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1. INTRODUCTION

A rich class of dynamical systems is described by homo-
geneous functions. In fact, homogeneous systems can be
seen as a particular class of nonlinear systems, with a
behavior as complex as that of the general nonlinear dy-
namics (Sepulchre and Aeyels, 1996), (Aeyels and De Leen-
heer, 2002). Furthermore, homogeneous dynamics include
also relevant classes of hybrid systems, such as switched
linear dynamics under arbitrary switching (Tuna, 2008),
conewise linear dynamics (Lazar et al., 2013).

The stability analysis of continuous–time homogeneous
systems was considered, for example, in (Hahn, 1967) and
in (Rosier, 1992), where it was shown that asymptotic
stability of any homogeneous approximation of general
nonlinear control systems is sufficient for (local) asymp-
totic stability of the original system. Furthermore, for
homogeneous asymptotically stable differential equations
the existence of a homogeneous Lyapunov function was
guaranteed (Rosier, 1992). In (Sepulchre and Aeyels, 1996)
necessary conditions for homogeneous stabilization are in-
troduced, i.e. for the existence of a stabilizing feedback
leaving the closed–loop system homogeneous, since in this
case the existence of a homogeneous Lyapunov function is
guaranteed from (Rosier, 1992). A class of continuous–time
positive homogeneous systems was considered in (Aeyels
and De Leenheer, 2002), for which a generalization of
the Perron–Frobenius theorem was provided for stability
analysis. Also the notion of D–stability (i.e. stability of
systems transformed into diagonal form) was studied for
positive homogeneous systems, e.g. in (Bokharaie, 2012).
Therein, D–stability was extended for nonlinear systems
and some results are established for different classes of
positive nonlinear systems, like homogeneous cooperative
systems. Non–autonomous continuous–time homogeneous
systems were considered in (Grüne, 2000) and (Grüne
et al., 2000), and it was shown therein that any asymptot-
ically controllable homogeneous control system admits a

homogeneous control Lyapunov function and a stabilizing,
possibly discontinuous, homogeneous state feedback law.

Although continuous–time homogeneous systems have
been studied in the literature, there are few results which
consider discrete–time homogeneous systems. A particular
type of discrete-time homogeneous dynamics, i.e. homo-
geneous systems of order one, or as it will be defined
here, homogeneous dynamics of order zero, w.r.t. the stan-
dard dilation map (matrix), has been considered in (Lazar
et al., 2013) from the perspective of a generalization of the
concept of λ–contractive sets, i.e. (k, λ)–contractive sets.
This generalization yields a non–conservative Lyapunov–
type tool, i.e. finite–time Lyapunov functions, which allows
an easier verification of conditions for stability analysis of
the considered class of systems. Based on this, scalable
stability tests for switched linear systems were derived in
(Lazar et al., 2013).

In this paper, general, discrete–time homogeneous dynam-
ics, i.e. homogeneous dynamics of order greater than one,
are considered. This is a richer class of systems, allowing
the inclusion of, for example, polynomial nonlinearities in
the dynamics. By considering more complex dynamics,
also the stability analysis methods become much more
complex, even for low order systems. As such, the goal
of this paper is twofold. First, the problem of establishing
non–conservative Lyapunov–type tools for general homo-
geneous nonlinear dynamics is considered. For this, we
establish necessary and sufficient conditions for semiglobal
KL–stability which lead to equivalence between semiglobal
KL–stability and semiglobal exponential stability of gen-
eral homogeneous dynamics. Second, the goal is to develop
systematic stability analysis verification methods for the
above mentioned type of systems. These methods materi-
alize into solving optimization problems which follow two
approaches. One approach is set–theoretical and is yielded
by the concept of (k, λ)–contractive sets, whilst the other is
a functional approach, generated by finite–time Lyapunov
functions.
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The paper is organized as follows. In Section 2 some
preliminaries, general homogeneous systems and some
instrumental results are introduced, while the problem is
formally defined in Section 3. The main results of the
paper and illustrative example are given in Section 4.
Conclusions are summarized in Section 5.

2. PRELIMINARIES

The sets of non–negative integers and non–negative reals
are denoted by N+, and R+, respectively. Given two sets
S and P, SP is defined as SP := S∩P. We write N≥b, R≥b
for N[b,∞) and R[b,∞). For a vector x ∈ Rn, let ‖x‖ denote
an arbitrary Hölder norm. A map f (·) : Rn → Rm is said
to be sub–additive if the inequality f(x+y) ≤ f(x)+f(y)
holds componentwise for all x ∈ Rn and y ∈ Rn. A map
f (·) : Rn → Rm is said to be sublinear if f (·) is sub–
additive and f(αx) = αf(x), for all α ∈ R+. A set X ⊂ Rn
is a C–set if it is compact, convex, and contains the origin.
A set X ⊂ Rn is a proper C–set if it is a C–set and contains
the origin in its interior. The collection of non–empty
compact sets in Rn is denoted by Com(Rn). The polar set
of a C–set X ∈ Rn is defined as X ∗ := {x : ∀y ∈ X , y>x ≤
1}. A polyhedron is the (convex) intersection of a finite
number of open and/or closed half–spaces and a polytope
is a closed and bounded polyhedron. Given a non–empty
closed convex set X ⊆ Rn the function support(X , ·)
defined as support(X , ξ) := supx{ξ>x : x ∈ X} for
ξ ∈ Rn, is called the support function of the set X at
the point ξ. Given a proper C–set X ⊂ Rn the function
g(X , ·) defined by g(X , ξ) := infµ{µ : ξ ∈ µX , µ ≥ 0} for
ξ ∈ Rn, is called the Minkowski (gauge) function of the
set X at the point ξ. A function ϕ : R+ → R+ belongs
to the class K if it is continuous, strictly increasing and
ϕ(0) = 0. A function ϕ : R+ → R+ belongs to the
class K∞ if ϕ ∈ K and lims→∞ ϕ(s) = ∞. A function
β : R+ × R+ → R+ belongs to class KL if for each fixed
k ∈ R+, β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is
decreasing and limk→∞ β(s, k) = 0.

Recall the following relevant properties of the Minkowski
(gauge) functions associated with proper C–sets, which
were established in (Raković and Lazar, 2012); see also
(Lazar et al., 2013).

Lemma 2.1. Let X and Z be any two proper C–sets in
Rn. Then Z ⊆ X if and only if:

∀x ∈ Rn, g(X , x) ≤ g(Z, x). (1)

Lemma 2.2. Let X be any proper C–set in Rn. Then, for
all α ∈ R+ \ {0}:

∀x ∈ Rn, g(αX , x) =
1

α
g(X , x). (2)

2.1 Homogeneous dynamics

Consider dynamical systems of the form:

x+ = Φ(x), (3)

where x ∈ Rn is the current state, x+ ∈ Rn is the successor
state and Φ (·) : Rn → Rn is an arbitrary map with
Φ(0) = 0.

Homogeneous maps are defined more commonly, simply as
in the definition below (Hahn, 1967).

Definition 2.3. A map f (·) : Rn → Rm is said to be
homogeneous of order r, where r is a real nonnegative
scalar, if for all x ∈ Rn and all α > 0, it holds that:

f(αx) = αrf(x). (4)

A more general definition of homogeneous functions, which
recovers Definition 2.3 as a particular case, as given in, e.g.
(Grüne, 2000) and (Aeyels and De Leenheer, 2002) is the
following.

Definition 2.4. Consider a map f (·) : Rn → Rm. If there
exist real scalars ri > 0, i = 1, . . . , n, τ ≥ 0, and α > 0
such that it holds that:

f(Λαx) = ατΛαf(x), α ∈ R+, Λα = diag(αr1 , . . . , αrn),
(5)

then it is said that the map f is homogeneous of order τ
with respect to the dilation matrix Λα.

For the remainder of the paper, dynamics defined by maps
which satisfy the condition in Definition 2.4 w.r.t. the
dilation matrix will be considered, and functions which
satisfy (5) will be called homogeneous functions (HFs) of
order τ .

Remark 2.5. If r = (1, . . . , 1)>, the dilation matrix (5) is
called the standard dilation matrix. Observe that Defini-
tion 2.3 recovers a particular case of Definition 2.4 when
the standard dilation matrix is considered and τ = r − 1.

Denote by Λsα the standard dilation matrix.

Assumption 2.6. The map Φ (·) is homogeneous of order
τ .

Definition 2.7. A map Φ(·) is calledK–bounded in X ⊆ Rn
if for all x ∈ X, there exists a κ ∈ K such that ‖Φ(x)‖ ≤
κ(‖x‖). If there exists a nonnegative real constant Γ, such
that κ(‖x‖) = Γ‖x‖, then the map Φ(·) is called Lipschitz–
bounded in X ⊆ Rn.

Lemma 2.8. Suppose the map Φ (·) satisfies Assump-
tion 2.6. Then the map Φ (·) is Lipschitz–bounded in Rn.

Proof. Define the ball B1 := {x ∈ Rn : ‖x‖ ≤ 1} and
observe that Φ (·) is bounded on B1 by convention, i.e.,
Φ (·) : Rn → Rn. Let Γ := sup{‖Φ(x)‖ : x ∈ B1}. Then
Γ exists and it is finite since B1 is compact, Φ (·) is bounded
on B1 and the norm is bounded on bounded sets. As for all
x on the boundary of B1, it holds that ‖x‖ = 1, this further
yields that ‖Φ(x)‖ ≤ Γ‖x‖ for all x ∈ ∂B1. Similarly, for
any x ∈ Rn there exists a pair (α, ξ) ∈ R+×∂B1 such that
x = αξ. Observe that x = αξ = Λsαξ holds for any x ∈ Rn.
This and Assumption 2.6 imply that ∀x ∈ Rn:

‖Φ(x)‖ = ‖Φ(Λsαξ)‖ = ‖ατΛsαΦ(x)‖ ≤ ατ‖Λsα‖Γ‖ξ‖.
But,

ατ‖Λsα‖Γ‖ξ‖ = ατ−1‖Λsα‖Γ‖αξ‖ = ατ−1‖Λsα‖Γ‖x‖.
Since ‖Λsα‖ ≤ α, it implies that ‖Φ(x)‖ ≤ ατΓ‖x‖, which
further implies that the map Φ (·) is Lipschitz–bounded in
Rn, with the Lipschitz constant ατΓ.

For HFs of order zero w.r.t the standard dilation matrix,
the Lipschitz constant will be equal to Γ.

The following result is a consequence of Assumption 2.6
and Lemma 2.8.

Corollary 2.9. Suppose that the map Φ (·) satisfies As-
sumption 2.6. Then, it holds that Φ(0) = 0.
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Next, Lemma II.5 from (Lazar et al., 2013) will be ex-
tended for homogeneous systems of order τ .

Lemma 2.10. Let Y and Z be any two proper C–sets in
Rm and Rn and let µ (·) : Rn → Rm be any HF of order
τ . Then {µ(x) : x ∈ Z} ⊆ Y if and only if

∀x ∈ Rn, g(Y, µ(x)) ≤ g(Z, x)τ+1. (6)

Proof. Fix any two proper C–sets, in Rn and Rm respec-
tively, Z and Y. Fix any HF of order τ µ (·) : Rn → Rm
such that {µ(x) : x ∈ Z} ⊆ Y. Take any x ∈ Rn. Then
x ∈ g(Z, x)Z and, consequently, µ(x) ∈ {µ(x) : x ∈
g(Z, x)Z}. Since Z is a proper C–set, g(Z, x) ≥ 0 and
µ (·) is homogeneous of order τ , it follows from Fact II.1
in (Lazar et al., 2013) that {µ(x) : x ∈ g(Z, x)Z} =
Λsα g(Z, x)τ{µ(x) : x ∈ Z} = ατ+1{µ(x) : x ∈ Z},
where α = g(Z, x). Since Z and Y are proper C–sets,
{µ(x) : x ∈ Z} ⊆ Y, and g(Z, x) ≥ 0 it follows that
{µ(x) : x ∈ g(Z, x)Z} = g(Z, x)τ+1{µ(x) : x ∈ Z} ⊆
g(Z, x)τ+1Y. In turn, µ(x) ∈ g(Z, x)τ+1Y which implies
that g(g(Z, x)τ+1Y, µ(x)) ≤ 1 and, thus, it results by
Lemma 2.2 that g(Y, µ(x)) ≤ g(Z, x)τ+1. Conversely, take
any µ(x) ∈ {µ(x) : x ∈ Z}. Then, µ(x) ∈ g(Y, µ(x))Y
and because g(Y, µ(x)) ≤ g(Z, x)τ+1, it results from Fact
II.1 in (Lazar et al., 2013) that µ(x) ∈ g(Z, x)τ+1Y. Since
for any x ∈ Z, g(Z, x) ≤ 1 it further results that for any
µ(x) ∈ {µ(x) : x ∈ Z}, µ(x) ∈ Y.

3. PROBLEM FORMULATION

Recall the discrete–time dynamics defined in (3), for which
we introduce the following notation.

For a given k ∈ N+, the iterated map Φk (·) : Rn → Rn
is given by:

Φ0(x) := x, Φk(x) := Φ(Φk−1(x)).

The following notation will be used to denote the set-
valued map Φ (·) : Com(Rn)→ Com(Rn) defined by:

Φ(S) := {Φ(x) : x ∈ S},
where S ∈ Com(Rn). Given k ∈ N+ and a proper C–set S
in Rn the iterated set–valued map Φ

k
(·) : Com(Rn) →

Com(Rn) is defined by:

Φ
0
(S) := S, Φ

k
(S) := Φ(Φ

k−1
(S)).

Denote the solution of the system (3) at any discrete–time
instant k ∈ N+ by:

x(k, ξ) := Φk(ξ),

for any initial condition ξ ∈ Rn. Next, regional, semiglobal
and global KL–stability will be defined.

Definition 3.1. The system (3) is called KL–stable in S, if
for a given compact set S ⊂ Rn, which contains the origin
in its interior, there exists a function βS ∈ KL such that
‖x(k, ξ)‖ ≤ βS(‖ξ‖, k) for all (ξ, k) ∈ S×N+. If in addition
βS(s, k) := cSµ

k
Ss for some (cS , µS) ∈ R≥1 × R[0,1), then

the system (3) is called exponentially stable in S (ES in
S).

Definition 3.2. The system (3) is called semiglobally KL–
stable, if for any compact set S ⊂ Rn, which contains
the origin in its interior, there exists a function βS ∈ KL
such that ‖x(k, ξ)‖ ≤ βS(‖ξ‖, k) for all (ξ, k) ∈ S × N+.
If in addition βS(s, k) := cSµ

k
Ss for some (cS , µS) ∈

R≥1 × R[0,1), then the system (3) is called semiglobally
exponentially stable (semi–GES).

Definition 3.3. The system (3) is called KL–stable in Rn
if there exists a function β ∈ KL such that ‖x(k, ξ)‖ ≤
β(‖ξ‖, k) for all (ξ, k) ∈ Rn×N+. If in addition β(s, k) :=
cµks for some (c, µ) ∈ R≥1×R[0,1), then the system (3) is
called globally exponentially stable (GES).

The main objective of this paper is to derive necessary
and sufficient stability conditions which allow systematic
verification methods for general homogeneous dynamics.
In what follows, we will restrict our attention to analysis of
semiglobal KL–stability and semi–GES. To this aim, three
problems will be addressed. First, necessary and sufficient
conditions for semiglobal KL–stability analysis of general
homogeneous dynamics need to be developed. Second,
the conditions under which semiglobal KL–stability is
equivalent with semi–GES will be investigated. Finally,
systematic methods for checking the developed stability
conditions will be provided.

4. MAIN RESULTS

In order to solve the above defined problem we will make
use of the following concept introduced in (Lazar et al.,
2013).

Definition 4.1. Given a real scalar λ ∈ [0, 1) and a k ∈ N+,
a proper C–set S ⊂ Rn is called a (k, λ)–contractive set for
the system x+ = Φ(x) and constraint set X if and only if
S ⊆ X and, for all i ∈ N[1,k−1], Φi(x) ∈ X and Φk(x) ∈ λS,

for all x ∈ S, i.e. for all i ∈ N[1,k−1], Φ
i
(S) ⊆ X and

Φ
k
(S) ⊆ λS.

Proposition 4.2. Suppose that Assumption 2.6 holds and
let the proper C–set S be a (k, λ)–contractive set for the
dynamics (3) and constraint set X. Then for all α ∈ R+,
α ∈ (0, 1), the set αS if a (k, λ)–contractive set for the
dynamics (3).

The proof of Proposition 4.2 is omitted here due to
space constraints. With this result, it is shown that every
subunitary scaling of a (k, λ)–contractive set of a general
homogeneous system is also a (k, λ)–contractive set. The
consequence is that it doesn’t allow for global conditions,
as shown in the remainder of this section. However, this
property will turn out to be useful for analyzing semiglobal
stability properties.

The following two results are recalled from (Lazar et al.,
2013) and apply to general nonlinear discrete–time dynam-
ics.

Theorem 4.3. Suppose the dynamics (3) is semiglobally
KL–stable. Let S ⊆ X ⊆ Rn denote an arbitrary proper

C–set such that Φ
i
(S) ⊆ X for all i ∈ N+. Then for any

real scalar λ ∈ (0, 1] there exists a k = k(λ,S) ∈ N+ such
that S is a (k, λ)–contractive set with respect to X.

Theorem 4.4. Suppose the map Φ (·) is K–bounded in X,
X ⊆ Rn contains the origin in its interior, and let S
be a (k, 1)–contractive proper C–set with respect to X.
Furthermore, let κ1, κ2 ∈ K∞, a real scalar ρ ∈ (0, 1),
k ∈ N+, and let V : X → R+ be a function such that:
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∀x ∈ X , κ1(‖x‖) ≤ V (x) ≤ κ2(‖x‖), (7)

∀x ∈ S , V (Φk(x)) ≤ ρV (x). (8)

Then dynamics (3) is KL–stable in S with respect to X.
If the map Φ (·) is Lipschitz-bounded and (7) holds with
κ1(s) = a1s and κ2(s) = a2s, for some a1, a2 > 0, then
dynamics (3) is GES in S.

A function V (·) which satisfies the conditions (7)-(8) is
called a finite–time Lyapunov function (FTLF) associated
with a (k, 1)–contractive proper C–set S, relative to S and
with respect to X.

If condition (8) in Theorem 4.4 holds for any proper C–set
S, i.e. for each set we have a FTLF VS (·), then semiglobal
KL–stability is implied. This is because any compact set
S with the origin in its interior can be seen as a subset of
a proper C–set, i.e. the convex hull of S for example.

Theorem 4.3 provides a necessary condition (semiglobal
KL–stability) for the existence of (k, λ)–contractive proper
C–sets for general homogeneous dynamics. In turn, The-
orem 4.4 provides a sufficient result in terms of FTLFs
for regional KL–stability of general homogeneous dynam-
ics. In order to have necessary and sufficient conditions
in terms of (k, λ)–contractive sets and FTLFs, the next
equivalence result is instrumental.

4.1 Equivalence theorem

Theorem 4.5. Suppose that Assumption 2.6 holds and let
k ∈ N+ and (λ, ρ) ∈ (0, 1) × (0, 1). The system described
by (3) admits a (k, λ)–contractive proper C–set with
respect to X ⊆ Rn if and only if it admits a sublinear
FTLF associated with a (k, 1)–contractive proper C–set
P, relative to P and with respect to X ⊆ Rn.

Proof. Let the proper C–set S ⊂ Rn be a (k, λ)–
contractive set for the dynamics (3) and constraint set
X. First it will be shown that (7) holds. Define c2 =
minx∈∂S ‖x‖ > 0 and c1 = maxx∈∂S ‖x‖ > 0. Observing
that

{x ∈ Rn : ‖x‖ ≤ c2} ⊆ S ⊆ {x ∈ Rn : ‖x‖ ≤ c1},
yields by Lemma 2.1 and Lemma 2.2 that

c−11 ‖x‖ ≤ g(S, x) ≤ c−12 ‖x‖.
Hence, letting V (x) := g(S, x) for all x ∈ Rn, condition
(7) holds with κi(s) := ais, ai = c−1i , i ∈ {1, 2}. Next, for
any x ∈ S it holds that Φk(x) ∈ λS. From Lemma 2.10
it results that g(λS,Φk(x)) ≤ g(S, x)τ+1. Since for any
x ∈ S, g(S, x) ≤ 1, it follows that g(S, x)τ+1 ≤ g(S, x).
As such, it is obtained that g(λS,Φk(x)) ≤ g(S, x) and
from Lemma 2.2 that g(S,Φk(x)) ≤ λ g(S, x). Thus, (8)
holds for V (x) = g(S, x) and ρ = λ. Observe that S is
(k, λ)–contractive with λ ∈ (0, 1) and hence, S is a (k, 1)–
contractive set. Then, letting P := S yields that V (·)
is a sublinear FTLF associated with a (k, 1)–contractive
proper C–set P, relative to P and with respect to X ⊆ Rn.

Conversely, let V (·) be a sublinear FTLF associated with
a (k, 1)–contractive proper C–set P, with respect to X.
Then there exists a unique proper C–set S such that
support(S, x) = V (x) for any real vector x (Schneider,
1993, Thereom 1.7.1). Furthermore, from (Schneider, 1993,
Thereom 1.7.6) it results that V (x) = support(S, x) =
g(S∗, x), for any x ∈ S. Let β∗ := maxβ{β > 0 :

βS∗ ⊆ P}. For any x ∈ Rn, from Lemma 2.2 it holds
that g(β∗S∗, x) = 1

β∗ g(S∗, x) = 1
β∗V (x). Since αV (x) is

also a sublinear function and satisfies (7) and (8) for any
α ∈ R+, then 1

β∗V (x) also satisfies the conditions (7), (8)

for all x ∈ P. Because 1
β∗V (x) = g(β∗S∗, x), it results

from (8) that g(β∗S∗,Φk(x)) ≤ ρ g(β∗S∗, x). This implies
that g(ρβ∗S∗,Φk(x)) ≤ g(β∗S, x), for any x ∈ β∗S∗. Since
g(β∗S, x) ≥ 0 and it is subunitary, it follows from the
previous inequality that

g(ρβ∗S∗,Φk(x)) g(β∗S∗, x)r−1 ≤ g(β∗S, x)τ

and, furthermore, that

g(ρβ∗S∗,Φk(x) g(β∗S∗, x)τ−1) ≤ g(β∗S, x)τ .

By Lemma 2.10 it is obtained that

Φk(x) g(β∗S∗, xτ−1) ∈ ρβ∗S∗,
for any x ∈ β∗S∗. This further implies that the set β∗αS,
with α = 1

g(β∗S∗,xτ−1) is a (k, λ)–contractive set with

λ = ρ.

This result answers the first problem that we addressed.
By Theorems 4.3 and 4.4 through Theorem 4.5 we have
obtained necessary and sufficient conditions for semiglobal
KS–stability of system (3). The following result is a
consequence of Theorem 4.5 and Theorem 4.3.

Theorem 4.6. Suppose that Assumption 2.6 holds and
that the dynamics (3) is semiglobally KL–stable. Let
V : X → R+ be an arbitrary sublinear function and let S
denote the unique proper C–set such that support(S, x) =
V (x), for all x ∈ X. Then there exist κ1, κ2 ∈ K∞, a real
scalar ρ ∈ (0, 1) and a k = k(ρ,S∗) ∈ N+ such that V (·)
is a FTLF associated with S∗, relative to S∗ and with
respect to X.

Proof. The proof follows easily from Theorem 4.3 and
Theorem 4.5.

Note that in Theorem 4.6 the function V (·) is dependent
on the choice of the set S. Furthermore, it provides a
necessary conditions for the existence of FTLFs, in terms
of semiglobal KL–stability. Thus, from Theorem 4.4 and
Theorem 4.6 we obtained necessary and sufficient condi-
tions by means of FTLFs, for semiglobal KL–stability of
discrete–time systems which are homogeneous of order τ .

From the hypothesis of Theorem 4.5 the function V (·) can
be chosen arbitrarily from within the class of sublinear
functions. For any of these functions there exist positive
ai, i ∈ {1, 2}, such that the inequality in (7) holds for K–
functions defined as κi := ais. As such, the next result
follows from Lemma 2.8, Theorem 4.6 and Theorem 4.4.

Corollary 4.7. Suppose that Assumption 2.6 holds. Then
the dynamics (3) is semiglobally KL–stable if and only if
it is semi–GES.

Corollary 4.7 answers the second problem considered in
this paper. It provides an equivalence result between
semiglobal KL–stability and semi–GES for general homo-
geneous systems. Finally, a stability theorem by means of
(k, λ)–contractive sets is provided. This is a consequence
of Theorem 4.5 and Theorem 4.4.

Theorem 4.8. Suppose that the Assumption 2.6 holds.
Suppose that there exists a proper C–set S ⊆ X ⊂ Rn and
λ ∈ (0, 1) such that S is (k, λ)–contractive with respect
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to X for the dynamics (3). Then the dynamics (3) is KL–
stable in S.

Theorem 4.8 renders a sufficient condition for regionalKL–
stability. Together with Theorem 4.3 it yields necessary
and sufficient conditions by means of (k, λ)–contractive
sets for discrete–time homogeneous dynamics of order τ .

4.2 Verification

So far, we have provided non–conservative conditions for
semiglobal KL–stability of general homogeneous dynam-
ics. In this section two approaches for checking these
conditions will be provided. The first one is based on
Theorem 4.4 and the second one exploits the equivalence
theorem, Theorem 4.5. In what follows, the stability check
tools starting from the hypothesis of Theorem 4.4 will be
derived, for which two requirements need to be met.

(i) Find proper C–sets S and X, S ⊆ X ⊆ Rn, such that
S is a (k, 1)–contractive set for the dynamics (3).

(ii) Find a FTLF associated with S, relative to S and
with respect to X, i.e. find a function V : X → R+

which satisfies conditions (7) and (8) for the system
(3).

Due to the (k, λ)–contractive set concept introduced in
Definition 4.1, to solve the above problems we can pick any
proper C–set S and any sublinear function V (·) which
satisfy the conditions in Definition 4.1 and inequalities
(7). As such, the stability analysis problem to be solved
is not related to finding a particular set S and particular
function V , but to finding a finite positive integer k, such
that the conditions above are met for any arbitrary set
and function.

(k, 1)–contractive verification : solution to (i):

Consider the proper C–sets S and X, such that S ⊆ X ⊆
Rn. Let the cost function Fk : S → R, be defined as:

Fk(x) := − g(S,Φk(x)), (9)

for some k ∈ N+, and consider the following minimization
problems:

inf
x∈S

Fk(x) , (10)

inf
x∈X

Fi(x) , i ∈ N[1,k−1]. (11)

The cost function (9) has been defined by using the
Minkowski function as the (k, 1)–contractive set condition
Φk(x) ∈ S, for any x ∈ S can be written equivalently as
g(S,Φk(x)) ≤ 1.

Proposition 4.9. Let xS and xiX denote the global optima
of (10) and (11), respectively. If the value functions Fk(xS)
and Fi(x

i
X) satisfy Fk(xS) ≥ 0 and Fi(x

i
X) ≥ 0, for all

i ∈ N[1,k−1], then the set S is (k, 1)–contractive for the
system (3), with respect to X.

The conditions in Proposition 4.9 guarantee that a cho-
sen proper C–set is (k, λ)–contractive because they are
equivalent with g(S,Φk(x)) ≤ 1 and g(S,Φi(x)) ≤ 1,
i = 1, . . . , k−1. Next, the conditions under which existence
of global optima of optimization problems is guaranteed
will be briefly recalled. For more detailed explanations,
see for example (Borwein and Lewis, 2006).

Remark 4.10. If the constraint set is compact and the cost
function continuous, then the optimum exists and it is

attainable, but may not be unique. Additionally if the cost
function to be minimized is convex and differentiable and
the constraint set is convex, then any locally optimum of
the considered optimization problem is globally optimal.
If Φ (·) is Lipschitz continuous then there are ways to
guarantee convergence to the global optimum (Mladineo,
1986).

If the map Φ (·) describing the dynamics (3) is a con-
vex function, and we consider polyhedral sets as (k, 1)–
contractive sets candidates, then an easier verification
method can be derived which does not involve solving an
optimization problem.

Solution for Φ convex and polyhedral sets:

Proposition 4.11. Let the map Φ which describes the sys-
tem (3) be a convex function and consider the polyhe-
dral proper C–set S. Then g(S,Φk(vi)) ≤ 1 implies that
g(S,Φk(x)) ≤ 1, for all x ∈ S, where vi ∈ Rn, i = 1, . . . , q
are the vertices of the set S.

Proof. The proof is straightforward and exploits the
homogeneity of the Minkowski function.

Let the proper C–sets S and X be polyhedral, S ⊆ X ⊆ Rn,
and let S be described by vertices vi, i = 1, . . . q and
X be described by vertices uj , j = 1, . . . p. Based on
Proposition 4.11, if the inequalities

max
i

g(S,Φk(vi))≤ 1 (12)

max
j

g(S,Φl(uj))≤ 1, l = 1, . . . , k − 1 (13)

are satisfied for some finite k ∈ N+, then the polyhedral
set S is (k, 1)–contractive with respect to X.

Finite–time Lyapunov function verification: solution to
(ii):

Consider the (k, 1)–contractive proper C–set S ⊆ X ⊆ Rn
and a real valued function V : X → R+. For some
ρ ∈ (0, 1) define the cost function F : S → R,

Fk(x) := −V (Φk(x)) + ρV (x) (14)

and the problem
inf
x∈S

Fk(x). (15)

Proposition 4.12. Let x∗ denote the global optimum of
the problem described in (15) and let S be a (k, 1)–
contractive proper C–set. If the value function Fk(x∗)
satisfies Fk(x∗) ≥ 0, then the function V (·) is a FTLF
associated with S, relative to S and with respect to X and
by Theorem 4.6, the system (3) is ES in S.

Alternative verification method :

Problems (i) and (ii) can also be answered by making
use of the result in Theorem 4.5. Therefore, we check if
some proper C–set is (k, λ)–contractive for the considered
system. This means that for a given proper C–set S ⊆ X ⊆
Rn, where X is also a proper C–set, the problem

inf
x∈S

Fk(x), (16)

Fk(x) := − g(S,Φk(x)) + λ, ∀x ∈ S, (17)

has to be solved for some chosen λ ∈ (0, 1) and finite k ∈
N+. Additionally, from Definition 4.1, also the condition

Φ
i
(S) ⊆ X, i ∈ N[1,k−1] needs to be verified, i.e. by
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Fig. 1. (k, λ)–contractive set for the system in Example 1.

solving the minimization problem (10). Similarly as in
Proposition 4.9, if the cost function (17) evaluated at the
global optimum of (16) is positive, then the set S is (k, λ)–
contractive for (3). Due to the equivalence theorem result
in Theorem 4.5, if S is (k, λ)–contractive, then the function
V (x) = g(S, x), for any x ∈ S is a FTLF for the dynamics
(3), i.e. it is a solution to the problem in (ii).

This method provides a more direct stability test since it
only involves testing that a given set is (k, λ)–contractive
and provides immediately a FTLF. However, when the
scope is to enlarge the domain of attraction of a system, by
the first approach, we get more flexibility in choosing the
set and the type of the FTLF candidate, which enables
a tradeoff between the values of λ and k. Furthermore,
when the map describing the considered dynamics is
convex, then it is possible to completely avoid solving an
optimization problem, since the vertex conditions can be
applied to check if a given set is (k, λ)–contractive and a
FTLF is then provided for free.

The proposed approach is systematic compared to stan-
dard Lyapunov function approaches, where it is not known
how to choose the candidate function. In (Lazar et al.,
2013), scalable verification methods were developed for
switched linear systems only. Therefore, the methods pre-
sented in this paper can be employed to verify GES for
any homogeneous dynamics of order zero w.r.t. the stan-
dard dilation matrix, as regional ES implies GES for such
dynamics.

4.3 Illustrative example

Consider the dynamics (3) where the map Φ (·) is defined

as Φ(x) =
(
x2
2+0.6x1

0.8x2

)
. Then the system is homogeneous of

order τ = 0, w.r.t. the dilation matrix Λα = diag(α2, α),
for any α ∈ R+. For this system, consider the proper C–
set S defined as the convex hull of the vertex matrix:
US =

(
0.8 0.8 −0.8 −0.8
0.8 −0.8 −0.8 0.8

)
. Here, the map Φ is convex

and we can test the vertex conditions to check if S
is (k, 1)–contractive with respect to the set X plotted
in Figure 1 with white interior and black contour, and
defined as the convex hull of the vertex matrix: UX =(
0.8 0.8 −0.8 −0.8 1.1200 1.1200
0.8 −0.8 −0.8 0.8 0.6400 −0.6400

)
. Thus, it results that for

k = 4 the conditions in (12) and (13) are verified for the
vertices of S, as shown in Figure 1. This means that S
is a (k, 1)–contractive set for the map Φ. Consider the
FTLF candidate V (x) = x>x. For ρ = 0.9 and k = 4,
the global minimum x∗ of (10) for the cost function (14)
satisfies F4(x∗) ≥ 0, where x∗ = (0.0896 0.8000)> and
F4(x∗) = 0.0885. From Theorem 4.4 and Corollary 4.7 it
results that the system is ES in S. However this can be
verified also using the cost function (17). For λ = 0.9 and

k = 4 the set S resulted to be (k, λ)–contractive. Then,
the function V (x) = g(S, x) = ‖x‖∞, where ‖ · ‖∞ denotes
the infinity norm, is a FTLF for the system and, thus, the
system is ES in S.

5. CONCLUSIONS

This paper dealt with stability analysis of discrete–
time homogeneous nonlinear dynamics. In particular,
semiglobal KL–stability was considered, for which nec-
essary and sufficient conditions were established. These
conditions lead to equivalence between semiglobal KL–
stability and semiglobal exponential stability of general
homogeneous dynamics. Furthermore, they allowed for de-
riving systematic stability analysis verification tests, based
on optimization and was illustrated by an example.
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