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Abstract: This paper presents a decentralized adaptive model predictive control scheme for alumina 

trihydrate precipitation process that is a large-scale nonlinear complex system with strong disturbances 

and a large time constant. The overall precipitation system is decomposed into several small-scale 

systems expressed as several Hammerstein structures with an adaptive disturbance model. The local 

controller takes the upstream state into account as a measured disturbance. The proposed method 

preserves the small computation and communication properties of decentralized MPC while ensuring a 

good performance. A simulation based on real data shows the model is true and the control method is 

effect. 
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1. INTRODUCTION 

The alumina trihydrate precipitation step determines the 

alumina productivity and quality in the commercial Bayer 

process. The main function of the precipitation step is to gain 

alumina trihydrate crystals from the agitated and 

supersaturated sodium aluminate solution in the presence of 

large quantity of gibbsite seed at the proper temperature. 

Many studies   show that the precipitation crystal yield and 

size distribution are affected by the precipitation temperature 

to a great extent (Yamada; Satapathy; Yanly). Though 

precipitation temperature is a key plant process condition, the 

temperature is not controlled automatically but manually in 

the industrial production at present, and the performance of 

manual temperature control is bad. Because the precipitation 

process is a large-scale nonlinear complex system with strong 

disturbances and a large time constant, the traditional control 

technology can not apply to this process successfully. 

Implementation of an accurate automatic control has become 

an urgent problem in production. 

In recent years, model predictive control (MPC) was widely 

and successfully applied in controlling complex industrial 

processes, showing its great potential in handling complex 

constrained optimization control problems (Qin; XI). 

However, large-scale systems are often hard to be controlled 

in a centralized way due to the excessive computational 

burden and the difficulty in constructing and maintaining a 

full dynamical model for control design. Hence, decentralized 

or distributed MPC (DMPC) for large scale systems is a new 

trend. Christofides et al. (Christofides; Scattolini) review a 

number of decentralized, distributed and hierarchical MPC 

architectures for large scale systems and provide many 

algorithmic details. Some DMPC algorithms were proposed 

base on a set of assumption like no model errors, no 

disturbances or constraints and so on (Wang; Magni). 

Though these algorithms provide a good theoretical 

performance, the good performance may not be achieved in 

the real precipitation process with strong nonlinearity and 

unmeasured disturbances. Some DMPC methods were 

designed for power system (Mohamed; Moradzadeh). These 

controlled systems are quite different from the precipitation 

process, so that the DMPC methods for them do not suit to 

control the precipitation process. Liu and Heidarinejad used a 

Lyapunov-based MPC controller as the local controller to 

preserve the stability properties while satisfying input 

constraints, and on this basis they developed different kinds 

of DMPC scheme and the theoretical results are demonstrated 

through a nonlinear chemical process example (Liu,2010; 

Heidarinejad,2011a,b). However they did not discuss the 

situation in which the strong unmeasured disturbances exist. 

Mercangoz proposed a DMPC framework based on a stable 

Nash equilibrium. The framework is demonstrated on an 

experimental four-tank system (Mercangoz). The results 

show the method performs significantly better than a 

completely decentralized set of controllers. However the 

DMPC application introduces a communication overhead. 

Furthermore, the main performance improvement depends on 

the repetition of the optimization problems which introduces 

additional computational load. Zheng proposed a DMPC 

framework based on neighbour-hood optimization, and 

applied it to an accelerated cooling process in a test rig 

(Zheng, 2009, 2011). The local controller only communicates 

with its neighbour controllers and adapts a linear model as 

local predictive model, which reduce the computational and 

communicational burden. However the iteration of the 
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optimization problem is obligate. A comparative analysis
 

shows that the distributed scheme is not necessarily better 

than a decentralized scheme because it depends on the 

formulation of the controller and its design (Alvarado). If 

steady-state errors were not taken into account, the 

decentralized scheme shows the shortest settling time and the 

best transient performance. 

In this paper we proposed a decentralized adaptive MPC 

scheme for the precipitation process. The local predictive 

model has a Hammerstein structure with adaptive 

disturbances model, and the local controller takes the 

upstream state into account as a measured disturbance, which 

preserves the advantage of the decentralized scheme while 

improving the steady-state performance. This decoupling 

scheme makes the performance of each subsystem control 

loop independent of other subsystem control loops and 

simplifies the MPC controller design. The introduction of 

upstream state and the adaptive disturbances model ensures 

the steady-state performance and a stronger rejection of 

disturbances. 

The contents are organized as follows. Section 2 describes 

the alumina trihydrate precipitation process. Section 3 

establishes the first principles process model. Section 4 

presents the proposed decentralized adaptive MPC scheme. A 

real production data based simulation is presented in Section 

5. Finally, a brief conclusion is drawn to summarize the study. 

2. ALUMINA PRECIPITATION PROCESS DESCRIPTION 

Fig.1 illustrates the precipitation process. The supersaturated 

sodium aluminate solution and gibbsite crystal seeds are fed 

into the first precipitator, and mixed by continuous stirring. 

The feed slurry flows through a series of precipitators by its 

own weight, the exothermic crystallization reaction occurring 

under atmospheric pressure. The precipitator is made of steel, 

so it is easy to exchange heat with the environment. A 

thermometer is located at the outlet of each precipitator to 

measure the temperature of the slurry. Some wide-runner 

plate heat exchangers are mounted on the top of precipitators 

to cool the slurry. The slurry is pumped from the precipitator 

to the heat exchanger, and exchange heat with the cooling 

water, then return to the precipitator. The inlet temperatures, 

outlet temperatures and flow rates of both fluids flowing 

through the heat exchanger can be measured. The cooling 

water flow can be controlled by the electrically operated 

valve.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Alumina precipitation process 

3. MODEL 

3.1  Dynamic Model of Precipitators  

The precipitator is a good mixer so the slurry temperature, 

density and specific heat capacity at constant pressure in the 

precipitator are the same as that of the outflow. The outlet 

temperature of the precipitator equals the inlet temperature of 

the downstream precipitator. The dynamic heat balance in the 

precipitators is shown in the following equation: 

1 , , ,( )i
p p i p i p w w wi wi out wi in i i

dT
c V c F T c F T c F T T Q H

dt
         (1) 

where i is the precipitator number; V  the slurry volume in the 

precipitator; cp the slurry specific heat at constant pressure; ρ 

the slurry density; F the slurry flow rate through the 

precipitator; Ti the outlet temperature of the ith precipitator; 

T0 the feed temperature of the first precipitator; cp,w the 

specific heat of the cooling water; ρw the density of the 

cooling water; Fwi the cooling water flow rate through the ith 

heat exchanger; Twi,in the cooling water inlet temperature of 

the ith heat exchanger; Twi,out the cooling water outlet 

temperature of the ith heat exchanger; Qi the heat dissipation 

capacity per unit time;  Hi the enthalpy of crystallization 

reaction per unit time.  

Eqs.(1) is nonlinear, because it contains the product of 

variables Fwi and (Twi,out －Twi,in). Attaining a heat equilibrium 

in a heat exchanger is much sooner than that in a precipitator. 

Therefore the heat transfer process in the heat exchanger can 

be expressed by a static model. 

3.2  Static Model of The Heat Exchanger 

The time constant of the heat balance in a precipitator is 

about several hours, but the time constant of the heat transfer 

in a plate heat exchanger is only a few seconds. Therefore, 

the heat exchanger dynamics can be grasped with a static 

model. The total rate of heat transfer between the hot and 

cold fluids passing through a plate heat exchanger may be 

expressed as: 

  
, , , , ,( ) ( )w p w w w w out w in p a a in a out mQ c F T T c F T T UA t         (2) 

where Qw the heat transferred in the heat exchanger; Fa is the 

slurry flow rate through the heat exchanger; Ta,in the slurry 

inlet temperature of the heat exchanger; Ta,out the slurry outlet 

temperature of the heat exchanger; U the total heat transfer 

coefficient of the heat exchanger; A the total heat exchange 

area of the heat exchanger;  tm the log mean temperature 

difference. The wide-runner plate heat exchanger is a kind of 

counter-flow heat exchanger, which means the two fluids 

enter the heat exchanger from the opposite ends. The log 

mean temperature difference is defined by the logarithmic 

mean as following: 

, , , ,

, ,

, ,

( ) ( )

ln( )

a out w in a in w out

m
a out w in

a in w out

T T T T
t

T T

T T

  
 





                        (3) 

From Equations (2) and (3): 
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The overall heat transfer coefficient U takes into account the 

individual heat transfer coefficients of each fluid and the 

resistance of the wall material. In order to ensure the high 

efficiency of the heat exchange and simplify the control 

operation, the slurry flow rate through the exchanger is kept 

at an almost constant level in actual operation. Hence the 

slurry heat transfer coefficient is an almost constant. This 

means the total heat transfer coefficient only changes with the 

cooling water flow rate. It can be calculated as (Liu,2013a): 

3

1 21/ ( / )wU F
                                                               (5) 

Where θ1，θ2，θ3 are unknown parameters, and are all 

almost constants under normal production conditions. These 

parameters are difficult to be determined directly, they need 

to be identified using the practical process data. 

3.3  Hammerstein Model of Precipitation Process 

The Hammerstein model consists of a static input 

nonlinearity block in series with a dynamic linear block. Let 

vi=(Twi,out - Twi,in) Fwi . The whole precipitation process can be 

described by a series of Hammerstein models as: 

,

1

w p wi i i
i i i

p p

cdT H QF F
T T v

dt V V Vc Vc



 


 
                                      (6) 
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v f F T T F

U A U A
T T F

F c F c

F c U A U A

U A F c F c



  



  

                   (7)  

4. DECENTRALIZED ADAPTIVE MPC 

In order to obtain satisfactory precipitation rates and quality 

of alumina trihydrate, the decomposition temperature in the 

last precipitator should be stable at a proper constant and the 

cooling speed should be steady and the difference between 

the outlet temperature of the first precipitator and the outlet 

temperature of the last precipitator should be above 10 

degrees. That means the control objective is to adjust the 

outlet temperature of the different precipitators to be 

consistent with the setting temperature profile. In the process 

models (7) and (8), Ti are the desired controlled variables, Fwi 

are the manipulated variables, andHi, Qi, Fai, Tai,in , Twi,in 

are the disturbances. Among them Hi and Qi are difficult to 

be measured directly or indirectly. Therefore, the control 

method should be suitable for a large-scale and nonlinear 

system. Furthermore, this method should be able to account 

for the major measurable disturbances and the unmeasured 

disturbances for precision enhancing. In order to decrease the 

computational complexity and guarantee the performance of 

overall system at the same time, a decentralized adaptive 

MPC approach is proposed for decomposition temperature 

control in the alumina trihydrate precipitation process. 

According to the equipment connection pattern, the whole 

system illustrated in Fig.1 can be divided into five 

subsystems, and each subsystem includes two precipitators 

and a heat exchanger except the subsystem only including 

two precipitators. In fact, due to the absence of the heat 

exchanger, the outlet temperatures of precipitator 1 and 

precipitator 2 are uncontrollable. The corresponding model is 

only used to predict the output temperatures of the subsystem. 

In other subsystems, the output temperature can be controlled 

by regulating the cooling water flow of the heat exchangers. 

Each subsystem MPC controller can be designed individually 

based on subsystem model. In order to avoid performance 

loss caused by the decentralized control, the subsystem 

model accounts the output temperature of the upstream 

subsystem as a measurable disturbance variable, and the 

lumped unmeasured disturbances are estimated by an 

adaptive disturbance model. The closed-loop stability of the 

whole MPC system could be guaranteed when each local 

closed-loop system remains stable. The decentralized scheme 

has no influence on the stability of individual control loops 

due to the coupling among the subsystems being treated as 

disturbances, and the realization of a stable control to a 

simple system is easier than that to a large scale system.  

4.1  State Space Model of Subsystems 

In industrial application, the measurements are available 

digitally with a sampling time. Thus the discrete time version 

of the subsystem is derived by approximating the derivatives 

using simple Euler approximation. Let state xi denote Ti, and 

ui denote Fwi, and di denote the measured disturbances Fai, 

Tai,in, Twi,in, and wi denote the unmeasured disturbances. Then 

the state space representation of subsystem j deduced from 

the previous equations (6) and (7) can be expressed as: 

1( 1) ( ) ( ) ( ) ( )j j j j jX k AX k BV k DX k GW k             (8) 

Where j is the subsystem number, j=1…5 and i=2j-1; 

1( ) [ ( ) ( )]T

j i iX k x k x k ;  
0 0( ) ( )x k T k ; 

 ( ) ( ) 0
T

j iV k v k ; ( ) ( ( ), ( ))i i iv k f u k d k ; 

1( ) 0v k  ; 
1( ) [ ( ) ( )]T

j i iW k w k w k ; 

/ 0

/ /

F V
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F V F V

 
  

 

; , / ( ) 0

0 0

w p w pc Vc
B

  
  
 
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0 /

0 0

F V
D

 
  
 

; 
1/ ( ) 0

0 1/ ( )

p

p

Vc
G

Vc





 
  

 

. 

4.2  Adaptive Unmeasured Disturbance Model 

To achieve offset-free control MPC usually adopts a constant 

output step disturbance model. The disturbance model is 

equivalent to assuming an output disturbance that remains 
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constant for all future time (Lundström). This method is 

simple and applied widely in industrial model predictive 

control. In this work we will develop the more sophisticated 

disturbance model based on the actual system in order to 

improve the prediction accuracy and hence control 

performance. In Eq.(8), the unmeasured disturbances Wj(k) 

can be observed by the follow equation. 

1 1

1( 1) ( ) ( ( 1) ( 1) ( 1))j j j j jW k G X k G AX k BV k DX k 

          (9) 

Wj(k) consist of the measurement noise, the external 

unmeasured  disturbances as well as the effects caused by 

model mismatches. The enthalpy of crystallization reaction 

and the heat dissipation capacity are the main external 

unmeasured disturbances in each precipitator subsystem. 

Because of the inertia of the heat transfer process, the time 

series wi(k) must have some statistical regularity and can be 

estimated through the regression model described the 

statistical regularity. After analyzing a large amount of real 

production data we found that the autocorrelations of the time 

series wi(k) show the smear characteristics and that the partial 

autocorrelations show two order truncated tail characteristics. 

Therefore, we can describe the disturbances wi(k) with two 

order autoregressive model as the following formula: 

0 1 2( ) ( 1) ( 2) ( )i i i i i iw k w k w k k                       (10) 

Where ( )k  is a zero mean white noise sequence, and φi0, φi1, 

φi2 are the model parameters. The parameters can be 

estimated by the historical time series of wi(k). The model 

parameters will be re-estimated whenever a new wi(k) value 

is obtained, then the new model can be used to predict 

subsequent disturbances. 

4.3  MPC Formulation 

Since there are no manipulated variables in subsystem 1, a 

predictor is applied for estimating the future states. In the 

predictor, the prediction model is (8), and the measurable 

disturbance T0(k) is assumed to be a constant during the 

estimating of X1(k). 

As for subsystem j=2,3,4,5, the decomposition temperature is 

controlled by a local MPC. The local MPC is formulated 

based on Hammerstein predictive model. In this study, we 

use the two-step control scheme that is easy to calculate and 

implement (Ding). It first applies the linear MPC to get the 

desired intermediate variables, and then obtains the actual 

control action by solving nonlinear algebraic equation. The 

details of it are presented as follows. The performance index 

for each subsystem is: 

2 2

1 1

( ) ( ) ( ) ( 1 )
j j

j j

P M

j j j jQ R
t t

J k X k t k Xr k t V k t k
 

         (11) 

Where Xrj is the setting vector, namely the reference 

decomposition temperature of subsystem j; 
jV is the 

increment of intermediate variable vector Vj; Pj is the 

prediction horizon and Mj is the control horizon; Qj and Rj are 

the positive definite weighting matrices and have block-

diagonal forms. The local optimization problem for 

subsystem j at the sampling time instant k is: 

( )
min ( ), 2...5

j
j

v k
J k j


                                                     (12a) 

s.t.  ( ) ( )j jX k k X k                                                       (12b) 

1

( ) ( 1 ) ( 1 )

( 1 ) ( 1 )

j j j

j j

X k t k AX k t k BV k t k

DX k t k GW k t k

       

    
      (12c) 

min max( )jV V k V                                                         (12d) 

min max( )jV V k V                                                    (12e) 

Where the constraints (12d) and (12e) are determined by real 

input saturation constraints; {Vmin, Vmax} and {
minV , 

maxV } 

are boundaries of intermediate variables and boundaries of 

increment of them respectively. In this case sequences Xj(k) 

and Vj(k) are available, problem (12) can be recast as a 

quadratic program. At every time step, the optimization 

problem is solved to get the optimal intermediate variable 

Vj
*
(k), and then the optimal control decision sequence ui

*
(k) is 

obtained by solving the following nonlinear equation: 

*( ) ( ( ), ( ))i i iv k f u k d k                                                    (13) 

Solving problem (12) requires the use of the future states of 

its upstream subsystem and the estimation of unmeasured 

disturbances. The DMPC algorithm for the overall system is 

as follows: 

1.  At time k, measure the state Xj(k), disturbance T0 and the 

input ui(k-1), and calculate the intermediate variable Vj(k-1). 

2.  Observe Wj(k-1) by the formula (9), and then update the 

parameters of the model (10), and at last estimate the future 

disturbance sequences Wj(t+k-1) (t=1…Pj) by the updated 

model. 

3.  Calculate X1(t+k-1) (t=1…Pj) by predictor, and solve the 

problem (12) to derive the optimal intermediate variable 

Vj
*
(k). 

4. Solve the nonlinear equation (13) to obtain the control 

sequences ui
*
(k), and command the first value of the control 

sequences to the process. 

5.  Set k=k+1, and return to step 1 at the next sample time. 

5.   REAL DATA BASED SIMULATIONS 

To test the validation of the proposed method, we take an 

alumina trihydrate precipitation process in an alumina plant 

located in Jiaozuo Henan China as an example. The operating 

point data show in Table 1. In all the simulation runs, the 

process is simulated using the nonlinear first principle model 

and production data including real disturbances and noise 

(Liu,2013b). 

Table 1.  Operating data for precipitation process 

Process variable Description Operating piont 

F (m
3
·h

-1
) Slurry flow rate 885 

V (m
3
) Slurry volume 4308 

ρ (kg·m
-3

) Slurry density 1550 

cp  (J·kg
-1

·k
-1

) Slurry specific heat 2690 

A (m
2
) Heat exchange area 339.6 
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ρw  (kg·m
-3

) Water density 1000 

cp,w (J·kg
-1

·k
-1

) Water specific heat  4174 

Fw (m
3
·h

-1
) Cooling water flow rate 0~400 

5.1  Validation of Designed Model 

There is little difference between each subsystem model, thus 

we only take subsystem 2 as an example in this simulation. 

We identified the undetermined coefficients of the heat 

exchanger model using historical production data, and then 

estimated the cooling water outlet temperature by Eqs.(5).  In 

Fig.3 the continuous line shows the real cooling water outlet 

temperature while the dashed line represents the model out. 

There exists a little difference in the steady state value, a kind 

of error which can be easily overcome by a controller with 

integral action. The dynamics of the estimation matches the 

real measurement quite well. The outlet temperature of both 

precipitators are predicted by equation (9), in which the 

unmeasured item Wj(k) was not computed. Fig.4 and Fig.5 

show the decomposition temperature in the precipitator 3 and 

in precipitator 4 respectively. The curves of predictive results 

are close to that of measurements, but some obvious 

differences exist between them. The differences are caused 

by the unmeasured disturbances. The simulation shows that 

model (9) is suitable as a local prediction model meanwhile 

the prediction of unmeasured disturbances is a must. 
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Fig.3 Comparison between the estimative results and the 

measurement of cooling water outlet temperature (Tw3,out) 
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Fig.4 Comparison between the model out and the 

measurement of T3 
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Fig.5 Comparison between the model out and the 

measurement of T4 

5.2  Performance of Proposed Controllers 

As a reference for the performance of the local MPC 

controller with an adaptive unmeasured disturbance model, a 

classical MPC controller was also simulated. The classical 

MPC adopts a constant output step disturbance model to 

resist unmeasured disturbances. Set the prediction horizon 

Pj=12, the control horizon Mj=2 and the control sampling 

period is 1 hour. Fig.6 shows the subsystem closed loop 

response for step change in the set-point. The performance of 

the adaptive MPC controller is better than that of the classical 

MPC controller, as it executes with a smaller overshoot and a 

stronger rejection of disturbances and a better following of 

the set-point. Fig.7 demonstrates the performance of the 

proposed decentralized adaptive MPC regulating all 

decomposition temperatures. The temperature reference value 

is set according to the production requirement. In fact, T1 and 

T2 are not controllable, thus there is no need to set the 

corresponding reference value. The feed temperature (T0) is 

determined by the upstream procedure, and it has an 

approximate step change at time 150h and 300h respectively. 

The uncontrollable variables T1 and T2 follow the fluctuation 

of T0 faithfully, and T2 is higher than T1 due to the exothermic 

crystallization. The controlled temperatures (T3~T10) are 

maintained at the set-points well. The temperature difference 

between T1 and T10 is above 10 degrees and the cooling speed 

is steady. The simulation indicates that the proposed 

decentralized adaptive MPC method has a good control 

performance in presence of unmeasured disturbances, and 

can meet the requirements for the decomposition temperature 

control. 
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Fig.6 Performances of the adaptive MPC 

6. CONCLUSIONS 

In this paper, we have proposed a decentralized adaptive 

MPC approach for controlling the decomposition temperature 

in precipitation process, in which the large scale nonlinear 

system is divided into several interconnected subsystems and 

each subsystem is controlled by a local MPC. To overcome 

the computational obstacle of nonlinear model, we use the 

Hammerstein model as the prediction model of each local 

MPC, and adopt the two-step control algorithm with a small 

computational burden. Meanwhile an adaptive unmeasured 

disturbance model is designed to improve the disturbance 

rejection capability of the local controller. Furthermore, in 

order to avoid performance loss caused by the decentralized 

control, the subsystem prediction model accounts the 

upstream subsystem state as a measurable disturbance. From 

the simulation studies, it can be concluded that the proposed 
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approach can ensure a good performance in presence of real 

disturbances.
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Fig.7 Performance of the decentralized adaptive MPC 
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