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Abstract: As Part 2 of the paper “on networked evolutionary games”, this paper uses the
framework presented in Part 1 (Qi et al., 2014) to explore further issues about networked
evolutionary games (NEGs). First, the strategy profile dynamics (SPD) is constructed from the
fundamental evolutionary equations (FEEs). Using SPD, the control of NEGs are investigated.
Detailed mathematical models are obtained for both deterministic and dynamic cases respec-
tively. Then certain more complicated NEGs are explored. They are: (i) NEG with strategies
of different length information, which allows some players use longer history information such
as the information at t and t − 1 or so; (ii) NEG with Multi-Species, which allows an NEG
with various kinds of players, they play several different fundamental network games according
to their identities. (iii) NEG with time-varying payoffs. Since payoffs determine the evolution,
the network profile dynamics will be a time-varying one. These more complicated NEGs can
cover more general evolutions and they generalized the method proposed in Cheng et al.
(Preprint2013).

Keywords: Networked evolutionary game, fundamental evolutionary equation, network profile
dynamics, heterogeneous NEG, semi-tensor product of matrices

1. INTRODUCTION

In Part 1 of this paper an NEG is defined as following,
which was firstly proposed in Cheng et al. (Preprint2013).

Definition 1. An NEG, game, denoted by ((N,E), G,Π),
consists of three ingredients as:

(i) a network (graph) (N,E);
(ii) a fundamental network game (FNG), G, such that if

(i, j) ∈ E, then i and j play the FNG with strategies
xi(t) and xj(t) respectively.

(iii) a local information based strategy updating rule
(SUR).

It was proved that the fundamental evolutionary equation
(FEE) for each player can be obtained as

xi(t+ 1) = fi ({xk(t)|k ∈ U2(i)}) , i = 1, · · · , n. (1)

Then the network profile dynamics is uniquely determined
by FEEs.

We refer to Qi et al. (2014) and Cheng et al. (Preprint2013)
for details.

Part 2 of the paper considers several advanced problems
about NEGs. In Section 2 the SPD is constructed from
FEEs. Using SPD, the control problems of NEGs are

? This work was supported in part by National Natural Science
Foundation (NNSF) of China under Grants 61074114, 61273013, and
61333001.

investigated. A detailed mathematical framework is pre-
sented in Section 3 as a standard k-valued logical control
networks. Then all the techniques for the control of k-
valued logical networks can be used. Section 4 considers
the NEGs where players can use different length of histor-
ical information to update their strategies. In Section 5 we
consider the NEGs with multi-species. That is, the players
are classified into several species, and players of different
species play different roles in the networked games. Section
6 considers when the fundamental network game has time-
varying payoff functions. Section 7 is a brief conclusion.

2. FROM FEE TO NPD

The NPD is used to describe the evolution of the overall
networked games. This section consider how to construct
the NPD of an NEG using its nodes’ FEEs. We consider
two cases: (i) the FEEs are deterministic model; (ii) the
FEEs are probabilistic model.

2.1 Deterministic Model

Assume 
x1(t+ 1) = M1x(t),
...

xn(t+ 1) = Mnx(t),

(2)
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where x(t) = nn
i=1xi(t) and Mi ∈ Lk×kn . Then we have

the NPD as

x(t+ 1) = Mx(t), (3)

where

M = M1 ∗M2 ∗ · · · ∗Mn ∈ Lkn×kn . (4)

Example 2. Recall Example 12 of Part 1. We have

x1(t+ 1) = Mfx4(t)x5(t)x1(t)x2(t)x3(t)
= MfW[23,22]x(t) := M1x(t),

x2(t+ 1) = Mfx5(t)x1(t)x2(t)x3(t)x4(t)
= MfW[24,2]x(t) := M2x(t),

x3(t+ 1) = Mfx(t) := M3x(t),
x4(t+ 1) = Mfx2(t)x3(t)x4(t)x5(t)x1(t)

= MfW[2,24]x(t) := M4x(t),
x5(t+ 1) = Mfx3(t)x4(t)x5(t)x1(t)x2(t)

= MfW[22,23]x(t) := M5x(t).

Finally, we have the NPD as

x(t+ 1) = Mx(t), (5)

where

M = M1 ∗M2 ∗M3 ∗M4 ∗M5

= δ32[1, 20, 8, 24, 15, 32, 16, 32, 29, 32, 32, 32, 31, 32, 32, 32
26, 28, 32, 32, 32, 32, 32, 32, 30, 32, 32, 32, 32, 32, 32, 32].

(6)

2.2 Probabilistic Model

Assume the strategies have the probabilistic k-valued
logical form as

xi(t+ 1) = M j
1x(t), with Pr = pji ,

j = 1, · · · , si; i = 1, · · · , n. (7)

Then we have

x(t+ 1) = Mx(t), (8)

where M ∈ Υkn×kn can be calculated as

M =

s1∑
j1=1

s2∑
j2=1

· · ·
sn∑

jn=1

[(
n∏

i=1

pjii

)
M j1

1 ∗M
j2
2 ∗ · · · ∗M jn

n

]
.

(9)

We use an example to depict it.

Example 3. Recall Example 13 of Part 1. In fact, we can
use Table 5 there to calculate M row by row. For instance,
it is obvious that

Col1(M) = Col2(M) = Col3(M) = δ132.

As for Col4(M), with probability 1/4 it could be δ332 or δ432
or δ732 or δ832. That is,

Col4(M) = [0, 0, 14 ,
1
4 , 0, 0,

1
4 ,

1
4 , 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

We simply express it as

δ32
[
3/ 1

4 + 4/ 1
4 + 7/ 1

4 + 8/ 1
4

]
.

Using this notation and a similar computation, we have

M = δ32[1, 1, 1, α, 1, α, β, γ, µ, λ, 11, 32, λ, 32, 32, 32
1, 1, 1, α, 1, 22, α, p, µ, q, r, 32, s, 32, 32, 32],

(10)

where

α = 3/ 1
4 + 4/ 1

4 + 7/ 1
4 + 8/ 1

4 ,

β = 3/ 1
2 + 7/ 1

2 ,

γ = 8/ 1
3 + 16/ 2

3 ,

µ = 1/ 2
3 + 9/ 1

3 ,

λ = 18/ 1
6 + 20/ 1

6 + 26/ 1
3 + 28/ 1

3 ,

p = 24/ 1
3 + 32/ 2

3 ,

q = 26/ 1
2 + 28/ 1

2 ,

r = 27/ 1
4 + 28/ 1

4 + 31/ 1
4 + 32/ 1

4 ,

s = 29/ 1
2 + 31/ 1

2 .

3. MODELING CONTROLLED NEGS

Definition 4. Let ((N,E), G,Π) be an NEG, and N = U ∪
Z be a partition of N . We call ((U ∪ Z), E), G,Π) a
controlled NEG, if the strategies of u ∈ U can be chosen
arbitrarily. As a result, z ∈ Z is called a state and u ∈ U
is called a control.

Using FEE, the strategy evolutionary equations can be
expressed as (Cheng et al., Preprint2013)

xi(t+ 1) = Mix(t), i = 1, · · · , n, (11)

where x(t) = nn
j=1xj(t). Assume U = {i1, · · · , iq} with

1 ≤ i1 < i2 < · · · < iq ≤ n, and Z = {j1, j2, · · · , jp} with
1 ≤ j1 < j2 < · · · < jp ≤ n, where p + q = n. Define
ur = xir , r = 1, · · · , q, and zs = xjs , s = 1, · · · , p.
We consider the deterministic case and the probabilistic
case separately.

(1) (Deterministic Case) Assume Mi ∈ Lk×kn . Then we
have
zs(t+ 1) = xjs(t+ 1) = Mjs nn

i=1 xi(t)
= MjsW[k,kiq−1]uq(t)x1(t) n x2(t) n · · ·
x̂iq n · · ·n xn(t)

= MjsW[k,kiq−1]W[k,kiq−1 ]uq−1(t)uq(t)

x1(t) n x2(t) n · · ·n x̂iq−1
n · · ·

x̂iq n · · ·n xn(t)
= · · ·
= Mjs n1

r=m W[k,kir+m−r−1]u(t)z(t),

where u(t) = nq
i=1ui(t), and z(t) = np

i=1zi(t). The
notation x̂s means this factor is removed.

Define

Ψs := Mjs n1
r=m W[k,kir+m−r−1] ∈ Lk×kn , (12)

then we have

zs(t+ 1) = Ψsu(t)z(t), s = 1, · · · , p. (13)

Set

Ψ := Ψ1 ∗Ψ2 ∗ · · · ∗Ψp ∈ Lkp×kn . (14)

The controlled network profile evolutionary equation
is expressed as

z(t+ 1) = Ψu(t)z(t). (15)

This is a standard k-valued logical control network.
(2) (Probabilistic Case) Assume

Mi = M ji
i ∈ Lk×kn , with Pr = pjii
j = 1, · · · , ri, i = 1, · · · , n. (16)

Then for each choice: {j1, · · · , jn
∣∣1 ≤ ji ≤ ri} we

can use {M ji
i

∣∣i = 1, · · · , n} to construct Ψj1,··· ,jn ,
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using the technique developed for deterministic case.
Finally we have (15) again with

Ψ =

r1∑
j1=1

r2∑
j2=1

· · ·
rn∑

jn=1

n∏
i=1

pjii Ψj1,··· ,jn ∈ Υkp×kn . (17)

Note that a general procedure is provided above. But for
a particular NEG, the process may be simplified. We use
some examples to depict this.

Example 5. Recall Example 12 in Part 1. Assume players
2 and 4 are controls and the others are states. That is,

u1 = x2, u2 = x4, z1 = x1, z2 = x3, z3 = x5.

Then we have
x1(t+ 1) = Mfx4(t)x5(t)x1(t)x2(t)x3(t)

= MfW[23,22]x1(t)x2(t)x3(t)x4(t)x5(t)

= MfW[23,22]W[2,23]x4(t)x1(t)x2(t)x3(t)x5(t)

= MfW[23,22]W[2,23]W[2,22]u1(t)u2(t)z1(t)z2(t)z3(t)

:= L1u(t)z(t),

where L1 = MfW[23,22]W[2,23]W[2,22], u(t) = u1(t)u2(t),
z(t) = z1(t)z2(t)z3(t). Similarly, we can have

zi(t+ 1) = Liu(t)z(t), i = 1, 2, 3, (18)

where
L1 = MfW[23,22]W[2,23]W[2,22]

= δ2[1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2];

L2 = MfW[2,23]W[2,22]

= δ2[1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2];

L3 = MfW[22,23]W[2,23]W[2,22]

= δ2[1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2].

Finally, we have controlled NEG as

z(t+ 1) = Lu(t)z(t), (19)

where
L = L1 ∗ L2 ∗ L3

= δ8[1, 6, 3, 8, 6, 6, 8, 8, 4, 8, 4, 8, 8, 8, 8, 8,
7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8].

Example 6. Recall Example 13 in Part 1. Assume players
3 and 4 are controls and the others are states. That is,

u1 = x3, u2 = x4, z1 = x1, z2 = x2, z3 = x5.

Then we have

L1 = M1W
2
[2,23]

= δ2[1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2,

1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2];

L2 = M2W
2
[2,23]

= δ2[1, 1, 1/ 2
3 + 2/ 1

3 , 1/
1
3 + 2/ 2

3 , 1, 1, 1/
2
3 + 2/ 1

3 , 2,

1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1/ 1
3 + 2/ 2

3 , 2, 1, 1,

2, 2, 1, 1/ 1
3 + 2/ 2

3 , 2, 2, 1, , 1/
1
3 + 2/ 2

3 , 2, 2];

L3 = M5W
2
[2,23]

= δ2[1, 1, 1, 2, 1, 1, 1, 2, 1, 1/ 1
2 + 2/ 1

2 , 1, 2, 1,

1/ 1
2 + 2/ 1

2 , 1/
1
2 + 2/ 1

2 , 2, 1, 1/
1
2 + 2/ 1

2 ,

1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1/ 1
2 + 2/ 1

2 , 2, 2, 2].

Finally, we have the networked profile evolutionary equa-
tion as

z(t+ 1) = Lu(t)z(t), (20)

where L can be calculated by using the technique proposed
in Example 17 in Part 1 (Qi et al., 2014) as

L = δ8[1, 1, 1/ 2
3 + 3/ 1

3 , 6/
1
3 + 7/ 2

3 , 1, 1, 5/
2
3 + 7/ 1

3 , 8, 1,

1/ 1
2 + 2/ 1

2 , 3, 8, 1, 1/
1
2 + 2/ 1

2 , 7/
1
2 + 8/ 1

2 , 8,

1, 1/ 1
2 + 2/ 1

2 , 5/
1
3 + 7/ 2

3 , 8, 1, 6, 7, 8,

1, 2/ 1
3 + 4/ 2

3 , 8, 8, 1/
1
2 + 2/ 1

2 , 7/
1
3 + 8/ 2

3 , 8, 8].

4. NEG WITH STRATEGIES OF DIFFERENT
LENGTH INFORMATION

Definition 7. Given an NEG ((N,E), G,Π).

(i) A player, say, i, is said to use length-r (historic)
information, if

xi(t+ 1) = fi ({xj(t), xj(t− 1), · · · , xj(`),
cj(t), · · · , cj(`)

∣∣j ∈ U(i)}
)
,

(21)

where ` = max{0, t− r + 1}.
(ii) The NEG is said to have strategies of different length

(historic) information, if there is a partition N = N1∪
N2 ∪ · · · ∪Ns, Ni ∩Nj = ∅ (i 6= j) such that a player
j ∈ Nr implies that j is with r-length information.

Now assume i uses length-r information and let t ≥ r− 1.
Then we have

xi(t+ 1)

=fi ({xj(t), xj(t− 1), · · · , xj(t− r + 1),

cj(t), · · · , cj(t− r + 1)
∣∣j ∈ U(i)}

)
=fi

(
{xj(t), xj(t− 1), · · · , xj(t− r + 1)

∣∣j ∈ U2(i)}
)
.

(22)

Note that in the above equation the fi in the first equality
is different from the fi in the second equation. To avoid
notational complexity, we use the same notation. Now for
each j we define

zj1(t+ 1) := xj(t)

zj2(t+ 1) := zj1(t) = xj(t− 1)
...

zjr−1(t+ 1) := zjr−2(t) = xj(t− r + 2).

(23)

Using this set of new variables, we can express (22) into a
normal form as

zj1(t+ 1) = xj(t)

zj2(t+ 1) = zj1(t)
...

zjr−1(t+ 1) = zjr−2(t), j ∈ U2(i)

xi(t+ 1) = fi
(
{xj(t),z

j
1(t),z

j
2(t),··· ,z

j
r−1

(t)
∣∣j∈U2(i)}

)
.

(24)

Define

yi =
{
zj1, · · · , z

j
r−1
∣∣j ∈ U2(i)

}
∪ {xi},

then we have

yi(t+ 1) = Fi

(
{yj(t)

∣∣j ∈ U2(i)}
)
. (25)

Then the technique developed in Part 1 for standard NEGs
is applicable for this case. Finally, we consider the initial
values. We consider {xi(0), · · · , xi(r − 1)

∣∣i = 1, · · · , n} as
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the initial values. In fact, only {xi(0)
∣∣i = 1, · · · , n} are

real initial values. Then we can use the following equation

xi(1) = Fi

(
{xj(0)

∣∣j ∈ U2(i)}
)

xi(2) = Fi

(
{xj(0), xj(1)

∣∣j ∈ U2(i)}
)

...
xi(r − 1) = Fi

(
{xj(0), xj(1), · · · , xj(r − 2)

∣∣j ∈ U2(i)}
)

(26)

and the method similar to (23)–(25) to calculate all other
initial values.

To calculate the network profile dynamics of this kind
of networks, we need the following lemma (Cheng et al.,
Preprint2013)

Lemma 8. Assume X ∈ ∆p and Y ∈ ∆q. We define two
dummy matrices, named by “front-maintaining operator”
(FMO) and “rear-maintaining operator”(RMO) respec-
tively, as:

D
[p,q]
f = δp[1 · · · 1︸ ︷︷ ︸

q

2 · · · 2︸ ︷︷ ︸
q

· · · p · · · p︸ ︷︷ ︸
q

],

D[p,q]
r = δq[1 2 · · · q︸ ︷︷ ︸ 1 2 · · · q︸ ︷︷ ︸ · · · 1 2 · · · q︸ ︷︷ ︸︸ ︷︷ ︸

p

].

Then we have

D
[p,q]
f XY = X. (27)

D[p,q]
r XY = Y. (28)

We give an example to depict this.

Example 9. Consider an NEG ((N,E), G,Π), where the
graph is a cycle of n = 6 nodes, and the FNG is the same
as in Example 12 of Part 1. Assume players 2, 3, 4, 5, 6
use length-1 information, and the SUR, Π, is the same as
in Example 13 in Part 1; and the player 1 uses length-2
information; and the SUR for t = 1 it is Π, for t > 1 the
SUR for player 1 is as follows: using Π to get xj∗(t)(t) and
xj∗(t−1)(t). Then we assume

x1(t+ 1) =

{
xj∗(t)(t), P r = 0.8,

xj∗(t−1)(t), P r = 0.2.

Then the strategy dynamics for players 2, 3, 4, 5, 6
are the same as in Example 12 of Part 1. The strategy
dynamics for player 1 is

z1(t+ 1) = x1(t)
z2(t+ 1) = x2(t)
z3(t+ 1) = x3(t)
z4(t+ 1) = x5(t)
z5(t+ 1) = x6(t)

x1(t+ 1) =

{
f1(x5(t),x6(t),x1(t),x2(t),x3(t)), P r = 0.8

f1(z4(t),z5(t),z1(t),z2(t),z3(t)), P r = 0.2

=

{
MfD

[2,25]
r W[23,23]x(t), P r = 0.8

MfW[23,22]z(t), P r = 0.2.

(29)

where x(t) = n6
i=1xi(t), z(t) = n5

i=1zi(t), Mf is the same
as in Example 13 in Part 1. Denoted by

yi(t) =

{
zi(t), i = 1, · · · , 5;

xi−5(t), i = 6, · · · , 11.

Then

y1(t+ 1) = x1(t)

= D[25,2]
r z(t)x1(t)

= D[25,2]
r z(t)D

[2,25]
f x(t)

= D[25,2]
r

(
I25 ⊗D

[2,25]
f

)
z(t)x(t)

:= M1y(t),

where

M1 = D[25,2]
r

(
I25 ⊗D

[2,25]
f

)
.

Similarly, we can calculate that

yi(t+ 1) = Miy(t), i = 2, · · · , 11,

where

M2 = D[25,2]
r

(
I25 ⊗D[2,2]

r D
[22,24]
f

)
M3 = D[25,2]

r

(
I25 ⊗D[2,22]

r D
[23,23]
f

)
M4 = D[25,2]

r

(
I25 ⊗D[2,24]

r D
[25,2]
f

)
M5 = D[25,2]

r

(
I25 ⊗D[2,25]

r

)
M6 =

{
MfD

[2,25]
r W[23,23]D

[25,26]
r := M1

6 , P r = 0.8

MfW[23,22]D
[25,26]
f := M2

6 , P r = 0.2

M7 = MfD
[2,25]
r W[24,22]D

[25,26]
r

M8 = MfD
[25,2]
f D[25,26]

r

M9 = MfD
[26,25]
r

M10 = MfD
[25,2]
f W[22,24]D

[25,26]
r

M11 = MfD
[25,2]
f W[23,23]D

[25,26]
r .

Then
y(t+ 1) = Ly(t),

where

L =

{
L1 := M1∗M2∗M3∗M4∗M5∗M

1
6∗M7∗M8∗M9∗M10∗M11, Pr = 0.8,

L2 := M1∗M2∗M3∗M4∗M5∗M
2
6∗M7∗M8∗M9∗M10∗M11, Pr = 0.2.

As for the initial value, we have

y(1) = (x1(0), x2(0), x3(0), x5(0), x6(0),

(x1(1), x2(1), x3(1), x4(1), x5(1), x6(1))),
(30)

with (x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)) are free val-
ues, and

x(1) = M0x(0), (31)

where
M0 = M0

1 ∗M0
2 ∗M0

3 ∗M0
4 ∗M0

5 ∗M0
6

= (MfD
[25,2]
f W[24,22]) ∗ (MfD

[25,2]
f W[25,2])

∗(MfD
[25,2]
f ) ∗ (MfD

[2,25]
r W[2,25])

∗(MfD
[2,25]
r W[22,24]) ∗ (MfD

[2,25]
r W[23,23]).

Finally, we have

L= 0.8L1 + 0.2L2

= δ2048[1, 68/0.2 + 100/0.8, 136, 200/0.2 + 232/0.8, 15,

80/0.2 + 112/0.8, 144, 208/0.2 + 240/0.8, 285,

. . . , 1984, 2048].

Then, after 18 times iterations L converges to the following
matrix

δ2048[1, 2048, 2048, . . . , 2048].

According to this matrix (the whole set of data is omitted),
we splite ∆2048 into three subsets:

D1 = δ2048{1, 129, 257, 385};
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D2 = δ2048 {65 193 321 449 513 577 641
705 769 833 897 961 1025 1089
1153 1217 1281 1345 1409 1473 1537
1601 1665 1729 1793 1857 1921 1985};
D3 = ∆2048\ (D1 ∪D2) .

If initial state x0 ∈ D1, then x(t)→ δ12048 as t→∞. Else
if x0 ∈ D2, then x(t)→ 0.8 ∗ δ12048 + 0.2 ∗ δ20482048 as t→∞.
Else where x0 ∈ D3, then x(t)δ20482048 as t→∞.

Note that not all x ∈ ∆2048 can be chosen as the initial
value, because the initial value should satisfy (30)–(31).

5. NEG WITH MULTI-SPECIES

Definition 10. An NEG is said to have s species, if there
is a partition N = N1∪N2∪· · ·∪Ns, a set of fundamental
games {Gi,j

∣∣1 ≤ i, j ≤ s}
To avoid the notational complexity, we assume s = 2. We
call these two kinds of players (nodes) white (W ) and black
(B) respectively. Then there are three different NEGs: Gw,
Gb, and Gm. It is reasonable to assume that Gw and Gb,
which are the games between two white and two black
players respectively, are symmetric, and Gm, which is the
game between a white and a black players, is asymmetric.
Assume in all the three games there are k strategies for
each player. Then each player has k×k possible strategies,
denoted by zi(t) = xi(t) n yi(t), where xi is the strategy
against white neighbors and yi is the strategy against black
neighbors. We give an example to depict this.

Example 11. A game with its graph depicted in Fig. 1,
where 4 nodes are white and 2 others are black. Assume
k = 2 and the payoff bi-matrices for three FNGs are
described by

(i) Gw is S-2 with parameters as (Snowdrift Game)

R = −1;S = −1;T = 2;P = 0;

(ii) Gb is S-2 with parameters as (Hawk-Dove Game)

R = −1;S = 2;T = 0;P = 1;

(iii) Gm is A-2 with parameters as

A = 2, B = 1, C = 0, D = 0, E = 0, F = 0, G = 1, H = 2.

1

2

3 4

5

6

Fig. 1. Graph for Example 11

We can calculate fi as in Tables 1-4.

Using SUR UI-1, We have the NEG as

x(t+ 1) = Ln6
i=1 xi

Table 1. Payoffs → Dynamics (Example 11)

Profile 11111 11112 11121 11122 11211 11212 11221 11222

c1 -1 -1 -1 -1 -1 -1 -1 -1

c2 5/4 3/4 3/4 1/4 1/4 1/4 1/4 -1/4

c3 1 1 1 1 0 0 0 0

c4 1 1 0 0 1 1 0 0

f1 1 1 1 1 1 1 1 1

f3 1 1 1 1 1 1 1 2

f4 1 1 1 1 1 1 1 2

...

Profile 22111 22112 22121 22122 22211 22212 22221 22222

c1 1 1 1 1 1 1 1 1

c2 1/4 1/2 1/2 3/4 1/2 3/4 3/4 1

c3 0 0 0 0 2 2 2 2

c4 0 0 2 2 0 0 2 2

f1 2 2 2 2 2 2 2 2

f3 2 2 2 2 2 2 2 2

f4 2 2 2 2 2 2 2 2

Table 2. Payoffs → Dynamics (Example 11)

Profile 111111 111112 111121 111122 111211 111212 111221 111222

c1 -1 -1 -1 -1 -1 -1 -1 -1

c2 5/4 5/4 3/4 3/4 3/4 3/4 1/4 1/4

c3 1 1 1 1 1 1 1 1

c4 1 1 1 1 0 0 0 0

c5 0 0 1 0 0 0 1 0

c6 -1 2 -1 0 -1 2 -1 0

f2 1 1 (2/3,1/3) 1 1 1 (1/2,1/2) 1

f5 1 2 2 1 1 2 2 1

...

Profile 122111 122112 122121 122122 122211 122212 122221 122222

c1 2 2 2 2 2 2 2 2

c2 1/4 1/4 1/2 1/2 1/2 1/2 3/4 3/4

c3 2 2 2 2 2 2 2 2

c4 0 0 0 0 2 2 2 2

c5 -1/2 -1/2 2 1 -1/2 -1/2 2 1

c6 -1 2 -1 0 -1 2 -1 0

f2 (1/2,1/2) (1/2,1/2) (1/3,2/3) (1/2,1/2) (1/3,2/3) (1/3,2/3) (1/4,3/4) (1/3,2/3)

f5 2 2 2 2 2 2 2 2

Table 3. Payoffs → Dynamics (Example 11)

Profile 211111 211112 211121 211122 211211 211212 211221 211222

c1 0 0 0 0 0 0 0 0

c2 2 2 3/2 3/2 3/2 3/2 1 1

c3 1 1 1 1 1 1 1 1

c4 1 1 1 1 0 0 0 0

c5 0 0 1 0 0 0 1 0

c6 -1 2 -1 0 -1 2 -1 0

f2 1 1 1 1 1 1 (2/3,1/3) 1

f5 1 (1/2,1/2) 1 1 1 2 (1/2,1/2) 1

...

Profile 222111 222112 222121 222122 222211 222212 222221 222222

c1 1 1 1 1 1 1 1 1

c2 1/2 1/2 3/4 3/4 3/4 3/4 1 1

c3 2 2 2 2 2 2 2 2

c4 0 0 0 0 2 2 2 2

c5 -1/2 -1/2 2 1 -1/2 -1/2 2 1

c6 -1 2 -1 0 -1 2 -1 0

f2 2 2 2 2 2 2 2 2

f5 2 2 2 2 2 2 2 2

Table 4. Payoffs → Dynamics (Example 11)

Profile 111 112 121 122 211 212 221 222

c5 0 3/2 -1/2 0 -1/2 1 1/2 1

c6 -1 2 -1 0 -1 2 -1 0

f6 1 2 2 2 1 2 2 2

where
L = δ64[1, 4, 4, 2, 1, 4, 4, 2, 1, 4, 4, 2, 1, 4, 32, 32, 15, 16,

16, 16, 15, 16, 16, 16, 15, 16, 16, 16, 15, 16, 16, 16,

1, 2, 2, 2, 1, 4, 2, 2, 1, 4, 2, 2, 1, 4, 20, 2, 63, 64,

64, 64, 63, 64, 64, 64, 63, 64, 64, 64, 63, 64, 64, 64].

This NEG has two fixed points (1, 1, 1, 1, 1, 1) and (2, 2, 2,
2, 2, 2). Besides, it has two cycles with length 2, i.e.,

(2, 2, 2, 2, 2, 1)→ (2, 2, 2, 2, 1, 1)→ (2, 2, 2, 2, 2, 1)

and

(2, 2, 1, 1, 1, 1)→ (2, 1, 1, 1, 1, 1)→ (2, 2, 1, 1, 1, 1).
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6. NEG WITH TIME-VARYING PAYOFFS

Definition 12. An NEG is said to have varying payoffs, if
the parameters in the payoff bi-matrix of the NEG are
time-varying.

Example 13. Recall Example 12 of Part 1, where network
graph is Fig. 1 (a) and the SUR is UI-1. As for the FNG,
we let the non-zero parameters be flexible, that is: FNG is
S-2 with constrains: R = S, P = 0 (the generalized game
of Snowdrift).

Similar to Example 12 of Part 1, the FEE can be de-
termined via Table 5. The parameters in Table 5 are as
follows:

α =

{
1, R ≥ T
2, R < T,

β =

{
1, R ≥ T

2

2, R < T
2 ,

γ =

{
1, R ≥ max{T2 , 0}
2, otherwise,

θ =

{
1, R ≥ max{T, T2 }
2, otherwise.

Table 5. (Parameter-Depending) Payoffs →
Dynamics

Profile 11111 11112 11121 11122 11211 11212 11221 11222

f 1 1 α β α α β γ

Profile 12111 12112 12121 12122 12211 12212 12221 12222

f α α α θ β β 2 2

Profile 21111 21112 21121 21122 21211 21212 21221 21222

f 1 1 α β α α β γ

Profile 22111 22112 22121 22122 22211 22212 22221 22222

f β β θ β γ γ 2 2

Hence, the FEE is

f = δ2[1, 1, α, β, α, α, β, γ, α, α, α, θ, β, β, 2, 2,
1, 1, α, β, α, α, β, γ, β, β, θ, β, γ, γ, 2, 2] ni+2

j=i−2 xj .

(32)

Denote by

A = {R ≥ T}; B = {R ≥ T
2 };

C =
{
R ≥ max{T2 , 0}

}
; D =

{
R ≥ max{T, T2 }

}
.

Let Θ (with 0 ≤ Θ < 2π) be defined by

sin(Θ) =
R√

R2 + T 2
; cos(Θ) =

T√
R2 + T 2

.

Then the parameter space can be decomposed into 5 parts
as shown in Fig. 2, where

I = A ∪B ∪ C ∪D =

{
0 ≤ Θ ≤

π

4

}
∪
{

3

2
π ≤ Θ < 2π

}
II = A ∪B ∪ Cc ∪D =

{
π + arctan(2) ≤ Θ <

3

2
π

}
III = A ∪Bc ∪ Cc ∪Dc =

{
π +

1

4
π ≤ Θ < π + arctan(2)

}
V I = Ac ∪Bc ∪ Cc ∪Dc =

{
arctan(2) < Θ < π +

1

4
π

}
V = Ac ∪B ∪ C ∪Dc =

{
π +

1

4
π < Θ ≤ arctan(2)

}
.

It follows that

(i) When (R, T ) ∈ I, the FEE (32) is specified as f1
where

α = 1; β = 1; γ = 1; θ = 1.

(ii) When (R, T ) ∈ II, the FEE (32) is specified as f2
where

α = 1; β = 1; γ = 2; θ = 1.

(iii) When (R, T ) ∈ III, the FEE (32) is specified as f3
where

α = 1; β = 2; γ = 2; θ = 2.

(iv) When (R, T ) ∈ V I, the FEE (32) is specified as f4
where

α = 2; β = 2; γ = 2; θ = 2.

(v) When (R, T ) ∈ V , the FEE (32) is specified as f5
where

α = 2; β = 1; γ = 1; θ = 2.

Finally, we consider the NEG with time-varying payoff
parameters as R = sin

(π
6
t
)

T = cos
(π

6
t
)
.

Then it is clear that the FEE becomes a periodic function
with period 12, precisely,

xi(t+ 1) = f(t) ni+2
j=i−2 xi(t), ∀i, (33)

where

f(t) =


f1, t ∈ {12m,12m+1,12m+9,12m+10,12m+11}
f3, t = 12m+ 8

f4, t ∈ {12m+2,12m+4,12m+5,12m+6,12m+7}
f5, t = 12m+ 2, m ∈ Z+.

Note that this is correct for Sn and R∞ (Graph of R with
all integers as nodes).

R

T

O

I

II
III

IV V

θ

Fig. 2. A Partition of Parameter Space

7. CONCLUSION

Based on the FEEs of all players, the SPD of overall
NEG is constructed. Using SPD, the controlled NEGs are
introduced and converted into standard k-valued logical
control networks. Then some more complicated kinds of
NEGs are investigated. They are (i) players using different
length historical information; (ii) players of multi-species;
and (iii) the fundamental network game with time-varying
payoffs. The formulations for these three more complicated
kinds of NEGs are obtained, some interesting results are
investigated.
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