of MPC to an H∞ controller,
so that the MPC can inherit the robustness of the H∞
controller when constraints are inactive. On the other
hand, Han et al. (2006) used min-max algorithms when
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the parametric model uncertainty is considered. Despite
these research efforts in tuning of MPC in literature, the
tuning strategies in practice that considered robustness
often result in a conservative performance, which is too far
from the optimal balance between robustness and nominal
performance. Therefore, this research focuses on an auto-
tuning method which finds the optimal tuning to achieve
this balance.

Auto-tuning methods studied for MPC usually hinge upon
minimising a selected performance index (Garriga and
Soroush (2010)). In Al-Ghazzawi et al. (2001), every time
the predicted closed-loop response is expected to exceed
the specification bounds (e.g. 5% of the set-point value),
the auto-tuning algorithm is turned on to adjust tuning
parameters and steer the response into the limits. The
predicted violation of the bounds is then considered as
the performance index of the auto-tuning method. In
Lee et al. (2008), the genetic algorithm (GA) and fuzzy
decision making are used to satisfy different performance
preferences such as the level of overshoot or the settling
time of controlled outputs. Suzuki et al. (2007) employs
the particle swarm optimisation (PSO) to minimise the
performance index, which covers the steady-state error,
settling time, rising time and the maximum value of the
outputs at the end time.

In process industry, the main purpose of MPC is to reduce
the variance of the output and therefore to operate the
system closely to its constraint. Hence, in this work, the
key performance indicator of the auto-tuning method is
the output variance. The output variance is also considered
in the tuning procedure of Huusom et al. (2012) and Olesen
et al. (2013). In Tran et al. (2013), Tran et al. (2012) and

Özkan et al. (2012), it is shown that in the presence of
model-plant mismatch and measurement noise, there ex-
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ists an optimal closed-loop bandwidth which corresponds
to the minimum output variance. Hence, the aim of the
auto-tuning method is to find this optimal closed-loop
bandwidth which is determined by the weighting factors
in the cost function. To this end, the extremum seeking
(ES) method which can find the minimum of an unknown
function is investigated.

ES is a form of non-model-based adaptive optimisation. It
belongs to the class of gradient-based optimisation tech-
niques and deals with systems that have an unknown in-
put/output relation, but are known to have an extremum.
The basic idea is to perturb the input of the system with
a so-called dither signal and multiply the system output
with the same dither signal. The output of this multipli-
cation is an estimate of the system’s gradient and this
gradient estimate is used to move the input parameter to
its extremum, which minimises (or maximises) the output
of the system. The method has existed since the 1920s,
was extensively investigated in the 1950s and 1960s and
has gained renewed interest since the beginning of the
new millennium (Stanković and Stipanović (2010) and Tan
et al. (2010)). It has been used successfully for PID tuning
(Killingsworth and Krstić (2006)), maximum power point
tracking of a photo-voltaic system (Levya et al. (2011)),
tuning the parameters of mobile sensors (Stanković and
Stipanović (2010)), and many other applications (Tan
et al. (2010)).

The remainder of this paper is organised as follows. Section
2 provides background information on MPC and intro-
duces the two-layer auto-tuning method. Section 3 intro-
duces and analyses the ES algorithm proposed. Section 4
provides the method to select the tuning parameters based
on the link between the closed-loop bandwidth and the
penalty weights. Section 5 illustrates the method with a
binary distillation column. Conclusion and recommenda-
tions are given in Section 6.

2. BACKGROUND INFORMATION

A model describing the behaviour of the plant is at the
heart of all MPC systems. It is assumed that the system
is represented by a discrete-time model of the form

x(k + 1) = Ax(k) + Bu(k)

yp(k) = Cx(k) (1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and yp(k) ∈ Rny represent
the states, the controlled inputs and the plant outputs
of the system. This model is used to compute system
predictions over a finite prediction horizon of N samples.
The MPC uses these predictions to find the input sequence
that minimises the cost function given by:

V (k) =

N∑
i=1

ε̂(k + i|k)Qε̂(k + i|k) +

Nc∑
i=1

∆û(k + i|k)R∆û(k + i|k) (2)

where ε̂(k + i|k) = ŷp(k + i|k)− r(k + i|k) ∈ Rny is the
output error at sample k + i; ∆û(k + i|k) ∈ Rnu is the
input increment at sample k + i and Nc is the control
horizon. Q = Q> > 0 and R = R> > 0 are weighting
matrices on the output error and input increments. MPC
solves the finite-time optimal control problem online at

Fig. 1. Overview of the 2-layer auto-tuning method.

each time instant. Only the first element of the solution
is implemented and this procedure is repeated in the next
time instant. The strategy enables MPC to deal explicitly
with MIMO plants and system constraints.

As stated in Tran et al. (2012), the variance of the
output error β is a good indicator for the performance
of the closed-loop system. Under the assumption that
µ := E[ε(k)] = 0, the output variance is represented by:

β = E[||ε(k)− µ||2] = E[||ε(k)||2]. (3)

Tran et al. (2012) shows that an increase in the closed-loop
bandwidth ωmpc, corresponding to reducing the penalty
on the input energy, leads to a better rejection of (low-
frequency) disturbances. This in turn results in a reduction
in β. On the other hand, this also renders the controller
more sensitive to modelling errors and measurement noise,
which results in an increase of β. This means that there
exists an optimal bandwidth ω∗mpc which is a trade-off
between performance and robustness and therefore results
in a minimisation of β. In other words, there exists a
function β = f(ωmpc) and this function is known to have
an extremum, as shown in Figure 2.

Based on these observations, the proposed auto-tuning
method consists of two layers:

• Top layer: Finding the optimal closed-loop bandwidth
ωmpc using extremum seeking.
• Bottom layer: Translating the closed-loop bandwidth

from the top layer into the weighting matrices Q and
R.

A schematic overview of the auto-tuning method is given
in Figure 1.

3. TOP LAYER: OPTIMAL CLOSED-LOOP
BANDWIDTH

The top layer in the auto-tuning approach aims at finding
the optimal ωmpc by minimising the output variance β
in (3). Although the relationship between β and ωmpc is
non-linear and a-priori unknown, it is assumed that an
extremum β∗ = f(ω∗mpc) exists.

3.1 Gradient Estimation By Input Perturbation

ES tries to estimate the gradient of the nonlinear mapping
f by perturbing its input with a periodic dither signal
with radial frequency ωes and processing its output β. This
subsection gives an analysis of the ES system of the top
layer in Figure 1, based on the analysis found in Levya
et al. (2011). A more in-depth analysis of the ES algorithm
can be found in Krstić and Wang (2000) and Tan et al.
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Fig. 2. Response of β to sinusoidal perturbation around
various ω̂mpc.

(2010). In this study, the dither signal is assumed to be
a sine wave, although other types of dither can be used
as well (Tan et al. (2008)). Figure 2 shows the response
of a nonlinear function with a global minimum to such a
sinusoidal perturbation signal around three different ω̂mpc.

At ω̂mpc1,
∂f(ω̂mpc1)
∂ωmpc

< 0. As a result, the phase of the

dither signal in the output of the nonlinear function is

inverted. However, at ω̂mpc3,
∂f(ω̂mpc3)
∂ωmpc

> 0, the phase of

the dither signal component remains unchanged.

This figure also shows that perturbation around ω̂mpc3 re-
sults in a larger amplification of the dither signal,compared
to perturbation around ω̂mpc1. Around ω̂mpc2, which is
close to the extremum ω∗mpc, the dither signal is hardly

visible in the output, because |∂f(ω̂mpc2)
∂ωmpc

| ≈ 0. Further-

more, in this figure, |∂f(ω̂mpc2)
∂ωmpc

| < |∂f(ω̂mpc1)
∂ωmpc

| < |∂f(ω̂mpc3)
∂ωmpc

|.
Intuitively, the dither signal component in the output can
be regarded as an estimate of the local gradient around a
certain closed-loop bandwidth ω̂mpc.

The mathematical analysis of the ES algorithm is carried
out by representing β in its first order Taylor expansion:

β = f(ω̂mpc) +
∂f(ω̂mpc)

∂ωmpc
a sin(ωesk) +O(a2 sin2(ωesk)). (4)

The first step in the algorithm is processing β by a discrete
high-pass filter HHPF (z). The main function of this filter
is to discard any DC component β that might be present in
β, so that the tuning of ω̂mpc is based solely on variations
in β and not on any DC offset. This filter is designed to
only induce a negligible phase shift at the frequency ω̂mpc
and its implementation will be treated later in Section 3.2.
The filtered output p can be represented by

p(k) ' f(ω̂mpc)− β + a
∂f(ω̂mpc)

∂ωmpc
sin(ωesk). (5)

Next, the signal p is multiplied by the dither signal shape
and its output is scaled by a factor 1

a , which results in:

q(k) '
1

a

(
f(ω̂mpc)− β

)
sin(ωesk)

+
∂f(ω̂mpc)

∂ωmpc
sin2(ωesk). (6)

The expression sin2(ωesk) can be rewritten, using

sin2(ωesk) =
1

2
−

1

2
cos(2ωesk). (7)

Applying (7) to (6) results in

q(k) '
1

2

∂f(ω̂mpc)

∂ωmpc
+

1

a

(
f(ω̂mpc)− β

)
sin(ωesk)

−
1

2

∂f(ω̂mpc)

∂ωmpc
cos(2ωesk). (8)

Only the first term in Equation (8) is of interest. The low-
pass filter HLPF (z) is used to discard all the harmonics
of the dither signal frequency in q, resulting in the filtered
signal

s(k) '
1

2

∂f(ω̂mpc)

∂ωmpc
(9)

which is an approximation of the gradient of f(ωmpc). The
last step is performed by a discrete-time integrator block
that calculates a new ω̂mpc according to:

ω̂mpc(k) = ω̂mpc(k − 1)− γTss(k − 1) (10)

where γ represents the integrator gain and Ts = 1
fs

denotes

the sampling time of the system. A negative value for s
will cause the algorithm to increase ω̂mpc, while a positive
s will result in a decrease of ω̂mpc. If s is close to zero,
ω̂mpc is stable and in close vicinity of the extremum ω∗mpc.

3.2 Filter Design

Low-Pass Filter HLPF (z) As mentioned earlier, the
key function of the low-pass filter is to obtain the DC
component of (8). The fact that the integral of a sinusoid
over any integer multiple of its period is equal to zero can
be used to design this low-pass filter:

Tes∫
0

sin(m · ωest)dt = 0 for m ∈ N+. (11)

A method to obtain the low-pass effect is to calculate
the average of q over a full period of the dither signal,
Tes = 2π

ωes
. The discrete-time representation of this filter is

s(k) =

k∑
n=k−M+1

q(n) ≈
1

2

∂f(ω̂mpc)

∂ωmpc
(12)

M =

⌊
Tes

Ts
+ 0.5

⌋
(13)

In practice Tes

Ts
might be a rational number, in that case it

needs to be rounded to the nearest integer to ensure that
M ∈ N, which is shown in (13). Furthermore, it is assumed
that Tes >> Ts, which is a valid assumption since ωes
must be slower than the plant dynamics. This filter has
the following Z transform:

HLPF (z) =

M−1∑
n=0

1

M
z−n (14)

The structure of (14) is that of a low-pass FIR filter.
The FIR filter calculates a sum over M samples at every
sampling instant. The structure of (14) can be rewritten
into the equivalent IIR structure, which is much more
efficient for large M and represented by:

HLPF (z) =
1

M

1− z−M

1− z−1
(15)

and thus
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s(k) = s(k − 1) +
1

M
q(k)−

1

M
q(k −M). (16)

Besides removing harmonics of the dither frequency, the
low-pass filter has an extra function. It performs the
averaging needed to obtain a good estimate of β based
on samples of ||ε(k)||2.

High Pass Filter HHPF (z) The objective of the high-
pass filter is to remove any DC value present in (4),
while introducing little phase distortion at the frequency
of interest ωes. A solution that meets both requirements is
to use the low-pass filter structure of (15) to build a new
filter as follows:

HHPF (z) = 1−HLPF (z) = 1−
1

M

1− zM

1− z−1

=
M−1
M
− z−1 + 1

M
z−M

1− z−1
(17)

and thus

p(k) = p(k − 1) +
M − 1

M
β(k)− β(k − 1) +

1

M
β(k −M). (18)

Since the the low-pass filter averages the input over Tes,
its output is mainly DC. Subtracting this DC value will
introduce no phase distortion at the dither frequency
component if Tes

Ts
= M since in that case, the low-pass

filter averages exactly a full period of the dither signal.
If Tes

Ts
> M , the averaging misses at most half a sample;

otherwise, if Tes

Ts
< M , the averaging redundantly covers

at most half a sample:∣∣∣Tes
Ts
−M

∣∣∣ =

∣∣∣Tes
Ts
−
⌊
Tes

Ts
+ 0.5

⌋∣∣∣ ≤ 0.5 (19)

This introduces a phase distortion at the dither frequency
component of p. The significance of this error can be
reflected in the following value:

εm =

∣∣Tes
Ts
−M

∣∣
Tes
Ts

≤
Ts

2Tes
(20)

Equation (20) shows that when Tes goes to infinity, the
error in the averaging, denoted by εm, approaches zero. If
Tes goes to infinity, so does M , according to (13). Despite
not being shown here, it is verified that a bigger M also
results in a smaller worst-case phase distortion.
Equations (8) and (9) suggest that the high-pass filter
is the least important component in the ES scheme of
Figure 1, since the combination of multiplication with the
dither signal, followed by the low-pass filter, eliminates the
remaining DC term

(
f(ω̂mpc)− β

)
in (5).

Filter Transients Both the high-pass and the low-pass
filters in the ES scheme of Figure 1 introduce transients.
During these transients the gradient estimate s given in
(9) is incorrect. Therefore, the integrator should only be
enabled after these transients have died out. The duration
of the transient introduced by each filter equals one period
of the dither signal Tes, according to (14), (15) and (17).
Enabling both filters requires 2Tes for the transient effects
to disappear. When only the low-pass filter is active, this
time is halved to Tes.

3.3 Parameter Selection

This subsection discusses the influence of the different
parameters of the ES scheme in Figure 1. A thorough
stability analysis is found in Krstić and Wang (2000) and
Tan et al. (2006).

Dither Frequency ωes Selecting ωes is a trade-off
between speed of convergence and precision. The dither
signal should vary slowly enough for the plant to settle
and thus preventing the plant dynamics from interfering
with the peak seeking scheme (Krstić and Wang (2000)).
On the other hand, increasing the dither frequency allows
the integrator gain to be increased proportionally, while re-
taining the same domain of attraction (Tan et al. (2006)).
As a rule of thumb, the dither frequency should be slower
than the open-loop dynamics of the plant to obtain a useful
signal to noise ratio (SNR) at the input of the ES scheme.
It is worth mentioning that although the exact bandwidth
of the plant is unknown, the plant model inside the MPC
system can be used to determine a suitable value for ωes.

Dither Signal Gain a The amplitude of the dither
signal is a trade-off between accuracy and precision. The
influence on accuracy can be deduced from (4), since
it shows that by increasing a, the approximation error
O(a2 sin2(ωesk)) also rises. A larger a will thus result
in a larger offset of ω̂mpc with respect to ω∗mpc (Tan
et al. (2010)). On the other hand, a smaller a leads to a
reduction in precision, as the decrease in the amplitude of
the modulated gradient in (4) brings about a deterioration
of the SNR at the input of the ES scheme.

Integrator Gain γ The value of the integrator gain
is a trade-off between speed of convergence, precision and
stability. A higher gain results in faster convergence, but
the influence of any noise present in the output of the low-
pass filter becomes more dominant. Furthermore, there is
an upper limit on the integrator gain with respect to the
stability of the adaptation loop. Increasing the integrator
beyond this value will render the adaptation unstable. The
exact value of this critical value depends on the second

derivative,
∂2f(ω̂mpc)
∂ω2

mpc
, which is unknown (Moase et al.

(2010)).

ES Dither Signal Shape In Tan et al. (2008), it is
stated that when using the same ES parameters, a square
wave dither signal results in faster convergence, compared
to a sine wave. This is mainly because in that case, the
factor 1

2 in (9) vanishes. Furthermore, the paper states
that the domain of attraction and accuracy do not change
if both the integrator gain and dither amplitude approach
zero. In addition, since a small value of γ slows down the
convergence of the adaptation loop, which is not desired,
the effect of using square wave dither when γ is close to
its critical value has to be investigated.

4. BOTTOM LAYER: FROM CLOSED-LOOP
BANDWIDTH TO WEIGHTING MATRICES

Based on the engineering rules of choosing the horizons
(Garriga and Soroush (2010)), in this work, the prediction
horizon is fixed so as to cover the main dynamics of the
system, and the control horizon is chosen according to
the computational capacity of the system. From a desired
closed-loop bandwidth ωmpc, several methods can be used
to find the tuning parameters Q and R of MPC. Rowe and
Maciejowski (2000b), Shah and Engell (2011) and Tran
et al. (2014) aim at matching the MPC to a desired H∞
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controller while Lee and Yu (1994) tunes the Kalman filter
and disturbance model to obtain the desired bandwidth.

Tran et al. (2012) and Özkan et al. (2012) show that the
weighting factors of the input energy and output energy
are correlated. Fixing the input weights and increasing the
output weights, or fixing the output weights and reducing
the input weights, both raise the closed-loop bandwidth.
Hence, in this work, the input weight is used to manipulate
the closed-loop bandwidth: Weighting matrix Q = I and
R = ρI, where I is the identity matrix and ρ is a scalar. In
that case, the closed-loop bandwidth is solely determined
by the selection of the scalar ρ.

When the constraints are active, MPC can be considered
to be a linear time-invariant controller. Therefore, it is
possible to derive the sensitivity and complementary sen-
sitivity functions of an MPC as in a linear controller. In
an n× n system, the sensitivity function has n cut-off
frequencies corresponding to n directions of the system.
To find the ρ that corresponds to the desired closed-loop
bandwidth ωmpc, the following optimisation problem is
solved:

min
ρ
||ωmpc − ωcs(σ1(ρ))||2 (21)

where ωcs(σ1(ρ)) is the crossover frequency of the mini-
mum singular value of the sensitivity function. Tran et al.
(2012) shows that this problem is convex.

5. EXAMPLE: DISTILLATION COLUMN MODEL

A model of a binary distillation column is used to anal-
yse the behaviour of ES in combination with frequency-
domain tuning of an MPC. The characteristics of this
model are:

• The plant output yp(k) consists of two variables,
namely the top and bottom compositions of the
distillation column.
• The output reference r(k) is set to obtain a top

composition of 0.95 [mole fraction] and a bottom
composition of 0.05 [mole fraction].
• The measurement noise n(k) is modelled by white

noise with power σn = 0.01.
• The manipulated variables are liquid flow and vapour

flow.
• The feed rate and feed composition are unmeasured

disturbances and modelled by white noise filtered by
a second-order low-pass filter with cutoff frequency of
0.01 π [rad/min]. The feed-rate variance is set to 64
[Kmol/min] and the feed composition variance is set
to 0.0025 [mole fraction]

• An estimate of the open-loop bandwidth of the model
used in the MPC is 0.001 [rad/min].

• The closed-loop bandwidth lies in the interval [0; 0.1]
[rad/min], based on the analysis of the sensitivity
functions, so the ES algorithm remains within these
boundaries.

• The sampling time Ts is 5 minutes.

Specific parameters of the distillation column are given in
Table 1.

The auto-tuning method is applied to the column with two
different starting closed-loop bandwidths: 0.02 rad/min
and 0.08 rad/min. The ES runs in the top layer of the
auto-tuning to find the optimal closed-loop bandwidth and

Table 1. Details of distillation column model

Description Value Units

Number of trays 110
Feed location 39
Relative volatility 1.35
Feed rate 215 [Kmol/min]
Feed liquid fraction 1
Feed composition 0.65 [mole fraction]
Molar holdup 30 [Kmol]
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γ = 2e−05
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Fig. 3. Simulation results of MPC tuning. ωes = 0.0001,
starting points: ω̂mpc = 0.02 and ω̂mpc = 0.08.

optimisation problem (21) is solved to find the weighting
factors in the bottom layer while the column is in closed
loop.

In these simulations, the dither signal is a sine wave of
amplitude a = 0.005, the low-pass filter is enabled whereas
the high-pass filter is disabled, since this results in halving
the transient duration as discussed in Section 3. Figure 3
shows the convergence of the closed-loop bandwidth for
ωes = 0.0001 [rad/min], while Figure 4 shows the results
for ωes = 0.0002 [rad/min] with different values of the
integrator gain γ. The x-axis is the time of the simulation
and the y-axis is the closed-loop bandwidth.
Both Figures 3 and 4 show that increasing γ results in
faster convergence, but the estimate of the extremum ω∗mpc
becomes more noisy. The solid line in Figure 3 shows that
starting from ω̂mpc = 0.02 [rad/min] with γ = 0.0002,
there appears a significant overshoot in the adaptation
loop. However, starting at ω̂mpc = 0.08 [rad/min], under
the same conditions, does not produce that overshoot. This
stems from the fact that the second derivative is different
for two different starting points. This behaviour is a known
weakness of the classic ES algorithm. In Moase et al.
(2010), the ES scheme is complemented with a compen-
sator that adapts γ and a, based on local estimates of the
second derivative. This modification might increase both
the speed of convergence and stability of the ES scheme
used in this paper, but this is still under investigation.
Figures 3 and 4 show that by increasing ωes, the SNR
increases, but the adaption loop is stable for higher in-
tegrator gains, which results in faster convergence. These
results agree with the theory discussed in Section 3. The
increase in SNR is a result of two factors, namely the low-
pass character of the plant, which results in more damping
of the dither signal at higher frequencies, and the length of
the low-pass filter, which becomes smaller for higher dither
frequencies.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2193



0 5 10 15 20 25 30 35 40 45
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time [months]

ω
m

pc
 [r

ad
/m

in
]

 

 

γ = 2e−05
γ = 0.0001
γ = 0.0002

Fig. 4. Simulation results of MPC tuning. ωes = 0.0002,
starting points: ω̂mpc = 0.02 and ω̂mpc = 0.08.

6. CONCLUSION AND RECOMMENDATIONS

This paper presented a way to automatically tune the
closed-loop bandwidth of an MPC system by using ES.
The ES algorithm has been implemented and tested on a
model of a binary distillation column. ES indeed enables
the MPC system to track its optimal closed-loop band-
width.

However, the main issues of ES are speed of convergence
and stability. The dynamics of the distillation column
limit the speed at which the ES algorithm converges. The
selection of ES parameters also affects the convergence
of the algorithm. In the future, the use of a Newton-
like adaptation law in the the classic ES scheme based
on Moase et al. (2010) can be considered in choosing the
parameters of ES.

Other filter designs might result in better performance.
Further research could look into the benefits of using a
high-pass filter although the analysis of Section 3 suggests
that the high-pass filter is the least critical component.
In addition, reducing the duration of the filter transients
could improve the speed of convergence. The use of a
square-wave dither signal will also be investigated.
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