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Abstract—This paper focuses on delay-dependent 
bounded input bounded output (BIBO) stabilization of 
a class of two-dimensional (2D) discrete delayed 
systems described by Fornasini and Marchesini (FM) 
state-space models. The main contribution is to 
propose a linear matrix inequality (LMI) method to 
construct sufficient conditions on delay-range- 
dependent 2D BIBO stability, where the stability 
criterion guarantees that bounded input can lead to 
bounded output though the time delay has a direct 
effect on the system stability. To solve the problem, a 
novel relevant concept of 2D BIBO stability is first 
introduced. Then, the condition is formulated in terms 
of LMIS through the Lyapunov–Krasovskii function. 
Subsequently, the existence condition can be extended 
to the uncertain case. Meanwhile, the relation between 
BIBO stability and asymptotical stability is expatiated. 
The generality of the proposed design method is shown 
by results through constant delay case. Finally, an 
illustrative example of a causal 2D system is selected to 
demonstrate the effectiveness and merits of the 
proposed method.   

I. INTRODUCTION 

There has been the widespread concern to bounded input 
bounded output (BIBO) stability of one-dimensional (1D) 
systems in recent years [1-3]. BIBO stability means that any 
bounded input yields a bounded output, which is the system 
property. As an important system performance index, BIBO 
stability of the system can be considered in many aspects such 
as the free system dynamics, the basic single or double loop 
modulators, the issues connected with bilinear input/output 
maps, and so on. The investigation on BIBO stability for 1D 
system has become a hotspot and has been extended to areas 
such as neutral delay systems [4]. However, no much research 
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on BIBO stability for two-dimensional (2D) delay systems 
has been done yet.  

In the past few decades, the study on 2D system has 
achieved significant results [5-6] in both theory and 
application areas such as multi-dimensional digital filtering, 
linear image processing, signal processing, process control, 
and so on. Because time delays may lead to oscillation, 
instability, and poor performance, study on 2D systems with 
time delays using the Lyapunov functional method has 
received considerable attention in recent years [7-9]. 

In practice, n-dimensional (nD) problems often show the 
property that the underlying signal is unbounded with respect 
to only one coordinate direction, for example, the 
spatio-temporal 3D signal of a video camera. In real world, 
the scenarios lead to the definition of practical BIBO stability, 
a property that can be analyzed by comparably simple tests. In 
control theory, BIBO stability is a useful property for a plant 
since it guarantees that control actions stay inside predefined 
amplitude bounds. Due to signal processing and if signals are 
not decreasing in case of zero input after certain time, the 
output signal becomes almost independent on the input signal 
which is definitely harmful in most signal processing 
applications. Designing the appropriate controller to force the 
output signal to reduce to some predefined bounds in the case 
of the non-zero input is thus an urgent problem in applications. 
In some chemical processes such as the barrel temperature in 
the batch process, for a given bounded control input, the 
system’s actual output temperature is difficult to achieve zero 
error tracking for the given output. Our goal is to preserve the 
error changing in a range, which means bounded. From the 
above analysis, study on BIBO stability of 2D system is 
valuable in both reality and theory.  

To date, there exist the following methods focusing on the 
BIBO stability of 1D system, such as Lipschitz continuous 
combined with differential equation method [10], matrix 
Riccati equation and Bihari-type inequality technique [1, 11], 
Razumikhin technique [3], and son on. However, to the best 
of the authors’ knowledge, the BIBO stability problem for 2D 
systems has not been fully investigated with only limited 
results based on the frequency domain method [12]. For the 
2D system with time delay, nearly no research results have 
been available up to now. 

In process control, we have known that if the system 
reference input signal is bounded when the state cannot be 
convergent to zero, we expect the output signal be convergent 
to some predefined bounds. Inspired by this and according to 
the bounded reference input signal, we are interested in 
analyzing the delay-range dependent BIBO stability issues for 
a class of uncertain systems described by the 2D-FM 
state-space model with state delays varying in a range. As we 
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all know, the LMI approach is an efficient method to solve 
many control problems. Here we use this method to solve the 
considered problem. Different from the existing results on the 
analysis of BIBO control, the work of our paper has the 
following features: (1) A new relevant concept of 2D BIBO 
stability is first presented. (2) To avoid the complex 
calculations, a novel Lyapunov functional candidate is chosen 
and a differential inequality is added to the difference 
Lyapunov functional for 2D systems. Then based on linear 
matrix inequality (LMI) method, sufficient conditions for the 
existence of the delay-range dependent state feedback 
controller is derived that ensures the closed-loop system 
BIBO stable and can be easily solved by LMI Toolbox in 
Matlab. (3) In order to make the study more practical, the 
existence conditions are easily extended to the uncertain case 
according to some common methods of transformation. This 
paper also expatiates on the relation of BIBO stability with 
asymptotical stability. Finally, applications to a causal 2D 
system show that the proposed 2D controller achieves the 
design objectives despite the fact that the time delay item may 
lead to the system instability. 

II. PROBLEM FORMULATION  

Consider the following discrete-time model with interval 
time-varying delay: 

1 2

1 1 2 2

1 2

( 1, 1) ( , 1) ( 1, )

( ( ), 1) ( 1, ( ))

( , 1) ( 1, )

( , ) ( , )

     
     
   
 

d d

x i j A x i j A x i j

A x i d i j A x i j d j

B u i j B u i j

y i j Cx i j

  (1) 

where 0 ,   i j  (  is integer set) are horizontal and 

vertical coordinates, respectively; ( , ) nx i j R , ( , ) mu i j R  

and ( , ) ly i j R represent, respectively, the state, control 

input, and output of the system;  1 2 1 2, , , , ,   d dA A A A B C  are 

constant matrices of appropriate dimensions; the time-varying 
delays 1( )d i  and 2 ( )d j  are along horizontal and vertical 
directions, respectively, and satisfy 

1 1( ) L Hd d i d ,   2 2( ) L Hd d j d           (2) 

where 1Ld , 1Hd , 2Ld  and 2Hd  are constant positive scalars 
representing the lower and upper delay bounds along 
horizontal and vertical directions, respectively. 

The boundary conditions associated with the 2D system (1) 
are denoted by 

1 1

2 2

00 00

( , ) , 0,1, , 1, , 0,

( , ) , 0, , 1, , 0

           


          
 

 
 

ij H H

ij H H

x i j s j i d d

x i j t i j d d

s t

   (3) 

ijs  and ijt  are given vectors. 

 The main objective of this paper is to design a feedback 
controller in the form 

( , ) ( , ) ( , ) u i j Kx i j r i j                       (4) 

such that the considered delayed system (1) is BIBO 
stabilized, where ( , )r i j  is the reference input and K , to be 
determined, is the feedback gain matrix with appropriate 
dimensions. Substituting (4) into (1), the corresponding 
closed-loop system is described by 

1 1 2 2

1 1 2 2

1 2

1 2

( 1, 1) ( ) ( , 1) ( ) ( 1, )

( ( ), 1) ( 1, ( ))

( , 1) ( 1, )

( , 1) ( 1, )

       
     

   
   


d d

K K

x i j A B K x i j A B K x i j

A x i d i j A x i j d j

B r i j B r i j

A x i j A x i j

1 1 2 2

1 2

( ( ), 1) ( 1, ( ))

( , 1) ( 1, )

( , ) ( , )







      
    
 

d dA x i d i j A x i j d j

B r i j B r i j

y i j Cx i j

(5) 

Now, according to [13], we extend the idea and achieve the 
new definitions, where we also introduce some lemmas for a 
precise formulation of our results. 

Definition 1. Define  

,
,

( , ) sup ( , )
 


  

i j

z z i j  

as a real-valued signal vector ,( , )   nz i j L , if 

,
( , )

 
 z i j . 

The control system given by (1) is said to be 2D BIBO 
stabilized by the control law (4), if for every reference input 

,( , )   nr i j L , there exists some positive constants 1  and 2  

satisfying 

1 2,
( , )  

 
 

E
y i j r  

Lemma 1 [14]. For any vector ( )  nt R , two positive 

integers 0 , 1 , and a matrix 0   n nR R , the following 
inequality holds 

1 1 1

0 0 0
1 0( 1) ( ) ( ) ( ) ( )

  

  
     

  
       T T

t t t
t R t t R t  

III. MAIN RESULTS 

In this section, the main goal is to design an 2D controller 
to ensure the corresponding closed-loop system (5) BIBO is 
stable. The main results are as follows. 

Theorem 1. For some given scalars 1 10  L Hd d , 

2 20  L Hd d , if there exist symmetric positive matrices L , 

1Q , 2Q , 1W  , 2W ,  1
W  , 2

W , 1X , ( ) ( )
2

   n l n lX R  , matrices  
( )  m n lY R and positive scalars   and   such that the 

following LMI holds 

                

11 13 14

22 23

33

44

0

0

0

0

   
     
   
 
    

                         (6) 

where 
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T
L

L
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23

2 2 2

 
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T T T

T T T
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, 

 22     diag I I ,  

2 2
33 1 1 2 2

       H Hdiag tL d X d X , 

 44     diag I I , 

1
11 1 1 1 1 1 1( 1)       H Lt L d d Q W LX L ,  

1
12 1 2 2 2 2 2( ) ( 1)        H Lt t L d d Q W LX L ,  

13 1 1   W X , 14 2 2   W X ,  

and choose the gain of the control law in (4) as  

1K YL                                       (7) 

then the closed-loop 2D system (5) is 2D BIBO controllable. 

Proof. Choose the following Lyapunov function candidate 

( , ) ( , ) ( , )            h vV i j V i j V i j      (8) 

where 

5

1
( , ) ( , )   


     h l

l
V i j V i j , 

10

6
( , ) ( , )   


     v l

l
V i j V i j  

1 1( , ) ( , ) ( , )           TV i j x i j t Px i j , 
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

 
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 

   
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i
T

r i d i
V i j x r j Q x r j , 

1

1

3 1( , ) ( , ) ( , )



   

 

  
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H
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r i d
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H
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T

s d r i s
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
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j
T
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2
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


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T
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


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H

j
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H
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( , ) ( 1, ) ( , )   r j x r j x r j , 

 ( , ) ( , 1) ( , )   i k x i k x i k , 

P , 1Q , 2Q , 1W , 2W , 1R  and 2R  are positive definite 

matrices to be determined, and 1t  and t  are given positive 
scalars. Design  

10

1

( 1, 1) ( 1, 1) ( , 1)

( 1, 1) ( 1, )

( 1, 1)

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h h

v v

l
l

V i j V i j V i j

V i j V i j
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               (9) 

We can obtain combined from Lemma 1 and (9) that 

4 4( 1, 1) ( , ) ( , ) ( , ) ( , )        T TV i j i j i j i j i j     (10) 

2 2
1 1 1 1 2 1 2 2 3 2 3          T T T

H HtP d R d R       (11) 

where 

 1 2 3 4( , ) ( , ) ( , ) ( , ) ( , )       
T T T T Ti j i j i j i j i j ,  

1 ( , ) ( , 1) ( 1, )     
T T Ti j x i j x i j ,  

2 ( , ) ( ( ), 1) ( 1, ( ))       
T T Ti j x i d i j x i j h j ,  

3 1 2( , ) ( , 1) ( 1, )       
T T T

H Hi j x i d j x i j d ,  

4 ( , ) ( , 1) ( 1, )     
T T Ti j r i j r i j , 
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22 2
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2 2
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0 0

0


 

 
   
   
 
    

      
 
       
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R

R

Q

Q

W R

W R

I

I

 11 1 1 1 1 1 1( 1)       H Lt P d d Q W R , 

22 1 2 2 2 2 2( ) ( 1)        H Lt t P d d Q W R ,  

 1 1 2 1 2 1 20 0   K K d dA A A A B B , 

 2 1 2 1 2 1 20 0       K K d dA A A A B B , 

 3 1 2 1 2 1 20 0      K K d dA A I A A B B . 

Define 1L P , 1
1 1

X R , 1
2 2

X R , 1 1LW L W , 

2 2LW L W , 1 1LQ L Q , 2 2LQ L Q , 1 1 1 1 X W X W , 

2 2 2 2 X W X W , pre- and post-multiply (6) using 

1 2 1 2[ , , , , , , ,            diag P P P P R R I I P R R I I , Y KL , 
and use Schur complements, the inequality (6) is transformed 
into the following inequality 

1

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

 

 
  
  
 
          
 
     
       
        

I

I

            (12) 

Hence, for any ( , ) i j  and 1   , the following 
inequality hold:  

1 1 4 4( 1, 1) ( , ) ( , ) ( , ) ( , )        T TV i j i j i j i j i j  

Let 

2

1 ( ), ( )


d i d j
M m   and  

2

2

   
 

b
M m

a
                   (13) 

where 


  

  

   

max 1 max 1 max 1 2 max 2

1 1 1 1
max 2 max 1

2 2 2 2
max 2

2 2
1 1 max 1 2 2 max 2

( ) ( ( ) ( )) ( ( )

( )) ( )
2

( )
2

2 1 ( ) 2 1 ( )

   

 



 

   

 
 

 
 

    

H H

H L H L

H L H L

H H H H

m t P d Q W d Q

d d d d
W Q

d d d d
Q

d d R d d R

 , 

1

2

2 2

0, 0,1,2,( ), ( )
0, 0,1,2,

sup ( , )        
       

 


H

H

d i j ord i d j
d j i

x i j . 

Now consider  

1 2( , )   V i j M M M                                 (14) 

And for all 0 0 1 1( , 1, , )       H Hi i i d d , 0, 1,  j   

or 0 0 2 2( , 1, , 0)       H Hj j j d d , 0, 1,  i , assume 

that 0 0( , ) ( , ) ( , ) h vV i j V i j V i j  holds. Then 


  

  

 

 

0 0

max 1 max 1 max 1 2 max 2

1 1 1 1
max 2 max 1

22 2 2 2
max 2 ( ), ( )

2
21 1

max 1

2
2 2

max 2

( , ) ( , ) ( , )

( ) ( ( ) ( )) ( ( )

( )) ( )
2

( )
2

1
( ) ( , )

2

1
( (

2

   

 

 

 

 

 

   

 
 

  
 







 

h v

H H

H L H L

H L H L

d i d j

H H

H H

V i j V i j V i j

t P d Q W d Q

d d d d
W Q

d d d d
Q

d d
R r j

d d
R i

2
, )k

     (15) 

Yet for  1 1, 1, ,     H Hr d d and 

 2 2, 1, , 1     H Hk d d , 

 22 2

( ), ( )
( , ) ( 1, ) ( , ) 4    

d i d j
r j x r j x r j  and 

 22 2

( ), ( )
( , ) ( , 1) ( , ) 4    

d i d j
i k x i k x i k   hold, which 

shows that 1( , ) V i j M  holds. 

If 0 0( , ) ( , ) ( , ) h vV i j V i j V i j  doesn’t hold, then there 

exists scalars s and t , when 0i i  and 0j j , and for 

 0 , s i i , and  0 , t j j , ( , ) ( , ) ( , )  h vV i j V s j V i t holds.   

Thus 

1 1 4 40 ( 1, 1) ( , ) ( , ) ( , ) ( , )         T TV i j i j i j i j i j (17)  

So 

1 4

 


                                   (16) 

   That is 

( , ) ( , )



 
b

x i j r i j
a

                     (17) 

Similar to the above proof, one obtains that  

  
2

( , )
   
 

b
V i j m

a
                           (18) 

In summary 

                   1 2( , )   V i j M M M                         (19) 

Because 
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2

min ( ) ( , ) ( , )  t P x i j V i j M            (20) 

It is seen that 

2
2

( ), ( )

( ), ( )
min min

( , )

( ) ( )




 

             
 



d i d j

d i d j

x i j

b
m

a m b

t P t P a
 

Thus 

( ), ( )
min min

( , ) ( , )

( ) ( )


 



 
d i d j

y i j C x i j

m m b
C C

t P t P a

 

   Let 

1
min ( )




 



C m

t P
, 2 ( ), ( )

min ( )
 





d i d j

m
C

t P
 

For ,( , )    nr i j L , we have 

1 2,
( , )  

 
 y i j r                                 (21) 

This completes the proof of Theorem 1. 

Remark 1. The ultimate goal of the above theorem is to get 
sufficient conditions for the existence of the control gain of 
the 2D BIBO control law ( , )u i j . With such conditions, we 
can access the control law (7) by combining with the convex 
optimal algorithm used in [15] if there exist nonlinear 
elements, such as 1

iLX L (i=1, 2), and so on. Thus, the 2D 
BIBO law with the form (4) is obtained. On the other hand, 
note that if ( , ) 0 r i j , sufficient conditions on BIBO 
stability will be transformed into asymptotical stability. 
Moreover, if the interval time delay is reduced to a constant 
value, the above conditions will be transformed into sufficient 
delay-dependent stability conditions. Only for 
Lyapunov–Krasovskii function can 1Q  and 2Q  be chosen as 
zero matrices.  

Remark 2. In practice, it is inevitable that the system is 
disturbed by other external factors, which shows that 
considering BIBO control of the uncertainty delay system is 
certainly of theoretical significance and practical value. If the 
uncertainties are considered here, we can easily obtain the 
results by using Theorem 1.  

IV. AN NUMERICAL EXAMPLE 

To demonstrate the effectiveness of the design method, a 
causal 2D system with time delays is chosen with the 
following form [16]: 

1 2

1 2 3 2

4 1

( 1, 1) ( 1, ) ( , 1)

( , ) ( 1, ( ))

( ( ), 1) ( , )

     
   
   

y m n a y m n a y m n

a a y m n a y m n d n

a y m d m n u m n

  (22) 

     Denote 1( , ) ( , 1) ( , ) ( , )    
T T T Tx i j y m n a y m n y m n , 

and assume that the measurement output is given by 
( , ) ( , )y i j Cx i j . It is easy to see that Eq. (22) can be 

converted to the state-space system (1) with 

2
1

0
,

0 0

 
  
 

a
A 2

1

0 0
,

1

 
  
 

A
a

4 1 4
1 ,

0 0

 
  
 

d

a a a
A 1

1

0

 
   

 
B ,

3 1 3
2 0 0

 
  
 

d

a a a
A  and  3 1C  . 

     Here we will consider two cases to analyze the impact of 
time delay on the stability of the system. 

(1) A zero-mean stationary random field 

As shown in [15], if 1 20 1  a a  and 3 40 1a a   , Eq. 
(22) is a system with a zero-mean stationary random field, 
where ( , )u m n  is an uncorrelated sequence with zero mean. 

Let 1 20.2, 0.3,   a a 3 4 0.03.  a a  Solving 

Theorem 1, the delays with the ranges of  1 ( ) 6 d i  and 

1 ( ) 4 d j  can be obtained. Then the system is 
asymptotically stable. However, when the elements that affect 
the stability of the system in matrix 1dA  or 2dA  is chosen 

sufficient large, for example, 4 0.5a  and others remain 
unchanged, the output of the system diverges. The output 
response is convergent again if we design a controller with the 
zero reference input by solving Theorem 1, which is 

 ( , ) -0.1254   -0.2020 ( , )u i j x i j  as shown in Figure 1. This 

verifies that the time delay item may cause the system to be 
unstable. The system can be controlled by the proposed 
controller in this paper. If the reference input is chosen as a 
non-zero value but is bounded ( , ) 0r i j  , it is easily 
obtained that the output response will be convergent, which is 
shown in Figure 2. 

Remark 3. Under the condition ( , ) 0r i j , the results seem 
similar to those in [7-9]. It is obvious that they are different. In 
[7-9], the authors considered the stability of the batch process. 
For this kind of systems, the state must run in the finite time. 
On the other hand, for some general 2D systems, the 
difference is not obvious if [0, ]  fi x , where fx is constant 

value.   

     (2) A non-stationary random field 

Let 2 1.3a and other elements remain unchanged., the 
system is still unstable. Deign the controller with the non-zero 
reference input and solve Theorem 1. The controller is 
obtained as  ( , ) -1.0978   -0.0083 ( , )u i j x i j  and ( , )r i j  is 

chosen by ( , ) 1r i j . We can see the system is BIBO stable, as 

shown in Figure 3. If ( , )r i j  is chosen by ( , ) 0r i j , the 
BIBO stability is transformed into asymptotically stability.  
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Figure 1.  Output responses affected by the time-delay item and with the 

proposed controller  ( , ) -0.1254   -0.2020 ( , )u i j x i j  
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Figure 2. Output responses affected by the time-delay item and with the 

proposed controller  ( , ) -0.1254   -0.2020 ( , ) 1 u i j x i j  
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Figure 3. Output responses with the controller 

 ( , ) -1.0978   -0.0083 ( , ) 1 u i j x i j  

V. CONCLUSION 

Based on LMI methods, a solution to the design problem of 
a 2D BIBO controller is proposed for a class of 
two-dimensional (2D) discrete delayed systems described by 
the FM second state-space model with interval time-varying 
delay. By choosing a 2D Lyapunov function and adding a 
differential inequality to the Lyapunov function, the proposed 
conditions are formulated in terms of LMIs, which can be 
extended to the uncertain case. Furthermore, the relation of 
BIBO stability with asymptotical stability is expatiated. The 
results may be converted to constant delay case without loss 
of generality. The illustrative example of a causal 2D system 
has demonstrated the effectiveness and merits of the proposed 
method. 

REFERENCES 
[1] D.Y. Xu, S.M. Zhong, M.  Li, BIBO stabilization of large-scale systems, 

Control Theory and Applications 12 (1995) 758–763.  

[2]  P. Li, S.M. Zhong, BIBO stabilization for system with multiple mixed 
delays and nonlinear perturbations, Applied Mathematics and 
Computation 196 (2008) 207–213.  

[3] Y.L. Fu, X.X. Liao, BIBO stabilization of stochastic delay systems with 
uncertainty, IEEE Transactions on Automatic Control, 48 (2003) 
133–138. 

[4] B. Wang, J. Wang, X.Z. Liu, S.M. Zhong, New results on BIBO 
stability analysis for a class of neutral delay systems. Journal of the 
Franklin Institute 348 (2011) 426–437. 

[5] S.F.  Chen, Stability analysis for 2-D systems with interval time-varying 
delays and saturation linearities, Signal Process, 90 (2010)  2265-2275 

[6] D. Peng, X. Guan, Output feedback H  control for 2D state-delayed 

systems, Circuits Syst. Signal Process, 28 (2009b) 147-167. 
[7] L.M. Wang, S.Y. Mo, D.H. Zhou, F.R. Gao, X. 

Chen,Delay-range-dependent robust 2D iterative learning control for 
batch processes with state delay and uncertainties. Journal of Process 
Control, 23(5), (2013) 715-730. 

[8] L.M. Wang, S.Y. Mo, D.H. Zhou, F.R. Gao, X. Chen, 
Delay-range-dependent two-time dimensional guaranteed cost control 
for batch processes with state delay. AIChE Journal, 59(6) (2013) 
2033-2045. 

[9] L.M. Wang, S.Y. Mo, D.H. Zhou, F.R. Gao, H  design of 2D 

controller for batch processes with uncertainties and interval 
time-varying delays. Control Engineering Practice, (2013) 1321-1333. 

[10] R.D. Zhang, A.K. Xue, S.Q. Wang, Dynamic modeling and nonlinear 
predictive control based on partitioned model and nonlinear 
optimization, Ind. Eng. Chem. Res., 50 (2011) 8110-8121. 

[11] D.Y. Xu, S.M. Zhong, Robust BIBO stabilization of linear large-scale 
systems with nonlinear delay perturbations, dynamics of continuous, 
Discrete and Impulsive Systems, 2 (1996) 511–520. 

[12] S. Sam, V. Jörg, K. Anton, G. Krzysztof, On the usability of practical 
stable n-D systems for signal processing applications. IEEE 
International Symposium on Circuits and Systems, (2009)  317 – 320 

[13] H. Wu, K. Mizukami, Robust stabilization of uncertain linear dynamical 
systems, International Journal of Systems Science, 24(1993) 265–276. 

[14] K.W. Yu, C.H. Lien, Stability criteria for uncertain neutral systems with 
interval time-varying delays, Chaos, Solitons and Fractals, 38(2008) 
50-657. 

[15] Y.S. Lee, Y. S. Moon, W. H. Kwon, P. Park, Delay-dependent robust 

H  control for uncertain systems with a state-delay, Automatica, 40 
(2004) 65-72. 

[16] T. Katayama, M. Kosaka, Recursive filtering algorithm for a 2-D system, 
IEEE Trans. Autom. Control, 24(1979) 130–132. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10999


