
Design of Measurement Noise Filters for

PID Control ⋆

Vanessa R. Segovia ∗ Tore Hägglund ∗ Karl J. Åström ∗

∗ Department of Automatic Control, Lund University, Sweden,
vanessa,tore,kja@control.lth.se

Abstract: This paper treats the trade-off between robustness, load disturbance attenuation,
and measurement noise injection for PI and PID control using Lambda, SIMC, and AMIGO
tuning. The effects of measurement noise are characterized by SDU, which is a measure of noise
activity analogous to the IAE commonly used to characterize performance of load disturbance
response. Simple design rules to choose the filter time constant for PI and PID controllers are
also given for the three tuning methods.
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1. INTRODUCTION

Most design methods do not take measurement noise ex-
plicitly into account. Instead, the filter time constant Tf

is chosen by some empirical rule, for example as a fraction
of the derivative time Tf = Td/N . This simple approach
has drawbacks as was pointed out in Isaksson and Graebe
(2002). Methods like Åström and Hägglund (2005); Sko-
gestad (2006) suggested how to detune the controllers to
make the designs less noise sensitive. There are methods
where both the controller parameters and the filter time
constant are determined like Kristiansson and Lennartson
(2006); Garpinger (2009); Sekara and Matausek (2009);
Larsson and Hägglund (2011). These methods are compli-
cated and require much apriori information.

In Romero Segovia et al. (2014) the design of noise filters
for PID control was approached as a trade-off between
load disturbance attenuation (IAE), measurement noise
injection (SDU), and robustness (Ms,Mt). The measure
SDU analogous to IAE was introduced to characterize
measurement noise injection. The analysis was done for
the design method AMIGO. In this paper the results are
generalized to cover the popular design methods Lambda
and SIMC, they are also compared with new results
obtained for AMIGO. The results are summarized in
simple design rules.

2. MODELS AND CRITERIA

The system shown in Figure 1 consists of the process and
the controller. The process P (s) is approximated by the
FOTD model

P (s) =
K

1 + sT
e−sL, (1)

where K, L, and T are the static gain, the apparent
time delay, and the apparent time constant, respectively.
These parameters can be obtained from a step response
experiment. Process dynamics can be characterized by the
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Figure 1. Block diagram of the system, y, yf , are the
measured and the filtered output, u is the control
signal, d the load disturbance and n the measurement
noise.

normalized time delay τ = L/(L + T ), which has the
property 0 ≤ τ ≤ 1. Lag dominant processes have small
values of τ , while delay dominant have values of τ closer
to one. Processes in between are denoted balanced.

The PID controller has the transfer function

CPID(s) = kp

(

1 +
1

sTi

+ sTd

)

= kp +
ki
s
+ kds, (2)

where kp, Ti, and Td are the proportional gain, integral
time, and derivative time.

Measurement noise is reduced by the second order filter

Gf (s) =
1

1 + sTf + s2T 2

f /2
, (3)

where Tf is the filter time constant. A second order
filter is used to ensure roll-off in the PID controller as
recommended in Åström and Hägglund (2005).

The combination of the controller and the filter transfer
functions is denoted by

C(s) = CPID(s)Gf (s). (4)

Using this representation, ideal controllers can be designed
for the augmented plant P (s)Gf (s).

The criteria used for the analysis considers robustness and
performance in terms of attenuation of load disturbances
and measurement noise injection. Robustness to process
uncertainty are captured by the maximum sensitivities Ms
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and Mt.

Ms = max
ω

|S(iω)|, Mt = max
ω

|T (iω)|, (5)

where

S(s) =
1

1 + P (s)C(s)
, T (s) =

P (s)C(s)

1 + P (s)C(s)
(6)

are the sensitivity functions. Reasonable values for the
robustness margins are Ms,Mt = 1.2− 2.

Attenuation of load disturbances, is described by the
response of the closed loop system to a unit step load
disturbance at the process input, thus

Gyd(s) =
P (s)

1 + P (s)C(s)
= P (s)S(s), (7)

and captured by the integrated absolute error IAE

IAE =

∫

∞

0

|e(t)|dt, (8)

where e is the control error due to a unit step load
disturbance applied at the process input as shown in Fig. 1.

A drawback of using feedback is that measurement noise
is injected into the system. It is typically dominated by
high frequencies, and it generates undesirable motion of
the actuators which cause wear and possible break down.
It is assumed that measurement noise enters the system
additively at the process output as shown in Figure 1.

The transfer function from measurement noise n to the
control signal u is

Gun = C(s)S(s). (9)

The variance of the controller output u generated by the
measurement noise is given by

σ2

u =

∫

∞

−∞

|Gun(iω)|
2Φ(ω)dω (10)

where Φ(ω) is the spectral density of the noise. Measure-
ment noise injection is characterized by

SDU = σuw =

√

∫

∞

−∞

|Gun(iω)|2Φ0dω = ||Gun||2 (11)

which is the standard deviation of the control signal
for white measurement noise at the process output with
spectral density Φ0. The SDU is the L2 norm of the
transfer function Gun.

The expressions (10) is complex because of the shapes of
the transfer function Gun and the spectral density Φ(ω). It
is rare that detailed information about the spectral density
is known.

It is useful to have approximations of the criteria. Neglect-
ing the contribution from the integral part and observing
that S(s) is close to one at high frequencies, we get

Gun ≈
kds+ kp

1 + sTf + s2T 2

f /2
(12)

Using the approximation (12) the variance of the control
signal u can be computed analytically from formulas in
(Åström, 1970, Chapter 5.2), thus

σ̂uw =

√

√

√

√π

(

2k2d + k2pT
2

f

2T 3

f

)

Φ0. (13)

2.1 Filter Design

Adding a filter reduces the effects of measurement noise,
but it also reduces robustness and deteriorates the re-
sponse to load disturbances. A compromise is then to
choose the filter so that the impact on robustness and
performance is not too large.

The filter has a significant effect on the controller transfer
function. For PI control proportional action tends to
disappear when Tf approaches the integral time constant
Ti, while for PID control the derivative action disappears
when Tf approaches the derivative time constant Td.

The choice of the filter time constant determines the mag-
nitude of SDU. For tuning purposes the filter time constant
can be related to integral time Ti and to derivative time
Td for PI and PID control respectively. However, from a
design perspective it is more natural to relate the filter
time constant to gain crossover frequency ωgc. In this
paper, we will use an iterative procedure. The filter time
constant Tf will be chosen as

Tf =
α

ωgc

. (14)

Controllers with this filter time constant will be designed
for different values of α. The value of α will be chosen as
a trade-off between performance, robustness, and attenu-
ation of measurement noise. For a given value of α, the
design procedure is as follows

• Find the FOTD approximation of the process P .
• Select the controller parameters as functions of K,L,
and T , such that requirements about performance
and robustness are satisfied.

• Choose the filter time constant Tf = α/ωgc.
• Repeat the procedure with P replaced by PGf until
convergence.

3. CRITERIA ASSESSMENT

This section presents the trade-offs between load distur-
bance attenuation, robustness, and measurement noise
injection for different processes. The methodology was
applied to a test batch given in Åström and Hägglund
(2005), which includes processes with different dynamics
encountered in process control.

The trade-offs are illustrated in Figure 2, where the
robustness level curves are a function of the performance
(IAE) and the standard deviation of the control signal
(SDU). High performance in terms of a small IAE value
can be obtained with low robustness and large control
signal deviations SDU. High robustness can be obtained
if the IAE and the SDU values are large. A small SDU
value can be obtained if the robustness is low or if the
IAE value is large.

The controller parameters are obtained using Lambda
(Sell (1995)) and SIMC (Skogestad (2003); Grimholt and
Skogestad (2013)) tuning, respectively. The selection of
these tuning methods is due to their high application in
industry, and because they are based on the FOTD model
of the process. For comparison with results previously
presented in Romero Segovia et al. (2013) the AMIGO
(Åström and Hägglund (2005)) tuning method is also used.
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Table 1. Controller parameters using Lambda, SIMC and AMIGO tuning.
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Figure 2. Trade-offs plot and relation with robustness.

Table 1 shows the tuning parameters for the different
methods. The tuning parameter Tcl, the desired closed-
loop time constant, varies between methodologies. For
Lambda tuning Tcl = T produces aggressive controllers,
while Tcl = 3T emphasizes robustness. To improve the
attenuation of load disturbances for lag-dominated pro-
cesses Tcl = L is recommended. For the SIMC tuning,
the recommended values for Tcl given in Skogestad (2003);
Grimholt and Skogestad (2013) are used.

To illustrate the effects of the filter time constant Tf , three
different processes are considered. The first process has the
transfer function

P1(s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)
(15)

The FOTD approximation has K = 1, T = 1.04, L = 0.08,
and τ = 0.07 which shows the dominant lag dynamics of
the process. Figure 3 shows the effects on performance and
attenuation of measurement noise for the filter time con-
stant given by (14) with α between 0 and 0.2. The results
for α = 0.05 are shown with squares for PI and triangles
for PID. The results for PI and PID control are given in
red and blue, respectively. The influence of filtering when
using the AMIGO, SIMC, and Lambda tuning are shown
in solid, dashed and dash-dotted lines, respectively. As
expected heavier filtering attenuates measurement noise
for all the tuning methods at the price of deteriorating
the load disturbance response. This can be explained
by the changes in process dynamics caused by filtering,
which differ for each tuning method. Measurement noise
attenuation is very similar for PID control when using
AMIGO, SIMC and λ = L. Lower measurement noise
injection can be achieved when using PI control for all the
tuning methods, however, load disturbance attenuation
deteriorates in contrast with PID control. The differences
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Figure 3. Trade-offs between performance and attenuation
of measurement noise for the lag-dominated process
P1 for α values between 0 and 0.2.
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Figure 4. Trade-offs between performance and attenuation
of measurement noise for the process P2 with balanced
dynamics for α values between 0 and 0.2.

in performance between the tuning methods is due to
the robustness requirements. For AMIGO the limits are
between 1.2 and 1.6, for Lambda and SIMC they are
between 1.2 and 2. Thus, with higher robustness poor load
disturbance attenuation can be anticipated (see Figure 2).

The second process has the transfer function

P2(s) =
1

(s+ 1)4
(16)

The FOTD approximation has K = 1, T = 2.92, L =
1.43, and τ = 0.33, which shows the balanced dynamics
of the process. Figure 4 shows the trade-offs between
performance and attenuation of measurement noise when
filtering is used. Attenuation of measurement noise is quite
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Figure 5. Trade-offs between performance and attenuation
of measurement noise for the delay-dominated process
P3 for α values between 0 and 0.2.

similar for PID control when using AMIGO, SIMC and
λ = T . Better noise rejection can be obtained for PID
with λ = 3T at the expense of losing in performance. If
higher attenuation of measurement noise is required, PI
control would be the right choice.

The last process considered has the transfer function

P3(s) =
1

(0.05s+ 1)2
e−s (17)

The FOTD approximation has K = 1, T = 0.09, L = 1.01,
and τ = 0.92, thus P3 has delay dominant dynamics.
Figure 5 shows the effects of filtering for the SIMC and the
AMIGO tuning methods. For PID the same attenuation
of measurement noise can be obtained, performance is
not much affected by filtering. The differences in terms of
performance is related to the robustness provided by each
method, for this process AMIGO gives 1.42 ≤ Ms ≤ 1.52,
while SIMC gives 1.65 ≤ Ms ≤ 1.78. For PI higher
measurement noise attenuation is obtained with AMIGO,
while better load disturbance attenuation are obtained
with SIMC. The results for Lambda tuning are not shown
in Figure 5, since the controllers obtained even without
filtering (α = 0) provide very poor robustness. This is also
mentioned in Skogestad (2003); Garpinger and Hägglund
(2012), where Lambda tuning is not recommended for
delay-dominated processes due to the bad choice of the
integral time constant.

Figures 3, 4 and 5 show that filtering has a significant effect
on the trade-off between performance and measurement
noise attenuation. Filtering changes the process dynamics,
specially for higher values of α. Thus, the trade-off is
governed by the design parameter α. A small value of α
emphasizes performance, while a larger value emphasizes
noise rejection. The choice of α is problem-dependent, the
results obtained indicate that α = 0.05 is a reasonable
nominal value. The figures also show whether using PI or
PID control can yield better results in terms of attenuation
of load disturbance and measurement noise. Thus, when
overlapping between the PI and PID curves occurs, which
happens when the ki parameters of the controllers are
similar, there is no benefits in using PID since the filter
time constant Tf reduces and even eliminates the effects
of the derivative part of the controller.
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Figure 6. Filter time constant relations to FOTD model
parameter L0 for PI control using Lambda, SIMC and
AMIGO tuning for 0 ≤ α ≤ 0.05.

4. DESIGN RULES

From a design point of view, it would be more useful to
have simple design rules where no iteration is required, and
which relate the filter time constant to the FOTD model
of the original process, which is known, and the processes
dynamics characterized by τ .

Figures 6 and 7 illustrate the relation between Tf/(αL
0),

and τ for PI and PID control, where L0 is the apparent
time delay of the nominal process (α = 0). The red markers
in each plot correspond to the FOTD approximation of
the 135 processes included in the Test Batch for α = 0.01,
0.02, and 0.05, respectively. The blue solid lines correspond
to the curve fitting carried out in each figure, and which
equations are shown in Table 2. The blue dashed lines
show the 15 percent variations of the equations. The
vertical dotted blue lines in Figures 7 can be used as an
indicator that shows that despite introduction of filtering,
the characteristics of the PID controller are preserved.
They indicate the value of τ for which the ratio Tf/T

0

d =
0.5, where T 0

d is the nominal derivative time, has been
reached.

For the PI case, the left plots of Figure 6 show fairly
similar outcomes for Lambda with Tcl = L and SIMC.
The functions are nearly constant and independent of τ .
On the other hand, the results for Lambda with Tcl = T
and AMIGO depend on τ . For Lambda with Tcl = T
higher filter time constants are obtained for lag-dominated
processes (τ < 0.2), which is expected considering the poor
performance (smaller ωgc) provided by this design. For
AMIGO the scaling with α produces two red curves since
the values obtained for α = 0.05 are above the other ones.
The filter time constant does not change monotonically
with τ due to the fact that AMIGO gives a proportional
gain kp for PI control that is too low for τ in the range of

0.3 to 0.6, see (Åström and Hägglund, 2005, Figure 7.1).
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Figure 7. Filter time constant relations to FOTD model
parameter L0 for PID control using Lambda, SIMC
and AMIGO tuning for 0 ≤ α ≤ 0.05.

Table 2. Simple design rules for the filter time
constant Tf .

Tcl Tf/(αL
0)

Lambda PI
L 2

T 1/τ

PID
L 1.8− τ

T 0.7/(τ − 0.02)

SIMC
PI L 2

PID L/2 1.5

AMIGO PI
5τ2 + 5τ + 3.2, for τ < 0.35

7.2τ2 − 14τ + 9, for τ ≥ 0.35

PID 2

For the PID case, Figure 7 shows that despite the dif-
ferences between the AMIGO and SIMC design methods,
the similarities are quite remarkable. Notice that the filter
time constant does not depend on τ . On the other hand,
for Lambda tuning, the filter time constant depends on the
dynamics of the process. The results show that for Lambda
with Tcl = L, moderate filtering is used, while for Tcl = T
higher filter time constants are obtained for processes with
lag dynamics.

Design rules for the filter time constant can be obtained
applying curve fitting in the different curves for the PI and
PID cases. The results are shown in Table 2. The rules for
PI and PID control using AMIGO are applicable to all the
processes in the Test Batch, the same holds for PI control
using SIMC. Special cases are the ones for PI and PID
control with Lambda, and PI control using SIMC tuning,
which can be used for almost all the processes in the Test
Batch, except the ones with integrating dynamics (process
P6). The rules given in Table 2 provide a good estimation
within ±15%.

Based on the results of Table 2, the design of measurement
noise filters can be described as follows:

• Obtain the FOTD approximation of the original pro-
cess P (s), this provides the values of L0, T 0 and τ .

• Choose the value of the design parameter α between
0.01 and 0.05.

• Select a tuning method and calculate the filter time
constant Tf using Table 2.

• Replace the process P (s) by P (s)Gf (s) and find the
new FOTD model, which can be used to recalculate
the controller parameters using Table 1.

5. EXAMPLE

The design method will be illustrated by applying it to the
lag-dominated process P1(s) given by (15). To evaluate the
effects of filtering in the system when using PID control,
the different tuning methods are used, for Lambda the
tuning parameter is chosen as Tcl = L. Following the
steps described in Section 4, the filter time constant for
each of the methods is calculated using the design rules for
PID control given in Table 2. The controller parameters
are then calculated using the FOTD approximation of
P1(s)Gf (s) and the tuning rules given in Table 1.

Table 3 shows the effect of the filter time constant on the
process and the controller parameters, as well as in the per-
formance (IAE), stability, robustness (Ms, Mt) and noise
attenuation (σ̂uw ≈ SDU). For comparison, the results are
shown for α = 0 (no filtering), and for the recommended
value α = 0.05. As expected, the use of filtering produces
changes in process dynamics, where the dynamics of the
filter add to the apparent time delay. The changes in
the controller parameters depend on the design method.
Filtering increases the attenuation of measurement noise
while decreasing performance, nevertheless, the losses in
performance are not significant for α = 0.05 as can also
be seen in Figure 3. The effects of filtering in robustness
and stability are also method dependent, but they are
connected to the process dynamic changes.

For completeness, Figure 8 also shows the effects on
performance, robustness and attenuation of measurement
noise of the filter time constant for the tuning methods.
The top left plot shows the process output response to a
unit step load disturbance. The top right shows Nyquist
plots of the loop transfer function Gl = P1C and the region
where the sensitivity Ms is in the range 1.2 ≤ Ms ≤ 1.6.
The bottom left figure shows the magnitude of the transfer
function from measurement noise to control signal Gun.
The lower right figure shows the gain curve of Gl. The
figure shows that for α = 0.05 better performance can
be obtained when using SIMC, while higher attenuation
of measurement noise is provided by AMIGO. Robustness
is within desired limits for the three methods. For this
particular process, no big differences exist in the gain
crossover frequency obtained with each of the methods.

6. SUMMARY

Filtering of measurement signals in PID control has been
investigated in order to obtain insight and design rules. A
second order Butterworth filter with a filter time constant
Tf has been used to filter the measured signal. The effect
of the filter time constant on performance, robustness, and
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Table 3. Parameter dependence on the filter time constant for a process with lag-dominated
dynamics using PID control

α τ L T kp ki kd Tf ωgc IAE ϕm gm Ms Mt σ̂uw

Lambda
0 0.067 0.075 1.040 9.58 8.89 0.35 0 7.61 0.113 64.15 260 1.21 1.02 ∞

0.05 0.072 0.081 1.036 8.88 8.25 0.35 0.006 7.20 0.121 63.88 38.21 1.23 1.01 1457

SIMC
0 0.067 0.075 1.040 9.76 20.54 0.23 0 7.66 0.048 49.82 312 1.41 1.24 ∞

0.05 0.072 0.081 1.036 9.02 17.62 0.23 0.006 7.25 0.057 50.18 43.63 1.42 1.22 978

AMIGO
0 0.067 0.075 1.040 6.44 17.83 0.24 0 5.69 0.059 51.22 381 1.30 1.28 ∞

0.05 0.074 0.083 1.036 5.84 15.25 0.24 0.008 5.28 0.069 51.55 44.3 1.30 1.27 649
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Figure 8. Dependence of performance, robustness and
attenuation of measurement noise on the filter time
constant for process P1(s) using PID control. The
controllers are designed using the Lambda (cyan),
SIMC (blue), and AMIGO (red) tuning methods.
Table 2 is used to calculate Tf for α = 0.05.

noise attenuation has been explored. Performance has been
characterized by IAE and noise attenuation by the analog
quantity SDU. Based on the FOTD model, tuning using
Lambda, SIMC, and AMIGO has been investigated.

Insight into approximation of FOTD models has also been
obtained. With the fitting methods used additional dy-
namics adds to the apparent time delay for lag-dominated
processes and to the apparent time constant for delay-
dominated processes.

The results have shown that filtering can significantly
reduce the undesired control activity due to measurement
noise, with only a moderate decrease of performance, and
maintained robustness. This phenomenon is clearly seen in
the trade-off figures presented in Section 3. The figures also
show the effects of filtering on robustness for the different
tuning methods.

Simple design rules for choosing the filter time constant for
Lambda, SIMC, and AMIGO tuning are shown in Table
2. The rules are based on the FOTD parameters of the
process (L0, T 0), the normalized time delay τ , and the
design parameter α. They are obtained by applying the
iterative procedure to a test batch given in Åström and
Hägglund (2005). The results have shown that a value
of α = 0.05 is a good trade-off between performance,
robustness, and measurement noise attenuation.
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