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Giuseppe Franzè ∗ Walter Lucia ∗ Francesco Tedesco ∗

Valerio Scordamaglia ∗∗

∗ DIMES - Università della Calabria,
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Abstract: In this paper we address the obstacle avoidance motion planning problem for
leader-follower vehicles configurations operating in static environments. By resorting to set-
theoretic ideas, a receding horizon control algorithm is proposed for robots modelled by
linear time-invariant (LTI) systems subject to input and state constraints. Terminal robust
positively invariant regions and sequences of precomputed inner approximations of the one-step
controllable sets are on-line exploited to compute the commands to be applied in a receding
horizon fashion. Moreover, we prove that the design of both terminal sets and one-step ahead
controllable regions is achieved in a distributed sense. An illustrative example is used to show
the effectiveness of the proposed control strategy.

Keywords: Distributed Model predictive control schemes, Obstacle avoidance, Leader-follower
networks, Constrained control.

1. INTRODUCTION

In recent years, control and coordination of multi-agent
network systems have attracted the attention of many
researchers, see e.g. Fax & Murray [2004], Jadbabaie et al.
[2003], Lin et al. [2004], Liu et al. [2006]. This is partly
due to broad applications of multi-agent systems in co-
operative control of unmanned air vehicles, scheduling of
automated highway systems, formation control of satellite
clusters, and congestion control in communication net-
works, etc. Essentially, a cooperative multi-agent system
is composed of a set of autonomous agents that interact
each another in a shared environment in order to reach a
common goal or optimize a global performance measure.
Due to the large number of inputs and outputs of this
class of systems, distributed control is often required.
In this contribution the interest is devoted to the class
of Distributed Model Predictive Control (DMPC)-based
approaches that have been successfully proposed in the
last decade, see Christofides et al. [2013] for an update and
detailed literature review. Noticeable contributions on this
isuue can be found in Dunbar [2007], Magni & Scattolini
[2006], Maestre et al. [2011] and Liu et al. [2010].
For most real mobile robotics applications, a basic re-
quirement is the capability to safely operate in environ-
ments where the presence of obstacles could encumber the
”normal” dynamical behavior, see Huang et al. [2013].
Avoidance of collisions is a key component of the safe
navigation whose typical objective is to reach a target
through the obstacle-free part of the environment, see Du
Toit & Burdick [2012] and references therein. Specifically,
we are here interested to consider constrained Receding
Horizon Control schemes which are an extremely appealing
methodology for dealing with the obstacle avoidance mo-

tion planning problem in virtue of their intrinsic capability
to generate at each time instant feasible trajectories that
allow to safely reach a given goal, see Yoon et al. [2009].

Moving from these considerations, in this paper we will
focus on a novel distributed discrete-time receding hori-
zon strategy for solving the obstacle avoidance motion
planning problem for leader-follower vehicles configura-
tions operating in static environments. To deal with the
latter, the idea is to exploit the distributed set-theoretic
approach proposed in Franzè & Tedesco [2013] so that the
prescribed saturation and geometric constraints are always
fulfilled and large regions of attractions can be achieved.
The key ingredients of the proposed strategy are below
summarized:

• Stabilizing state feedback laws associated to robust
positively invariant ellipsoidal sets;
• One-step controllable sets that can be steered to a
target in a finite number of steps;
• On line low demanding one-step ahead prediction and
receding horizon control philosophy.

Finally, the theoretical results of the proposed strategy
are illustrated by means of a simulation campaign on a
point mobile robot team whose navigation within a planar
environment is limited by the presence of three obstacles.

PRELIMINARIES AND NOTATIONS

Given a set S ⊆ IRn, In[S] ⊆ S denotes its inner
ellipsoidal approximation. Given a set S ⊆ X × Y ⊆
IRn× IRm, the projection of the set S onto X is defined
as ProjX(S) := {x ∈ X | ∃y ∈ Y s.t. (x, y) ∈ S} . Let us
consider the following discrete-time plant description
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xp(t+ 1) = Φxp(t) +Gu(t) (1)

where t ∈ ZZ+ := {0, 1, ...}, xp(t) ∈ IRn denotes the plant
state and u(t) ∈ IRm the control input. Moreover, the
system (1) is subject to the following set-membership state
and input constraints:

u(t) ∈ U , ∀t ≥ 0, U := {u ∈ IRm |uTu ≤ ū}, (2)

xp(t) ∈ X , ∀t ≥ 0, X := {xp ∈ R
n|xT

p xp ≤ x}, (3)

with u > 0, x > 0, and U , X compact subsets of Rm and
R

n, respectively.

Definition 1.1. A set T ⊆ IRn is robustly positively invari-
ant for (1) if once the state xp(t) enters that set at any
given time t0, it remains inside for all future instants, i.e.
xp(t0) ∈ T → xp(t) ∈ T , ∀t ≥ t0. ✷

In principle, it is possible to compute the sets of states
i-step controllable to T via the following recursion (see
Blanchini & Miani [2008]):

T0 := T
Ti := {xp ∈ X : ∃u ∈ U : Φxp +Gu ∈ Ti−1},

(4)

where Ti is the set of states that can be steered into Ti−1

using a single move with a causal control. By induction we
have that Ti is the set of states that can be steered into T
in at most i control moves.

2. PROBLEM FORMULATION

In the sequel, we refer to leader-follower LTI subsystems,
for which the dynamics of the first subsystem is:

x1(t+ 1) = A1x1(t) +B1u1(t) (5)

while the remaining subsystems are described by the
following dynamical equations:

xi(t+1)=Aixi(t)+Biui(t)+Ai,i−1xi−1(t)+Bi,i−1ui−1(t),

i= 2, . . . , l, (6)

where xi ∈ IRni and ui ∈ IRmi are the state and
input vectors of the i − th subsystem, Ai ∈ IRni×ni and
Bi ∈ IRni×mi are the state and input matrices for the
i − th subsystem, while Ai,i−1 ∈ IRni×ni−1 and Bi,i−1 ∈
IRni×mi−1 are the matrices for the coupling dynamics
which define the influence of the (i − 1) − th subsystem
upon the i − th one. and that the following input and
state constraints are prescribed for each i− th subsystem:

u(t) ∈ U i, ∀t ≥ 0, U i := {ui ∈ IRmi |uiT ui ≤ ūi}, (7)

x(t) ∈ X i, ∀t ≥ 0, X i := {xi ∈ R
ni |xiT xi ≤ xi}, (8)

with ui > 0, xi > 0, and U i, X i compact subsets of Rm

and R
n, respectively.

Assumption 2.1. Without loss of generality we shall con-
sider leader-follower networks whose agents have the same
state space dimension np, i.e. n1 = n2 = · · · = nl = np. ✷
In order to formally characterize the obstacle avoidance
problem, the following definitions will be considered:

Definition 2.2. Let Obk be an object. Then an obstacle
scenario O is defined as

O := {Ob1, . . . , Obno
} (9)

where no denotes the number of the involved objects. ✷

Definition 2.3. Let O be an obstacle scenario. Then the
non-convex free region external to the obstacle Obk is
identified as

Ok
free := {x ∈ IRnp : hk(x) > 0} (10)

where hk : IRnp → IRnf represents the support function
characterizing the admissibility state space region. ✷

Definition 2.4. The non-convex free region is identified as

Ofree =

no
⋂

k=1

Ok
free := {x ∈ IRnp : h(x) > 0} (11)

Hereafter, we shall assume without loss of generality that
each object Obk has a polyhedral convex structure (see
e.g. Varaiya [1998] for details on the computation of outer
polyhedral approximations) described as the intersection
of lk half-spaces:

Obk :
[

(Hk)
T
1 . . . (Hk)

T
lk

]T
p ≤ [ (gk)1 . . . (gk)lk ]

T

(12)
where p := B x ∈ IR2 are the environment components of
the state space x ∈ IRnp , with B ∈ IR2×np a projection
matrix.

Assumption 2.5. Communication facilities: At each
time instant t, each i − th follower subsystem knows the
current state and input values of the (i−1)−th subsystem
and the current state of the i+ 1− th subsystem. ✷

Distributed Obstacle Avoidance for leader-follower
robot formations (DOA-LFF) - Given the leader-
follower formation (5)-(6), with the robot positions entries
of the state vectors xi, and the obstacle scenario (9)
determine a distributed state-feedback control policy

u1(t) = g(x1(t)), i = 1
ui(t) = g(xi(t), xi−1(t), ui−1(t)), i = 2, . . . , l

(13)

compatible with (7), (8) and (11), such that starting from
an admissible initial condition x(0) = [x1(0)T , x2(0)T ,
. . . xl(0)T ]T the state trajectory of each i − th agent is
driven to a target position xf . ✷

In what follows, we will consider a receding horizon control
that makes use of the results obtained in Angeli et al.
[2008] and Franzè et al. [2013]. Strictly speaking, the basic
control strategy prescribes the following computations:

• a stabilizing state-feedback control law and the corre-
sponding robust positively invariant (terminal) region
compatible with the prescribed constraints;
• the set sequence of states that can be steered into the
terminal set in a finite number of steps.

In order to exploit such ideas for dealing with the DOA-
LFF problem, the following key questions must be ad-
dressed:

• How can one define terminal ellipsoidal regions and
sequences of one-step controllable sets for each sub-
system within a distributed framework such that
there exist feasible commands compatible with the
dynamics (5) and (6)?
• How can one define a sequence of one-step control-
lable sets such that there exists at least a feasible
path (x(0)→ xf ) complying with obstacle avoidance
purposes?

The next two sections will provide a solution to these
relevant issues.
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3. ROBUSTLY POSITIVELY INVARIANT REGIONS
AND ONE-STEP CONTROLLABLE SET FAMILIES:

OFF-LINE PHASE

The aim of this section is to characterize terminal pairs,
i.e. stabilizing controllers (Ki) and ellipsoidal regions (T i

0 ),
and one-step controllable sets which comply with the
prescriptions of the DOA-LFF problem. The main idea
is, starting from the goal location xf , derive off-line
a family of one-step controllable sets able to reach the
initial location x(0). To this end, we have to formally
build within a distributed (leader-follower) framework the
following items: terminal sets, one-step controllable sets
and a feasible path tube from x(0) to xf .

3.1 Terminal sets

Here, we determine a terminal constraint set which pre-
serves the following Cartesian structure:

T0 :=

l
∏

i=1

T i
0 (14)

where T0 ⊂ IRn, n = n1 + n2 + . . .+ nl, is in principle the
terminal set of the centralized system achievable by using
(5) and (6).
The simplest way to design terminal pairs complying with
(14) is to initially compute the pair (K1, T 1

0 ) pertaining
to the leader because its dynamics (5) does not depend
on the other subsystems behaviours, and then to com-
pute the remaining (Ki, T i

0 ), i = 2, . . . , l, by resorting
to a ”worst-case” approach. Specifically, the leader ter-
minal pair (K1, T 1

0 ) is obtained by solving a standard
semi-definite programming (SDP) problem as outlined
e.g. in Kothare et al. [1996]. While the followers pairs
(Ki, T i

0 ), i = 2, . . . , l, require different arguments be-
cause of the coupled terms Ai,i−1xi−1. Therefore, for each
follower subsystem Ai,i−1xi−1 can be considered as an
unknown bounded disturbance in view of the fact that
xi−1 ∈ T i−1

0 and, as a consequence, the robust positively
invariant ellipsoid T i

0 can be obtained by resorting to
SDP procedures based on P-difference arguments, see e.g.
Kurzhanski & Valyi [1997].

3.2 One-step controllable sets

The basic construction of one-step controllable set fami-
lies for the leader-follower architecture (5)-(6) is strictly
connected to the chance to be able to reach the target
xf starting from x(0). In fact because there exists an
unavoidable saturation effect on the growth of the one-step
controllable set sequence, it must be guaranteed that an
admissible path (x(0)→ xf ) can be obtained by ensuring
the feasibility retention of the overall distributed scheme.
This reasoning leads to the need to deal with the following
issues:

• Define recursions for the computation of one-step
controllable regions;
• Develop a procedure to overcome the drawback due
to the the saturation effect occurring on the one-step
controllable sets growth so that an admissible path
(x(0)→ xf ) could be determined.

Leader-Follower set recursions We characterize all the
states one-step controllable to given target sets T i

0 , i =
1, . . . , l by carefully taking care that the one-step state pre-
dictions are evaluated along interacting subsystem models.

Then, in order to derive admissible controllable regions,
it is necessary to proceed with the set construction in
”backwards”: the l set sequences are achieved level-by-level
and starting from the last element of the leader-follower
architecture, i.e. the l− th follower subsystem (6). In this
way, it can be ensured that each one-step controllable
region T i

j is compatible with the set T i−1
j pertaining to

the (i − 1) − th subsystem whose the dynamics is shared
with the i− th agent. The following result summarizes this
reasoning.

Proposition 1. Let T i
0 6= ∅, i = 1, . . . , l be given robustly

invariant ellipsoidal regions complying with the input,
state and obstacle constraints (7), (8) and (11) respec-

tively. Let x1
aug =

[

x1T , u1T , x1T , u1T
]T

∈ IR2×n+2×m

and xi
aug =

[

xi−1T

, ui−1T , xiT , uiT
]T

∈ IR2×n+2×m, i =

2, . . . , l, the augmented states describing the dynamics of
the subsystems (5) and (6) respectively. Then, the one-step
controllable sets sequence {T i

j }, i = 1, . . . , l, are derived by
means of the following recursions:

T l
j = {xl

aug = [xl, ul, xl−1, ul−1] ∈
(X l−1 ∩ Ofree)× U

l−1 × (X l ∩ Ofree)× U
l :

Alxl +Blul +Al,l−1xl−1 +Bl,l−1ul ∈ Ex
l

j−1}
(15)

T i
j = {xi

aug = [xi−1, ui−1, xi, ui] ∈
T i+1
j ∩ (X i−1 ∩ Ofree)× U

i−1 × (X i ∩ Ofree)× U
i :

Aixi +Biui +Ai,i−1xi−1 +Bi,i−1ui−1 ∈ Ex
i

j−1},
i = l − 1 . . . 2

(16)
T 1
j = {x1

aug = [x1, u1, x1, u1] ∈
T 2
j ∩ (X 1 ∩ Ofree)× U

i × (X 1 ∩ Ofree)× U
1) :

A1x1 +B1u1 ∈ Ex
1

j−1}
(17)

Ex
i

j−1 × E
ui

j−1 × E
xi−1

j−1 × E
ui−1

j−1 ⊆ T
i
j ∀i = 1 . . . l (18)

where

Ex
i

j = Projxi{T i
j } and Eu

i

j = Projui{T i
j } (19)

Proof - It is omitted for the sake of space. ✷

Feasible path tube According to recursions (15)-(19), the
construction of a single set of the one-step controllable

families {Ex
i

j } (one family per each involved agent) does
not in principle guarantee that a pre-assigned initial con-

dition x(0) lies into
⋃

j

{Ex
1

j × E
x2

j × · · · × E
xl

j }, because

a saturation effect may occur on the one-step control-
lable sets growth. As a consequence, the whole sequence
⋃

j

{T 1
j × T

2
j × · · · × T

l
j }, could be useless for any con-

trol purposes. This drawback can be worked around by
resorting to the ideas developed in Franzè et al. [2013] that
are here adequately modified to comply with the leader-
follower topology:

One-step Controllable Set Procedure (OSCSP) -

1. Given the goal xf , according to (14) and by following
the lines indicated in Section 3.1 design the pairs
(Ki

0, T
i
0 ), i = 1, . . . , l, with T i

0 robust positively invari-
ant regions centered in xf . Store the index 0 into the
indices vectors hereafter named IRi;
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2. Derive the sequence {T i
j }

N1
i

j=1, i = 1, . . . , l, by using

recursions (15)-(19). Integers N1
i , i = 1, . . . , l, are

the saturation levels for each i− th region growth;
4. Initialize the counter s := 1;

5. If x(0) /∈ Ex
1

Ns
1
× · · · × Ex

l

Ns
1
then

· Choose an equilibrium xs
eq ∈ E

x1

Ns
1
(leader agent

sequence);
· Design a new terminal pair (K1

Ns
1+1, T

1
Ns

1+1) with

T 1
Ns

1+1 centered in xs
eq . Compute new follower ter-

minal pairs (Ki
Ns

1+1, T
i
Ns

1+1) with T
i
Ns

1+1 centered

in x1
eq and such that

T i
Ns

1+1 ⊆ T
1
Ns

1+1, i = 2, . . . , l. (20)

Store the integers Ns
i + 1 into the corresponding

indices vector IRi;

6. Derive the new leader sequence {T 1
j }

Ns+1
1

j=Ns
1
+1 under

the following additional constraint:

{T 1
j }

N
s+1
1

j=Ns
1+1 ⊆

l
⋃

i=2

{T i
j }

Ns
i

j=1 (21)

while the new follower sequences {T i
j }

N
s+1
i

j=Ns
1+1, i =

2, . . . , l, are exactly obtained as prescribed in (15)-
(19).

7. Add each new sequence {T i
j }

N
s+1
i

j=Ns
1+1, i = 1, . . . , l, to

the corresponding previously computed sequences;
8. s← s+ 1, and goto Step 5.

Remark 1. Notice that the indices vector IRi has the aim
to keep trace of all the robust positively invariant regions
obtained by the OSCSP procedure.
The additional conditions (20)-(21) are introduced to make
admissible within a receding horizon control framework
the switching amongst sets of one-step controllable se-

quences, i.e. {T i
j }

N
s+1
i

j=Ns
1+1 → {T

i
j }

N
r+1
i

j=Nr
1+1, s 6= r.

The non-convex constraints arising from (11) can be con-
vexified by exploting the procedure proposed in Franzè
et al. [2013]. ✷

4. THE DISTRIBUTED MODEL PREDICTIVE
CONTROL ALGORITHM

The proposed scheme will rely on the properties of the
leader-follower hierarchy in the sense that each i-th agent
makes a decision just before the successive (i+1)-th agent.
In fact, the i-th subsystem selects its local command ui by
resorting to the current state measurement xi(t) and to the
information (xi−1(t) and ui−1(t)) received by the (i−1)-th
predecessor agent.

Then, the local input ui(t) is computed according to the
following optimization problem:

ui(t) = argmin
ui

Jj(t)(x
i(t), ui, xi−1(t), ui−1(t)) s. t.

(22)
{

Aixi(t)+Biui+Ai,i−1xi−1(t)+Bi,i−1ui−1(t)∈Ex
i

j(t)−1

ui∈U i

(23)
Here, the running cost Jj(t)(x

i(t), ui, xi−1(t), ui−1(t)) is
chosen without loss of generality as follows:

Jj(t)(x
i(t),ui,xi−1(t),ui−1(t)) =

‖Aixi+Biui+Ai,i−1xi−1+Bi,i−1ui−1(t)‖2
P i

j(t)−1

(24)

where P i
j−1 is the shaping matrix of the ellipsoidal region

Ex
i

j−1.

(xi)TP i
j−1x

i ≤ 1

Once the local command ui(t) has been computed, the
i-th subsystem transmits to the (i + 1)-th follower both
xi(t) and ui(t). This procedure applies to all the agents
in a sequential fashion. It is important to remark that the
whole sequential procedure needs to be completed within
the given sampling interval, i.e. all the agents have been
applied their decisions.

Note that the above actions are slight different when the
leader subsystem (5) is considered. In fact, the leader does
not make use of any information related to the other agents
and determines the command u1(t) by only using the
state measurements x1(t). As a consequence, the following
optimization problem results:

u1(t) = argmin
u1

Jj(t)(x
1(t), u1) s. t. (25)

{

A1x1(t) +B1u1 ∈ Ex
1

j(t)−1

u1 ∈ U1 (26)

and the running cost Jj(t)(x
1(t), u1) is

Jj(t)(x
1(t), u1, u2) = ‖Ax1(t) +B1u1‖2P 1

j(t)−1
(27)

Finally, the leader transmits x1(t) and u1(t) to the agent
2.

All the above developments allows one to write down a
computable distributed MPC scheme, hereafter denoted
as DMPC-LF, which consists of the following algorithm.

Distributed Leader-Follower Obstacle Avoidance
Receding Horizon Control Algorithm (DLFOA-
RHC Algorithm) - Agent i-th

Initialization

1.1 Given the obstacle scenario O, the initial state con-
dition x(0) and the goal xf , compute the robust in-
variant ellipsoids T i

0 ⊂ IRni , i = 1, . . . , l, and the
corresponding stabilizing state feedback gains Ki, i =
1, . . . , l, complying with the constraints (2), (3), (11);

1.2 Apply the OSCSPprocedure in order to generate the

sequences {Ex
i

j }, i = 1, . . . , l, such that

x(0) ∈ (Ex
1

xp × . . .× Ex
l

xp) ⊂





⋃

j

{

Ex
1

j × . . .× Ex
1

j

}





(28)

1.3 Store the ellipsoids {Ex
i

j }

On-line phase (Leader)

1. repeat at each time t

1.1 find j(t) = min{j : x1(t) ∈ Ex
1

j }

1.2 If j(t) ∈ IR1 then u1(t) = K1x1(t)
1.3 else solve (22)-(23)
1.4 apply u1(t) and transmit x1(t) and u1(t) to the

agent 2
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On-line phase (Follower i− th)

1. repeat at each time t
1.1 receive xi−1(t), ui−1(t) from the (i − 1)-th

predecessor

1.2 find j(t) = min{j : xi(t) ∈ Ex
i

j }

1.3 If j(t) ∈ IRi then ui(t) = Kixi(t)
1.4 else solve (25)-(26)
1.5 apply ui(t) and transmit xi(t) and ui(t) to the

(i+ 1)-th follower

The next proposition shows that the proposed DLFOA-
RHC Algorithm enjoys the feasibility retention and
closed-loop stability.

Proposition 2. Let the sequences of sets Ex
i

j be non-
empty such that

x(0) ∈ (Ex
1

xp × . . .× Ex
l

xp) ⊂





⋃

j

{

Ex
1

j × . . .× Ex
1

j

}



 (29)

Then, the DLFOA-RHC Algorithm always satisfies the
constraints and ensures asymptotic stability despite of the
obstacle scenario O occurrence.
Proof - The existence of solutions at each time instant t
implies existence of solutions at time t + 1 because the
optimization problems in Steps 1.3.1 and 1.4.1 of the on-
line phase for both leader and followers are always feasible.
In fact, by construction there exists an input vector u
satisfying the constraints (7), (8) and (11) such that the
set-membership requirements in (26) and (23) respectively
hold true. Then thanks to the OSCSP procedure and
under the additional constraint constraints (20)- (21), at
the next time instant t + 1 the existence of solutions
u(t+ 1) for the Steps 1.4.1 is ensured. ✷

5. ILLUSTRATIVE EXAMPLE

In this section we shall consider a formation of three
robots (R1, R2, R3) where the robot R1 (leader) moves
independently from R2 and R3 (followers). For each robot
we will use the point mobile robot model discussed in
Kuwata et al. [2005], whose the state consists of position
and velocity components x = [px py vx vy]

T and motions
are governed by the following discrete-time LTI model:

x(t+ 1) = Φx(t) +Gu(t)

where u ∈ IR2 is the acceleration vector (m/s2),

Φ =

[

I2 ∆t I2
02 I2

]

, G =

[

(∆t)2 I2
2

∆tI2

]

,

with ∆t = 1 sec. and subject to the saturation constraint

‖u(t)‖22 ≤ 0.028, ∀t ≥ 0. (30)

By defining xe1 := x1, xe2 := x2 − x1, xe2 := x3 − x2,
the following error state space description complying with
(5)-(6) is derived:

xe1 (t+1) = A1x1(t) +B1u1(t)
xe2 (t+1) = A2xe2(t)+B2u2(t)+A2,1xe1 (t)+B2,1u1(t)
xe3 (t+1) = A3xe3(t)+B3u3(t)+A3,2xe2 (t)+B3,2u2(t)

(31)
where

A1 = A2 = A3 := Φ, A2,1 = A3,2 := Φ− Φ = 0n×n,

and

B1 = B2 = B3 = G,B2,1 = B3,2 = −G

Moreover, we assume that the autonomous vehicles navi-
gate in a planar environment characterized by an obstacle
scenario O consisting of three rectangular objects, see Fig.
3. Specifically, the working space is defined as follows:







−1 0
1 0
0 −1
0 1







[

px
py

]

≤







0
18
0
18






(32)

while the obstacles are localized as below reported:

Obstacle width heigth center of gravity

Ob1 2 2 [5; 9]
Ob2 2 2 [10; 6]
Ob3 2 2 [10; 11]

The aim of this simulation can be stated as:

Starting from the following initial positions: x1(0) =
[5, 5, 0, 0]T , x2(0) = [2, 10, 0, 0]T , x3(0) = [11, 2, 0, 0]T ,
drive the leader and follower vehicles to the target xf =
[14, 13, 0, 0]T within the operating region (32) subject to
the obstacle configuration O.

In order to implement the DLFOA-RHC Algorithm the
following choices on the running cost have been made:
Ru = I2 and Ru2 = I2. All the relevant numerical results
are reported in Figs. 1-3. First, Figs. 1 and 3 show that the
prescribed saturation and geometric constraints are always
fulfilled. Then, to better appreciate the modus operandi
of the proposed scheme, it is important to analyze the
set-membership signal shown in Fig. 2, because it depicts
the level of contraction provided by the DLFOA-RHC
algorithm during the system evolution and represent at

each time instant the smaller ellipsoids Ex
i

j of the pre-

computed families containing the subsystem states xi(t).

Finally, Fig. 3 accounts for the state dynamical behaviours
of the robot formation, by putting in evidence the following
interesting phenomenon: though the followers (R2 and R3)
start from initial conditions far from the leader (R1) initial
point and their ideal trajectories are obstructed by the
obstacle occurrence, the proposed strategy is capable to
drive all the follower vehicles to the target xf by tracking
as better as possible the leader path.
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Fig. 1. Applied command inputs. The dotted lines repre-
sent the prescribed constraints
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6. CONCLUSIONS

In this paper we have presented a novel distributed model
predictive control strategy for solving the the obstacle
avoidance motion planning problem for autonomous ve-
hicle leader-follower networks described by linear time-
invariant systems within static environments. Set-theoretic
ideas have been exploited to take care of all the dynamical
connections amongst the involved agents. As one of its
main merits, the proposed strategy carries out off-line most
of the computations so that the overall framework becomes
appealing in practical applications. Moreover, feasibility
retention, viz. constraints fulfilment, and asymptotic sta-
bility of the closed-loop system have been formally proved.
Finally, the benefits of the DLFOA-RH Algorithm are
illustrated by means of a point mobile robots team.
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ellipsoidal off-line MPC scheme for uncertain polytopic
discrete-time systems. Automatica, 44, pages 3113–3119,
2008.

F. Blanchini and S. Miani. Set-Theoretic Methods in
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