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Abstract: This paper presents a comprehensive modeling technique for networked evolutionary
games (NEG). Three kinds of network graphs are considered, which are (i) undirected graph
for symmetric games; (ii) directed graph for asymmetric games, and (iii) d-directed graph
for symmetric games with partial neighborhood information. Three kinds of fundamental
evolutionary games (FEGs) are discussed, which are (i) two strategies and symmetric (S-2);
(ii) two strategies and asymmetric (A-2); and (iii) three strategies and symmetric (S-3). Three
strategy updating rules (SUR) are introduced, which are (i) Unconditional Imitation (UI);
(ii) Fermi Rule (FR); (iii) Myopic Best Response Adjustment Rule (MBRA). Then we review
the fundamental evolutionary equation (FEE), and give the detailed formulation for different
models. Finally, the network profile dynamics (NPD) of NEGs are investigated via their FEE.

Keywords: Networked evolutionary game, fundamental evolutionary equation, network profile
dynamics, semi-tensor product of matrices

1. INTRODUCTION

In the last four decades or so, the investigation of evolu-
tionary games (EG) has attracted a great attention from
scientists in cross disciplines, because evolutionary game
has wide background from biological systems (Taylor &
Jonker, 1978; Charnov, 1982), economical systems (Sug-
den, 1986), social systems (Ohtsuki et al., 2006), physical
systems (Nowak & May, 1992), etc.

In recent researches, the topological relationship among
players of an EG is mostly ignored. That is, assume each
player gambles with all others. In many practical cases
the situation is not like this. Therefore, in recent years
the networked EG (NEG) becomes a hot topic. Roughly
speaking, an NEG adds a graph with players as its nodes
and sides describing the neighborhoods of each players.
Then each player only gambles with its neighbors (Nowak
& May, 1992; Szabo & Toke, 1998; Santos et al., 2008).
Since there are no many proper tools to deal with NEG,
most of the researches are based on either simulations or
statistics.

Recently, the semi-tensor product (STP) has been pro-
posed for investigating (Boolean and k-valued logical)
networks and network-based games (Cheng et al., 2011,
2012a). There are many other interesting developments
such as (i) topological structure of notworks (Fornasini &
Valcher, 2013b; Hochma et al., 2013); (ii) controllability
and control design of various kinds of control network-
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s (Laschov & Margaliot, 2012; Li & Sun, 2011a; Zhang
& Zhang, 2013); (iii) optimal control and game related
optimization (Laschov & Margaliot, 2012); (iv) network
stability and stabilization (Li et al., 2013b); (v) tech-
nique for reducing complexity (Zhao et al., 2013); and
(vi) various applications to control and signal processing
etc. (Wang et al., 2012; Xu & Hong, 2013), just to quote
a few.

In a very recent work, the STP has also been used to the
modeling, analysis and control design of the NEGs (Cheng
et al., Preprint2013). This paper is a development of Cheng
et al. (Preprint2013). It provided a comprehensive discus-
sion for various NEGs. The NEGs discussed could have
three different graphs (i) undirected graph, which is used
for the NEGs with symmetric fundamental network games
(FNG); (ii) directed graph, which is used for the NEGs
with asymmetric FNGs; and (iii) d-directed graph, which
is used for symmetric games with partial neighborhood
information. Three kinds of FNGs are discussed, which
are (i) each player has two strategies and the game is
symmetric (S-2); (ii) each player has two strategies and
the game is asymmetric (A-2); and (iii) each player has
three strategies and the game is symmetric (S-3). Three
strategy updating rules (SUR) are introduced, which are
(i) Unconditional Imitation (UI); (ii) Fermi Rule (FR);
(iii) Myopic Best Response Adjustment Rule (MBRA).
Though most of widely discussed kinds of NEGs will be
discussed in detail, the technique developed is applicable
for other cases.
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Then we review the fundamental evolutionary equation
(FEE) introduced in Cheng et al. (Preprint2013) and
construct the FEEs for various types of NEGs.

For statement ease, some notations and basic concepts are
introduced first.

• Notations:
(i) Mm×n: the set of m× n real matrices.

(ii) Col(M) (Row(M)) is the set of columns (rows) of
M . Coli(M) (Rowi(M)) is the i-th column (row)
of M .

(ii) Dk := {1, 2, · · · , k} , k ≥ 2.
(iii) δin: the i-th column of the identity matrix In.
(iv) ∆n :=

{
δin|i = 1, · · · , n

}
.

(v) Υk =

{
(r1, · · · , rk)

∣∣ri ≥ 0, i = 1, · · · , k;
k∑

i=1

ri = 1

}
is

called the set of k-th dimensional probabilistic
vectors.

(vi) A matrix L ∈Mm×n is called a logical matrix if
the set of columns of L, denoted by Col(L), are
of the form of δkm. That is,

Col(L) ⊂ ∆m.

Denote by Lm×n the set of m×n logical matrices.
(vii) If L ∈ Ln×r, by definition it can be expressed as

L = [δi1n , δ
i2
n , · · · , δirn ]. For the sake of brevity, it

is briefly denoted as

L = δn[i1, i2, · · · , ir].
(viii) A matrix L ∈ Mm×n is called a probabilistic

matrix if the columns of L are m-dimensional
probabilistic vectors. That is,

Col(L) ⊂ Υm.
The set of m×n probabilistic matrices is denoted
by Υm×n.

(ix) If L ∈ Υm×n, if Col(L) = C1 ∪ C2, where
C1 ⊂ ∆m and C2 ⊂ Υm\∆m, and |C2| � |C1|.
Then for notational compactness, we still use the
shorthand

L = δm[i1, i2, · · · , in],

where if Colk(L) = δsm ∈ C1, ik = s, else if
Colk(L) ∈ C2, that is, Colk(L) = (r1, · · · , rm),
we express ik as

ik = 1/(r1) + 2/(r2) + · · ·+m/(rm).

• Operators:
(i) Semi-tensor product of matrices (Cheng et al.,

2011, 2012a):

Definition 1. Let M ∈ Mm×n and N ∈ Mp×q,
and t = lcm{n, p} be the least common multiple
of n and p. The semi-tensor product of M and
N , denoted by M nN , is defined as(

M ⊗ It/n
) (
N ⊗ It/p

)
∈Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.

(ii) Khatri-Rao Product of matrices (Ljung & Söderström,
1982)

Definition 2. Let M ∈ Mp×m, N ∈ Mq×m.
Then the Khatri-Rao Product is defined as

M ∗N = [ Col1(M) n Col1(N) · · ·
Colm(M) n Colm(N)] ∈Mpq×m.

Proposition 3. Let X ∈ Rm be a column and M
is a matrix. Then

X nM = (Im ⊗M)X. (2)

(iii) Swap matrix (Cheng et al., 2011, 2012a):

Definition 4. A matrix W[m,n] ∈Mm×n, defined
by

W[m,n] = δmn[1,m+ 1, · · · , (n− 1)m+ 1;

2,m+ 2, · · · , (n− 1)m+ 2;

· · · ;

n,m+ n, · · · , nm],

(3)

is called the (m,n)-dimensional swap matrix.

The basic function of the swap matrix is to
“swap” two vectors. That is,

Proposition 5. Let X ∈ Rm and Y ∈ Rn be two
columns. Then

W[m,n] nX n Y = Y nX. (4)

The rest of this paper is organized as follows: Section 2
presents a mathematical framework for NEGs. Three basic
components of an NEG, namely, network graph, FNG, and
SUR, are discussed in detail. Section 3 is devoted to the
FEE, which plays a key role in the investigation of NEGs.
FEEs of all players are building block for constructing
strategy profile dynamics of the overall networks. Section
4 is a brief conclusion.

2. MATHEMATICAL FRAMEWORK FOR NEG

This section is a comprehensive description of mathemati-
cal framework of NEGs. The main idea of which was firstly
proposed in Cheng et al. (Preprint2013).

Definition 6. A networked evolutionary game, denoted by
((N,E), G,Π), consists of three ingredients as:

(i) a network (graph) (N,E);
(ii) a fundamental network game (FNG), G, such that if

(i, j) ∈ E, then i and j play the FNG with strategies
xi(t) and xj(t) respectively.

(iii) a local information based strategy updating rule
(SUR).

In the following we describe these three ingredients one by
one.

2.1 Network Graph

We consider three kinds of network graphs.

(i) Undirected graph: N = {1, 2, · · · , n} (n ≤ ∞).
It represents n players. If (i, j) ∈ E, then i is
in the neighborhood of j, denoted by i ∈ U(j).
Simultaneously, j ∈ U(i).

(ii) Directed graph: Note that the FNG is always played
by two neighboring players. If the FNG is not sym-
metric, the directed edge is used to distinguish differ-
ent roles of two players. Assume (i, j) ∈ E, i.e., there
is an edge from i to j, then in the game i is player 1
and j is player 2. Note that such directed graph does
not affect the definition of neighborhoods.

(iii) D-directed graph: Assume the FNG is still symmetric,
but the graph is not symmetric. That is, if (i, j) ∈ E,
denoted by dot line arrow goes from i to j, it means

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

276



the information can go from i to j but not the other
direction. In this case there exist V (i) ⊂ U(i), such
that player i can use only part of its neighborhood
information, precisely, only the information from V (i)
can be used.

Definition 7. Consider an NEG with graph (N,E).

(i) If (i, j) ∈ E, then both i ∈ U(j) and j ∈ U(i) (no
matter whether the graph is directed or not).

(ii) If there exist α1, · · · , αλ, such that i ∈ U(α1), α1 ∈
U(α2), · · · , αs ∈ U(j), where λ < s, then i is said to
be in the s-neighborhood of j, denoted by i ∈ Us(j).

Note that (i) if i ∈ Us(j), then j ∈ Us(i); (ii) if i ∈ Us(j),
then i ∈ Uh(j), h > s; (iii) it is assumed that i ∈ U(i).

Definition 8. A graph is said to be homogeneous if the
graph is undirected and each node has same degree, or the
graph is directed and each node has same in-degree and
same out-degree. If a graph is not homogeneous it is said
to be heterogeneous.

The following example shows different kinds of network
graphs.

Example 9. Assume there are 5 players. They form three
kinds of graphs as shown in Fig. 1.

(i) A cycle of undirected network graph shown in
Fig. 1 (a).

Consider the neighborhoods of 1:

U(1) = {5, 1, 2}; U2(1) = {4, 5, 1, 2, 3}.
(ii) A directed network graph shown in Fig. 1 (b).

Consider the neighborhoods of 1:

U(1) = {1, 2}; U2(1) = {5, 1, 2, 3};
U3(1) = {4, 5, 1, 2, 3}.

(iii) D-directed network graph Fig. 1 (c).
Consider the neighborhoods of 1:

U(1) = {1, 2, 3, 4, 5}; V (1) = {1, 3, 4}.

2.2 Fundamental Network Game

Definition 10. A fundamental network game (FNG) is a
game with two players, i.e., N = (i, j), and each player
has the same set of strategies as

S = Si = Sj = (1, 2, · · · , k).

It is symmetric if the payoff functions satisfy:

ci(sp, sq) = cj(sq, sp), ∀sp, sq ∈ S.
Otherwise it is asymmetric.

In asymmetric case, only the directed graph can be used
as the network graph.

The overall payoff of player i is assumed to be the average
of its payoffs with all neighbors. Precisely,

ci(t) =
1

|U(i)| − 1

∑
j∈U(i)\i

cij(t), i ∈ N. (5)

An FNG is determined by two key factors: (i) k: the
number of possible strategies; (ii) type: symmetric or
asymmetric. So we classify the FNGs as:

• S-k: a symmetric game with k possible strategies;
• A-k: an asymmetric game with k possible strategies;

1

5

4 3

2

(a)

2

5

4

3

1

(b)

4 3

5 2

1

(c)

Fig. 1. Three kinds of network graphs

In the following example we collect some commonly used
FNGs. More details about the practical meanings can
be found in Rasmusen (2007); Smith (1982); Benoit &
Krishna (1985).

Example 11. We consider three simplest kinds of FNGs as
follows.

• S-2: The payoff bi-matrix of this kind of games is in
Table 1.

Table 1. S-2 Games

P1\P2 1 2

1 (R, R) (S, T )

2 (T, S) (P, P )

It covers many well known games. For instance,
(1) if 2R > T + S > 2P , it is the Game of Prisoner’s

Dilemma;
(ii) if R = b − c, S = b − c, T = b, P = 0, and

2b > c > b > 0, it is the Snowdrift Game;
(iii) if R = 1

2 (v− c), S = v, T = 0, P = v
2 , and v < c,

it is the Hawk-Dove Game.
• A-2: The payoff bi-matrix of this kind of games is in

Table 2.

Table 2. A-2 Games

P1\P2 1 2

1 (A, B) (C, D)

2 (E, F ) (G, H)

It also covers many well known games. For instance,
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(1) if A = H = a, B = G = b, C = D = E = F = 0,
and a > b > 0, it is the Battle of The Sexes;

(ii) if E > A > C = D > B > 0 > F , and
G = H = 0, it is the Game of Boxed Pigs;

(iii) if A = b, B = −b, C = b, D = −b E = c,
F = −c, G = a, H = −a, and a > b > c > 0, it
is the Game of Battle of the Bismark See,

(iv) if A = D = F = G−a, B = C = E = H = a, and
a 6= 0, it is the Game of Matching the Pennies.

• S-3: The payoff bi-matrix of this kind of games is in
Table 3.

Table 3. S-3 Games

P1\P2 1 2 3

1 (A, A) (B, C) (D, E)

2 (C, B) (F, F ) (G, H)

3 (E, D) (H, G) (I, I)

Some examples are
(1) if A = F = I = 0, B = E = G = a,

C = D = H = −a, and a 6= 0, it is the Game of
Rock-Scissor-Paper;

(ii) if E = a, A = b, F = c, I = 0, B = G = H =
D = d, C = e, and a > b > c > 0 > d > c, it is
the Benoit-Krishna Game.

2.3 Strategy Updating Rule

Denote by xi(t) the strategy of player i at time t. Then
SUR is a rule which uses the local information to decide
its next strategy. Precisely,

xi(t+ 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N.

(6)

There are some commonly used SURs.

• Unconditional Imitation (UI) (Nowak & May, 1992):
The strategy of player i at time t+ 1, i.e., xi(t+ 1),
is selected as the best strategy from strategies of
neighborhood players j ∈ U(i) at time t. Precisely,
if

j∗ = argmaxj∈U(i) cj(x(t)), (7)

then

xi(t+ 1) = xj∗(t). (8)

When the players with best payoff are not unique,
say

argmaxj∈U(i) cj(x(t)) := {j∗1 , · · · , j∗r}, (9)

we may use the following 2 options:
(i) First Unconditional Imitation (UI-1): Choose one

corresponding to a priority. For instance (as a
default),

j∗ = min{µ |µ ∈ argmaxj∈U(i) cj(x(t))}. (10)

This method leads to a deterministic k-valued
logical dynamics.

(ii) Second Unconditional Imitation (UI-2): Choose
any one with equal probability. That is,

xi(t+ 1) = xj∗µ(t), with probability piµ =
1

r
,

µ = 1, · · · , r.
(11)

This method leads to a probabilistic k-valued
logical dynamics.

• Fermi Rule (FM) (Szabo & Toke, 1998; Traulsen
et al., 2006). That is, randomly choose a neighbor-
hood j ∈ U(i). Comparing cj(t) with ci(t) to deter-
mine xi(t+ 1) as

xi(t+ 1) =

{
xj(t), with probability pt,

xi(t), with probability 1− pt,
(12)

where pt is decided by the Fermi function

pt =
1

1 + exp(−ζ(cj(t)− ci(t)))
.

The parameter ζ > 0 can be chosen arbitrarily. For
simplicity, throughout this paper we set ζ =∞. Then

pt =

{
1, cj(t) > ci(t),

0, cj(t) ≤ ci(t).
This method leads to a probabilistic k-valued logical
dynamics.

• Myopic Best Response Adjustment Rule (MBRA)
(Young, 1993): Assume

ci (xi = x∗, xj = xj(t), j ∈ U(i)\{i})
= max

x∈S
ci (xi = x, xj = xj(t), j ∈ U(i)\{i}) , (13)

then we choose

xi(t+ 1) = x∗. (14)

When the strategies with best payoff are not u-
nique, say, the set of best strategies is

S∗ = {x∗1, · · · , x∗r} ⊂ S, (15)

we may use the following 2 options:
(i) First MBRA (MBRA-1): Choose one correspond-

ing to a priority. For instance (as a default),

xi(t+ 1) = min{x∗j ∈ S∗}. (16)

This method leads to a deterministic k-valued
logical dynamics.

(ii) Second MBRA (MBRA-2): Choose one with e-
qual probability for best strategies. That is,

xi(t+ 1) = x∗j (t), with probability piµ =
1

r
,

µ = 1, · · · , r.
(17)

This method leads to a probabilistic k-valued
logical dynamics.

3. FUNDAMENTAL EVOLUTIONARY EQUATION

Observing equation (6), since cj(t) depends on U(j) and
U(j) ⊂ U2(i), (6) can be rewritten as

xi(t+ 1) = fi
(
{xj(t)

∣∣j ∈ U2(i)}
)
, t ≥ 0, i = 1, 2, · · · , n.

(18)

We call (18) the fundamental evolutionary equation (FEE).
One sees easily that the overall network evolutionary dy-
namics, called the network profile dynamics (NPD), is
completely determined by the FEEs. It is also obvious
that the FEEs are determined by network graph, FNG,
and SUR. In the following we use some examples to depict
the procedure for constructing FEEs.

Example 12. Consider an NEG. Assume the network
graph is Fig.1 (a); FNG is S-2 with R = S = −1, T = 2,
P = 0 (the game of Snowdrift). SUR is UI-1. Then the
FEE can be determined via Table 4.
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Table 4. Payoffs → Dynamics (Example 12)

Profile 11111 11112 11121 11122 11211 11212 11221 11222

ci−1 -1 -1 -1 -1 -1 -1 -1 -1

ci -1 -1 -1 -1 2 2 1 1

ci+1 -1 -1 2 1 -1 -1 1 0

fi 1 1 2 2 2 2 2 2

..

.

Profile 22111 22112 22121 22122 22211 22212 22221 22222

ci−1 1 1 1 1 0 0 0 0

ci -1 -1 -1 -1 1 1 0 0

ci+1 -1 -1 2 1 -1 -1 1 0

fi 2 2 2 2 2 2 2 2

Now identify 1 ∼ δ12 and 2 ∼ δ22 , then we can express f
into its algebraic form as

xi(t+ 1) = Mfxi−2xi−1xixi+1xi+2, i = 1, 2, 3, 4, 5,
(19)

where
Mf = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2].
(20)

Note that we use (mod 5) notation. That is, x0 = x5,
x−1 = x4 and so on.

Example 13. Assume network graph is Fig. 1 (b); FNG is
A-2 with A = H = 2, B = G = 1, E = F = C = D = 0
(the game of Battle of The Sexes). SUR is Fermi Rule
(FM). Since the game is not symmetric, the FEEs for
individual nodes are different. We need to work out them
one by one.

xi(t+ 1) = Mix1x2x3x4x5 := Mix, i = 1, 2, 3, 4, 5,
(21)

where x = n5
i=1xi and Mi will be calculated in the

following two steps:

(i) If the profile is known, then the payment for each
player is known. For instance, if the profile

(x1, x2, x3, x4, x5) = (1 1 2 2 2),

Then it is easy to calculate that

c1 = 2,

c2 =
1

3
(1 + 0 + 0) =

1

3
,

c3 =
1

2
(0 + 1) =

1

2
,

c4 =
1

2
(2 + 2) = 2,

c5 =
1

2
(0 + 1) =

1

2
.

(ii) Comparing c1 with c2, we have f1 = x1 = 1. As for
f2 we have three choices:

j = 1 ⇒ f2 = x1 = 1,
j = 3 ⇒ f2 = x3 = 2,
j = 5 ⇒ f2 = x5 = 2.

Hence f2 = 1 with probability 1
3 and f2 = 2 with

probability 2
3 . We briefly express this by f2 = ( 1

3 ,
2
3 ).

Similarly, we can calculate fi as in Table 5.

Finally, we have

M1 = δ2[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2

1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2],
(22)

M2 = δ2[1, 1, 1, 1, 1, 1, 1, ( 1
3 ,

2
3 ), ( 2

3 ,
1
3 ), ( 1

3 ,
2
3 ), 2, 2, ( 1

3 ,
2
3 ), 2,

2, 2, 1, 1, 1, 1, 1, 1, 1, ( 1
3 ,

2
3 ), ( 2

3 ,
1
3 ), 2, 2, 2, 2, 2, 2, 2],

(23)

Table 5. Payoffs → Dynamics (Example 13)

Profile 11111 11112 11121 11122 11211 11212 11221 11222

c1 2 2 2 2 2 2 2 2

c2 5/3 1 5/3 1 1 1
3

1 1
3

c3 3/2 1 1
2

1
2

0 0 1
2

1
2

c4 1 1
2

0 1 1
2

0 1 2

c5 3/2 0 1
2

1
2

3/2 0 1
2

1
2

f1 1 1 1 1 1 1 1 1

f2 1 1 1 1 1 1 1 ( 1
3

, 2
3

)

f3 1 1 1 ( 1
2

, 1
2

) 1 ( 1
2

, 1
2

) ( 1
2

, 1
2

) 2

f4 1 1 1 2 1 1 2 2

f5 1 1 1 ( 1
2

, 1
2

) 1 ( 1
2

, 1
2

) 1 2

...

Profile 22111 22112 22121 22122 22211 22212 22221 22222

c1 1 1 1 1 1 1 1 1

c2
2
3

1 2
3

1 1 4/3 1 4/3

c3 1 1 0 0 1 1 3/2 3/2

c4 1 1
2

0 1 1
2

0 1 2

c5 1 1 0 3/2 1 1 0 3/2

f1 2 2 2 2 2 2 2 2

f2 ( 2
3

, 1
3

) 2 2 2 2 2 2 2

f3 1 1 ( 1
2

, 1
2

) 2 2 2 2 2

f4 1 ( 1
2

, 1
2

) 2 2 ( 1
2

, 1
2

) 2 2 2

f5 1 2 ( 1
2

, 1
2

) 2 1 2 2 2

M3 = δ2[1, 1, 1, ( 1
2 ,

1
2 ), 1, ( 1

2 ,
1
2 ), ( 1

2 ,
1
2 ), 2, 1, 1, 1, 2, 2, 2, 2, 2

1, 1, 1, ( 1
2 ,

1
2 ), 1, 2, ( 1

2 ,
1
2 ), 2, 1, 1, ( 1

2 ,
1
2 ), 2, 2, 2, 2, 2],

(24)

M4 = δ2[1, 1, 1, 2, 1, 1, 2, 2, 1, ( 1
2 ,

1
2 ), 2, 2, ( 1

2 ,
1
2 ), 2, 2, 2

1, 1, 1, 2, 1, 1, 2, 2, 1, ( 1
2 ,

1
2 ), 2, 2, ( 1

2 ,
1
2 ), 2, 2, 2],

(25)

M5 = δ2[1, 1, 1, ( 1
2 ,

1
2 ), 1, ( 1

2 ,
1
2 ), 1, 2, 1, 2, 1, 2, 1, 2, 2, 2

1, 1, 1, ( 1
2 ,

1
2 ), 1, 2, ( 1

2 ,
1
2 ), 2, 1, 2, ( 1

2 ,
1
2 ), 2, 1, 2, 2, 2].

(26)

Example 14. Assume network graph is Fig. 1 (c); FNG
is S-3 with A = F = I = 0, B = E = G = 1, C =
D = H = −1 (the Game of Rock-Scissor-Paper), SUR is
MBRA (It is easy to check that for this example MBRA-1
and MBRA-2 lead to the same FEE). We emphasize only
one thing: based on the definition, the neighborhood for a
player to play with maybe different from the neighborhood
from which he can get of information. For instance, player
1 plays with players 2, 3, 4, and 5, but he can only get the
information from 3 and 4. So

(i) if (x3(t) = 2)∩(x4(t) = 2) or (x3(t) = 2)∩(x4(t) = 1)
or (x3(t) = 1) ∩ (x4(t) = 2), then

x1(t+ 1) = 1;

(ii) if (x3(t) = 3)∩(x4(t) = 3) or (x3(t) = 3)∩(x4(t) = 2)
or (x3(t) = 2) ∩ (x4(t) = 3), then

x1(t+ 1) = 2;

(iii) if (x3(t) = 1)∩(x4(t) = 1) or (x3(t) = 1)∩(x4(t) = 3)
or (x3(t) = 3) ∩ (x4(t) = 1), then

x1(t+ 1) = 3.

We skip the detailed computation process and present the
results as follows.

fi(t+ 1) = Mix(t), i = 1, 2, 3, 4, 5, (27)

where
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M1 = δ3[ 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2

2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2

2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3

2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3

3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2

2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1

2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1

1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 3, 3, 3

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2];

M2 = δ3[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2];

M3 = δ3[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2];

M4 = δ3[ 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1

2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2

3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1

2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2

3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1

2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2

3, 2, 3, 1, 1, 1, 1, 2, 2, 3, 2, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 1, 1, 3, 2

2, 2, 3, 2, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 1, 1

3, 2, 2, 2, 3, 2, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3, 1, 1, 3, 2, 2, 2, 3, 2, 3

3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2];

M5 = M2.

4. CONCLUSION

This paper gives a comprehensive introduction for the
modeling of networked evolutionary games. After an intro-
duction to NEGs and to semi-tensor product, the NEG is
formulated as a triplet: (i) network graph; (ii) fundamental
network game; (iii) strategy updating rule. A detailed
discussion with some illustrative examples are presented.
Then the fundamental evolutionary equation (FEE) is
proposed, which determines the overall network dynamics.
The formulas to calculate FEE according to the triplet of
NEG are obtained.
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